University of London

C50 Enumerative \& Asymptotic Combinatorics

Solutions to Exercises 4

1 Induction on k. For $k=0$, we have $\left[\begin{array}{l}n \\ 0\end{array}\right]_{q}=1$ and

$$
\left[\begin{array}{l}
n \\
1
\end{array}\right]_{-1}=1+(-1)+(-1)^{2}+\cdots+(-1)^{n-1}= \begin{cases}0 & \text { if } n \text { is even } \\
1 & \text { if } n \text { is odd }\end{cases}
$$

Suppose the result is true for $k-1$. Then

$$
\begin{aligned}
{\left[\begin{array}{c}
2 n \\
2 k
\end{array}\right]_{-1} } & =\left[\begin{array}{c}
2 n-1 \\
2 k-1
\end{array}\right]_{-1}+(-1)^{2 k}\left[\begin{array}{c}
2 n-1 \\
2 k
\end{array}\right]_{-1} \\
& =\binom{n-1}{k-1}+\binom{n-1}{k} \\
& =\binom{n}{k}
\end{aligned}
$$

The other three cases are similar.
2 (a) Using the two recurrence relations,

$$
\begin{aligned}
{\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} } & =\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}+q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q} \\
& =\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}+q^{n}\left[\begin{array}{l}
n-2 \\
k-1
\end{array}\right]_{q}+q^{k}\left[\begin{array}{c}
n-2 \\
k
\end{array}\right]_{q} \\
& =\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}+\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+\left(q^{n}-1\right)\left[\begin{array}{l}
n-2 \\
k-1
\end{array}\right]_{q} .
\end{aligned}
$$

(b) Sum the result over k. (The values for $n=0$ and $n=1$ are computed straightforwardly.)
(c) Since clearly $F_{q}(n)$ is an increasing function of n (when q is a prime power), we have $F_{q}(n) \geq\left(q^{n-1}+1\right) F_{q}(n-2)$. So, assuming that $F_{q}(n-2) \geq c q^{(n-2)^{2} / 4}$, we have

$$
F_{q}(n) \geq c q^{(n-2)^{2} / 4+(n-1)}=c q^{n^{2} / 4}
$$

So we are done by induction as long as we choose c large enough that the result holds for $n=1$ and $n=1$ (for which $c=\min \left\{1,2 q^{-1 / 4}\right\}$ suffices).

3 The proof is by induction on k. For $k=1$, only the empty matrix is in reduced echelon form. For $k>0$, there are two cases for a matrix A in reduced echelon form:

- The leading one in the last row occurs in the last column. In this case, removing the last row and column gives a $(k-1) \times(n-1)$ matrix in reduced echelon form; and the process uniquely reverses, by adding a row and column with all entries zero except for one in the lower right corner.
- The leading one in the last row occurs earlier than the last column. Then the matrix is obtained from a $k \times(n-1)$ matrix in reduced echelon form by adding an arbitrary column.

By the induction hypotheses, the number of $k \times n$ matrices is

$$
\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}+q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

4 Consider matrices in echelon form with k non-zero rows. Such a matrix is obtained from a $k \times n$ matrix in reduced echelon form with no zero rows by replacing the zeros in the $0+1+$ $\cdots+(k-1)=k(k-1) / 2$ positions in columns above the leading ones by anything at all, and then adding $n-k$ rows of zeros. So the total number of matrices in echelon form is

$$
\sum_{k=0} n q^{k(k-1) / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\prod_{i=1}^{n}\left(1+q^{i-1}\right)
$$

by the q-Binomial Theorem.
For matrices in reduced echelon, the number is

$$
\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=F_{q}(n)
$$

where $F_{q}(n)$ is the function considered in Question 2.
5 (a) $h_{k}(1, \ldots, 1)$ is just the number of monomials of degree k in $\left.x_{1}, \ldots, x_{n}\right)$, which is the number of ways of choosing k of the variables (with repetition allowed); we have seen that this is $\binom{n+k-1}{k}$.
(b) This depends on the identity

$$
\prod_{i=1}^{n}\left(1-x_{i} t\right)^{-1}=\sum_{k \geq 0} h_{k}\left(x_{1}, \ldots, x_{n}\right) t^{k}
$$

This can be proved in two ways. Either multiply out the geometric series on the left, and observe that every monomial of degree n occurs exactly once mutiplied by t^{n}; or show that

$$
h_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{n} h_{i}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{k-i}
$$

and use induction.
Putting $x_{i}=q^{i-1}$, we have

$$
\prod_{i=1}^{n}\left(1-q^{i-1} t\right)^{-1}=\sum_{k \geq 0} h_{k}\left(1, \ldots, q^{n-1}\right) t^{k}
$$

So we have to prove the negative q-binomial theorem:

$$
\prod_{i=1}^{n}\left(1-q^{i-1} t\right)^{-1}=\sum_{k \geq 0}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q} t^{k}
$$

This can be shown by induction. The case $n=0$ is trivial. For the inductive step, we need to prove that

$$
\left(\sum_{k \geq 0}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q} t^{k}\right)\left(1-q^{n-1} t\right)=\sum_{k \geq 0}\left[\begin{array}{c}
n+k-2 \\
k
\end{array}\right]_{q} t^{k}
$$

or in other words

$$
\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q}-q^{n-1}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right]_{q}=\left[\begin{array}{c}
n+k-2 \\
k
\end{array}\right]_{q}
$$

which is immediate from the recurence relation for the Gaussian coefficients.
Note that by letting $q \rightarrow 1$ we get another proof of (a).
6 The formula

$$
\sum_{m \mid n} f_{m}(q)=q^{n}
$$

shows that the number of roots of all irreducible polynomials of degree dividing n over $\mathrm{GF}(q)$ is equal to q^{n}. Now every element of the field of order q^{n} satisfies such a polynomial, so the field must consist of all the roots of all such polynomials. Thus any field of order q^{n} is the splitting field of the product of all these polynomials over $\mathrm{GF}(q)$.

Take q to be a prime. The field with q elements is now obviously unique, and by the uniqueness of the splitting field of a polynomial, the field with q^{n} elements is therefore also unique (up to isomorphism).

