University of London

C50 Enumerative \& Asymptotic Combinatorics

Solutions to Exercises 3

1 (a) Let G_{n} be this number. Clearly $G_{0}=G_{1}=1$. Also, any expression for n must be either $1+$ expression for $n-1$, or $2+$ expression for $n-2$; so $G_{n}=G_{n-1}+G_{n-2}$. By induction, $G_{n}=F_{n}$ for all n.
(b) In an expression for n as a sum of ones and twos, suppose there are i twos. There are then $n-2 i$ ones, and so $n-i$ terms altogether; the number of such expressions is just the number of choices of i of the $n-i$ positions (to put the twos). Summing over i gives the result.
(c) The generating function for the Fibonacci numbers is

$$
\frac{1}{1-x-x^{2}}=\frac{1+x-x^{2}}{1-3 x^{2}+x^{4}}
$$

So

$$
\sum_{n \geq 1} F_{2 n-1} x^{2 n-1}=\frac{x}{1-3 x^{2}+x^{4}}, \quad \sum_{n \geq 0} F_{2 n} x^{2 n}=\frac{1-x^{2}}{1-3 x^{2}+x^{4}},
$$

and a change of variable gives

$$
\sum_{n \geq 1} F_{2 n-1} x^{n}=\frac{x}{1-3 x+x^{2}}, \quad \sum_{n \geq 1} F_{2 n-2} x^{n}=\frac{x-x^{2}}{1-3 x+x^{2}} .
$$

Now let

$$
y=x+2 x^{2}+3 x^{3}+\cdots=\frac{x}{(1-x)^{2}} .
$$

The generating function for the numbers calculated in this way is

$$
y+y^{2}+y^{3}+\cdots=\frac{y}{1-y}=\frac{x}{1-3 x+x^{2}},
$$

as required.
(d) Let

$$
z=x+x^{2}+2 x^{3}+4 x^{4}+\cdots=\frac{x-x^{2}}{1-2 x}
$$

The generating function for the numbers calculated as in this part is

$$
z+z^{2}+z^{3}+\cdots=\frac{z}{1-z}=\frac{x-x^{2}}{1-3 x+x^{2}}
$$

as required.
(e) Induction on n : for $n=0$ we have

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

so the result is true. Assuming it for n, we have

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n+3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
F_{n} & F_{n+1} \\
F_{n+1} & F_{n+2}
\end{array}\right)=\left(\begin{array}{cc}
F_{n+1} & F_{n}+F_{n+1} \\
F_{n}+F_{n+1} & F_{n+1}+F_{n+2}
\end{array}\right)
$$

and the result holds using the Fibonacci recurrence.
(f) We need to compute the nth power of $\binom{01}{11}$ (this has F_{n} as the lower right entry). Using the 'square and multiply' method described in the first section of the notes, we see that the required matrix can be found in at most $2 \log n$ matrix multiplications, each of which takes six multiplications and three additions (using the fact that we need only calculate three matrix entries).

2 It is clear that the number $f(n)$ satisfies the recurrence

$$
f(n)=\sum_{a \in A} f(n-a) \text { for } n \geq \max (A)
$$

and all we have to do is to check the initial conditions. Indeed, we have

$$
\left(\sum_{n \geq 0} f(n) x^{n}\right) \cdot\left(1-\sum_{a \in A} x^{a}\right)=1
$$

from which the result follows.
Alternatively,

$$
\frac{1}{1-\sum_{a \in A} x^{a}}=y+y^{2}+y^{3}+\cdots
$$

where $y=\sum_{a \in A} x^{a}$, and coefficient of x^{n} is clearly $f(n)$.
The smallest root of the polynomial $1-x-x^{2}-x^{5}-x^{10}$ is a simple root δ, where δ is approximately 0.584847 ; so the result holds with $\alpha=\delta^{-1}$, roughly 1.709848 .

3 Let $p_{a}(n)$ be the probability that a doesn't occur in the first n terms, and $q_{a}(n)$ the probability that it occurs first after n tosses. Then clearly $q_{a}(n)=p_{a}(n-1)-p_{a}(n)$. Hence

$$
E_{a}=\sum n q_{a}(n)=\sum p_{a}(n) .
$$

But $p_{a}(n)=f_{a}(n) / 2^{n}$, where $f_{a}(n)$ is the number of sequences of length n containing no occurrence of a; so this sum of probabilities is equal to $F_{a}(1 / 2)$, where $F_{a}(x)=\sum f_{a}(n) x^{n}$. By the theorem of Guibas and Odlyzko (Theorem 1 in the notes),

$$
F_{a}(x)=\frac{C_{a}(x)}{x^{k}+(1-2 x) C_{a}(x)}
$$

Putting $x=1 / 2$ gives the required probability to be $2^{k} C_{a}(1 / 2)$, as required.
4 (a) In Part 2 of the notes we showed that

$$
\sum_{n \geq k}\binom{n}{k} x^{n}=\frac{x^{k}}{(1-x)^{k+1}}
$$

(This is equivalent to the Binomial Theorem for exponent $-(k+1)$.) Replace k by $2 k$ and n by $n+k$ to get the result. (Note that we can replace $n \geq 0$ by $n \geq k$ in the question since the terms for $n=0, \ldots, k-1$ are all zero.)
(b)

$$
\begin{aligned}
\sum_{n \geq 0} a_{n} x^{n} & =\sum_{k \geq 0} \sum_{n \geq k}\binom{n+k}{2 k} 2^{n-k} x^{n} \\
& =\sum_{k \geq 0}(4 x)^{-k} \sum_{n \geq 0}\binom{n+k}{2 k}(2 x)^{n+k} \\
& =\frac{1}{1-2 x} \sum_{k \geq 0}\left(\frac{x}{(1-2 x)^{2}}\right)^{k} \\
& =\frac{1}{1-2 x}\left(1-\frac{x}{(1-2 x)^{2}}\right)^{-1} \\
& =\frac{1-2 x}{1-5 x+4 x^{2}},
\end{aligned}
$$

as required.
(c)

$$
\frac{1-2 x}{(1-x)(1-4 x)}=\frac{1 / 3}{1-x}+\frac{2 / 3}{1-4 x}
$$

so the coefficient of x^{n} is $\left(2^{2 n+1}-1\right) / 3$, as required.

Remark It follows that a_{n} satisfies the recurrence $a_{n}=5 a_{n-1}-4 a_{n-2}$; but I know of no way to show this directly, or even to suspect from the formula for a_{n} that it might be true. It's not entirely clear what the 'snake oil method' is; Wilf's explanation of it can be found in London Math. Soc. Lecture Notes 141, (1989), 208-217. The term 'snake oil' refers to a worthless quack remedy.

5 There are s_{n-1} such partitions in which $\{n\}$ is a part, and s_{n-2} in which $\{i, n\}$ is a part, for each $i \in\{1, \ldots, n-1\}$. So

$$
s_{n}=s_{n-1}+(n-1) s_{n-2} .
$$

The initial values are $s_{0}=s_{1}=1$.
Let $S(x)=\sum_{n \geq 0} s_{n} x^{n} / n!$. Then

$$
\begin{aligned}
S^{\prime}(x) & =\sum_{n \geq 1} \frac{s_{n} x^{n-1}}{(n-1)!} \\
& =\sum_{n \geq 1} \frac{s_{n-1} x^{n-1}}{(n-1)!}+\sum_{n \geq 2} \frac{(n-1) s_{n-2} x^{n-1}}{(n-1)!} \\
& =(1+x) S(x)
\end{aligned}
$$

and the solution of this equation with initial condition $S(0)=1$ is

$$
S(x)=\exp \left(x+\frac{x^{2}}{2}\right)
$$

6 For $n=0$, we have only the empty string. For $n \geq 1$, if a string is non-empty, there are n letters with which it may start, followed by any string made from the remaining $n-1$ letters, so the recurrence holds.

We have

$$
\mathrm{e} n!=n!\sum_{i=0}^{n} \frac{1}{i!}+n!\sum_{i \geq n+1} \frac{1}{i!}
$$

the first term is an integer and the second is less than 1 , so

$$
\lfloor\mathrm{e} n!\rfloor=n!\sum_{i=0}^{n} \frac{1}{i!} .
$$

It is easy to check directly that this expression satisfies the recurrence relation and initial condition, and so is equal to a_{n}. Alternatively, use the method in the notes for recurrence relations of the form $a_{n}=p_{n} a_{n-1}+q_{n}$.

Let

$$
\begin{aligned}
A(x) & =\sum_{n \geq 0} \frac{a_{n} x^{n}}{n!} \\
& =\sum_{n \geq 1} \frac{a_{n-1} x^{n}}{(n-1)!}+\sum_{n \geq 0} \frac{x^{n}}{n!} \\
& =x A(x)+\exp (x)
\end{aligned}
$$

So

$$
A(x)=\frac{\exp (x)}{1-x}
$$

