
C50 Enumerative & Asymptotic Combinatorics

Solutions to Exercises 3 Spring 2003

1 (a) LetGn be this number. ClearlyG0 = G1 = 1. Also, any expression forn must be either
1+ expression forn− 1, or 2+ expression forn− 2; soGn = Gn−1 + Gn−2. By induction,
Gn = Fn for all n.

(b) In an expression forn as a sum of ones and twos, suppose there arei twos. There
are thenn−2i ones, and son− i terms altogether; the number of such expressions is just the
number of choices ofi of then− i positions (to put the twos). Summing overi gives the result.

(c) The generating function for the Fibonacci numbers is

1
1−x−x2 =

1+x−x2

1−3x2 +x4 .

So

∑
n≥1

F2n−1x2n−1 =
x

1−3x2 +x4 , ∑
n≥0

F2nx2n =
1−x2

1−3x2 +x4 ,

and a change of variable gives

∑
n≥1

F2n−1xn =
x

1−3x+x2 , ∑
n≥1

F2n−2xn =
x−x2

1−3x+x2 .

Now let
y = x+2x2 +3x3 + · · ·= x

(1−x)2 .

The generating function for the numbers calculated in this way is

y+y2 +y3 + · · ·= y
1−y

=
x

1−3x+x2 ,

as required.

(d) Let

z= x+x2 +2x3 +4x4 + · · ·= x−x2

1−2x
.
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The generating function for the numbers calculated as in this part is

z+z2 +z3 + · · ·= z
1−z

=
x−x2

1−3x+x2 ,

as required.

(e) Induction onn: for n = 0 we have(
0 1
1 1

)2

=
(

1 1
1 2

)
,

so the result is true. Assuming it forn, we have(
0 1
1 1

)n+3

=
(

0 1
1 1

)(
Fn Fn+1

Fn+1 Fn+2

)
=
(

Fn+1 Fn +Fn+1

Fn +Fn+1 Fn+1 +Fn+2

)
,

and the result holds using the Fibonacci recurrence.

(f) We need to compute thenth power of
(01

11

)
(this hasFn as the lower right entry). Using

the ‘square and multiply’ method described in the first section of the notes, we see that the
required matrix can be found in at most 2 logn matrix multiplications, each of which takes
six multiplications and three additions (using the fact that we need only calculate three matrix
entries).

2 It is clear that the numberf (n) satisfies the recurrence

f (n) = ∑
a∈A

f (n−a) for n≥max(A),

and all we have to do is to check the initial conditions. Indeed, we have(
∑
n≥0

f (n)xn

)
·

(
1−∑

a∈A

xa

)
= 1,

from which the result follows.
Alternatively,

1
1−∑a∈Axa = y+y2 +y3 + · · · ,

wherey = ∑a∈Axa, and coefficient ofxn is clearly f (n).
The smallest root of the polynomial 1− x− x2− x5− x10 is a simple rootδ, whereδ is

approximately 0.584847; so the result holds withα = δ−1, roughly 1.709848.

3 Let pa(n) be the probability thata doesn’t occur in the firstn terms, andqa(n) the probability
that it occurs first aftern tosses. Then clearlyqa(n) = pa(n−1)− pa(n). Hence

Ea = ∑nqa(n) = ∑ pa(n).
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But pa(n) = fa(n)/2n, where fa(n) is the number of sequences of lengthn containing no
occurrence ofa; so this sum of probabilities is equal toFa(1/2), whereFa(x) = ∑ fa(n)xn. By
the theorem of Guibas and Odlyzko (Theorem 1 in the notes),

Fa(x) =
Ca(x)

xk +(1−2x)Ca(x)
.

Puttingx = 1/2 gives the required probability to be 2kCa(1/2), as required.

4 (a) In Part 2 of the notes we showed that

∑
n≥k

(
n
k

)
xn =

xk

(1−x)k+1 .

(This is equivalent to the Binomial Theorem for exponent−(k+ 1).) Replacek by 2k andn
by n+ k to get the result. (Note that we can replacen≥ 0 by n≥ k in the question since the
terms forn = 0, . . . ,k−1 are all zero.)

(b)

∑
n≥0

anxn = ∑
k≥0

∑
n≥k

(
n+k
2k

)
2n−kxn

= ∑
k≥0

(4x)−k ∑
n≥0

(
n+k
2k

)
(2x)n+k

=
1

1−2x ∑
k≥0

(
x

(1−2x)2

)k

=
1

1−2x

(
1− x

(1−2x)2

)−1

=
1−2x

1−5x+4x2 ,

as required.

(c)
1−2x

(1−x)(1−4x)
=

1/3
1−x

+
2/3

1−4x
,

so the coefficient ofxn is (22n+1−1)/3, as required.

Remark It follows thatan satisfies the recurrencean = 5an−1−4an−2; but I know of no way
to show this directly, or even to suspect from the formula foran that it might be true. It’s not
entirely clear what the ‘snake oil method’ is; Wilf’s explanation of it can be found inLondon
Math. Soc. Lecture Notes141, (1989), 208-217. The term ‘snake oil’ refers to a worthless
quack remedy.
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5 There aresn−1 such partitions in which{n} is a part, andsn−2 in which {i,n} is a part, for
eachi ∈ {1, . . . ,n−1}. So

sn = sn−1 +(n−1)sn−2.

The initial values ares0 = s1 = 1.
Let S(x) = ∑n≥0snxn/n!. Then

S′(x) = ∑
n≥1

snxn−1

(n−1)!

= ∑
n≥1

sn−1xn−1

(n−1)!
+ ∑

n≥2

(n−1)sn−2xn−1

(n−1)!

= (1+x)S(x),

and the solution of this equation with initial conditionS(0) = 1 is

S(x) = exp

(
x+

x2

2

)
.

6 For n = 0, we have only the empty string. Forn≥ 1, if a string is non-empty, there aren
letters with which it may start, followed by any string made from the remainingn−1 letters,
so the recurrence holds.

We have

en! = n!
n

∑
i=0

1
i!

+n! ∑
i≥n+1

1
i!

;

the first term is an integer and the second is less than 1, so

ben!c= n!
n

∑
i=0

1
i!
.

It is easy to check directly that this expression satisfies the recurrence relation and initial
condition, and so is equal toan. Alternatively, use the method in the notes for recurrence
relations of the forman = pnan−1 +qn.

Let

A(x) = ∑
n≥0

anxn

n!

= ∑
n≥1

an−1xn

(n−1)!
+ ∑

n≥0

xn

n!

= xA(x)+exp(x).

So

A(x) =
exp(x)
1−x

.
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