
C50 Enumerative & Asymptotic Combinatorics

Solutions to Exercises 4 Spring 2003

1 Induction onk. Fork = 0, we have
[n

0

]
q = 1 and[

n
1

]
−1

= 1+(−1)+(−1)2 + · · ·+(−1)n−1 =
{

0 if n is even,
1 if n is odd.

Suppose the result is true fork−1. Then[
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The other three cases are similar.

2 (a) Using the two recurrence relations,[
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(b) Sum the result overk. (The values forn= 0 andn= 1 are computed straightforwardly.)

(c) Since clearlyFq(n) is an increasing function ofn (whenq is a prime power), we have
Fq(n)≥ (qn−1 +1)Fq(n−2). So, assuming thatFq(n−2)≥ cq(n−2)2/4, we have

Fq(n)≥ cq(n−2)2/4+(n−1) = cqn2/4.

So we are done by induction as long as we choosec large enough that the result holds forn= 1
andn = 1 (for whichc = min{1,2q−1/4} suffices).
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3 The proof is by induction onk. Fork = 1, only the empty matrix is in reduced echelon form.
For k> 0, there are two cases for a matrixA in reduced echelon form:

• The leading one in the last row occurs in the last column. In this case, removing the
last row and column gives a(k−1)× (n−1) matrix in reduced echelon form; and the
process uniquely reverses, by adding a row and column with all entries zero except for
one in the lower right corner.

• The leading one in the last row occurs earlier than the last column. Then the matrix
is obtained from ak× (n−1) matrix in reduced echelon form by adding an arbitrary
column.

By the induction hypotheses, the number ofk×n matrices is[
n−1
k−1

]
q
+qk

[
n−1

k

]
q

=
[
n
k

]
q
.

4 Consider matrices in echelon form withk non-zero rows. Such a matrix is obtained from a
k×n matrix in reduced echelon form with no zero rows by replacing the zeros in the 0+ 1+
· · ·+ (k−1) = k(k−1)/2 positions in columns above the leading ones by anything at all, and
then addingn−k rows of zeros. So the total number of matrices in echelon form is

∑
k=0

nqk(k−1)/2
[
n
k

]
q

=
n

∏
i=1

(1+qi−1),

by theq-Binomial Theorem.
For matrices in reduced echelon, the number is

n

∑
k=0

[
n
k

]
q

= Fq(n),

whereFq(n) is the function considered in Question 2.

5 (a) hk(1, . . . ,1) is just the number of monomials of degreek in x1, . . . ,xn), which is the
number of ways of choosingk of the variables (with repetition allowed); we have seen that
this is

(n+k−1
k

)
.

(b) This depends on the identity

n

∏
i=1

(1−xit)−1 = ∑
k≥0

hk(x1, . . . ,xn)tk.

This can be proved in two ways. Either multiply out the geometric series on the left, and
observe that every monomial of degreen occurs exactly once mutiplied bytn; or show that

hk(x1, . . . ,xn) =
n

∑
i=0

hi(x1, . . . ,xn−1)xk−i
n
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and use induction.
Puttingxi = qi−1, we have

n

∏
i=1

(1−qi−1t)−1 = ∑
k≥0

hk(1, . . . ,qn−1)tk.

So we have to prove thenegative q-binomial theorem:

n

∏
i=1

(1−qi−1t)−1 = ∑
k≥0

[
n+k−1

k

]
q
tk.

This can be shown by induction. The casen = 0 is trivial. For the inductive step, we need to
prove that (

∑
k≥0

[
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k

]
q
tk

)
(1−qn−1t) = ∑

k≥0
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]
q
tk,

or in other words [
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]
q
−qn−1
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]
q

=
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k

]
q
,

which is immediate from the recurence relation for the Gaussian coefficients.

Note that by lettingq→ 1 we get another proof of (a).

6 The formula

∑
m|n

fm(q) = qn

shows that the number of roots of all irreducible polynomials of degree dividingn over GF(q)
is equal toqn. Now every element of the field of orderqn satisfies such a polynomial, so the
field must consist of all the roots of all such polynomials. Thus any field of orderqn is the
splitting field of the product of all these polynomials over GF(q).

Take q to be a prime. The field withq elements is now obviously unique, and by the
uniqueness of the splitting field of a polynomial, the field withqn elements is therefore also
unique (up to isomorphism).
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