
C50 Enumerative & Asymptotic Combinatorics

Solutions to Exercises 2 Spring 2003

1 We construct a bijection between the unordered selections ofk objects from a set{x1, . . . ,xn}
with repetitions allowed, andk-element subsets of a set of sizen+k−1.

Take a line ofn−k+ 1 boxes. Suppose first that we are given ak-element subsetSof the
set of boxes. Place “markers”a1, . . . ,an−1 in the remainingn−1 boxes. Now

• the number of boxes beforea1 is the number of occurrences ofx1 in the selection;

• the number of boxes betweenai andai+1 is the number of occurrences ofxi+1 in the
selection, for 1≤ i ≤ n−2;

• the number of boxes afteran−1 is the number of occurrences ofxn in the selection.

It is clear that the sum of the numbers of occurrences of thexi is equal tok.
Conversely, suppose that we have a selection ofk of the objects{x1, . . . ,xn}, with repeti-

tions allowed. Letmi be the number of occurrences ofxi in the selection. Now

• leavingm1 empty boxes, put markera1 in the next box;

• leavingmi empty boxes after markerai−1, put markerai in the next box, for 2≤ i ≤
n−1;

• thenmn empty boxes remain at the end.

The corresponding subset consists of the unmarked boxes.
For example, the subset{1,3,4} of {1, . . . ,7} corresponds to the selection containing no

x1, onex2, nox3, and threex4.

2 By the Binomial Theorem withx = y = 1, we have

n

∑
k=0

(
n
k

)
= 2n.

Since all terms are positive, each individual term cannot exceed 2n.
On the other hand, (

n
k+1

)
=

n−k
k+1

(
n
k

)
,

so we see that
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• if n−k> k+1 (that is,k< (n−1)/2), then
(n

k

)
<
( n

k+1

)
;

• if n−k = k+1 (that is,k = (n−1)/2), then
(n

k

)
=
( n

k+1

)
;

• if n−k> k+1 (that is,k> (n−1)/2), then
(n

k

)
>
( n

k+1

)
.

We are given thatn is even, so the second alternative doesn’t hold; thus the binomial coeffi-
cients increase as far as

( n
n/2

)
and then decrease. So

( n
n/2

)
is the largest of then+ 1 terms in

the sum, so
( n

n/2

)
≥ 2n/(n+1).

Using Stirling’s formula we obtain(
n

n/2

)
=

n!
((n/2)!)2 ∼

√
2πnnn

en · en

πn(n/2)n =
2n√
πn/2

.

For n = 10, we have
(10

5

)
= 252, while 2n/

√
πn/2 = 258.368. . . .

3 If we use Stirling’s formula in the formn! ∼ Cnn+1/2/en, then the above estimate would
become (

n
n/2

)
∼ 2

C
2n

√
n
,

So, inn independent trials with probability 1/2 of success on each trial, the probability ofn/2
successes would be (

n
n/2

)
/2n∼ 2

C
√

n
.

Comparison with the Central Limit Theorem shows that 2/C = 1/
√

π/2, soC =
√

2π, as
required.

4 For the first equality,

∑
m

(−1)m−k
(

n
m

)(
m
k

)
= ∑

m
(−1)m−k n!

(n−m)! (m−k)! k!

= ∑
m

(−1)m−k
(

n
k

)(
n−k
m−k

)
.

In the last expression,m runs fromk to n, and so j = m− k runs from 0 ton− k, so the
expression is (

n
k

)n−k

∑
j=0

(−1) j
(

n−k
j

)
=
(

n
k

)
(1−1)n−k = 0,

sincek< n.
The second equality is proved similarly.

5 The formulation is as follows: If(an) and(bn) are sequences with exponential generating
functionsA(x) andB(x) respectively, then the following are equivalent:

2



(a)bn =
n

∑
k=0

(
n
k

)
ak for all n;

(b) B(x) = A(x)exp(x).

Your job to prove it!

6 There is a function from the set of permutations onto the set of partitions, which maps each
permutation to its cycle decomposition. HenceB(n)≤ n!.

There are many ways to do the first part: here is one requiring not much calculation. Let
s(n) be the number of partitions of{1, . . . ,n} with all parts of size 2; this is also equal to the
number ofinvolutions, that is, permutations whose square is the identity. Clearlys(n)≤ B(n).
Furthermore, I claim that any permutation is the product of two involutions. It is enough to
prove this for cyclic permutations; now generalise the patterns

(1,2,3,4,5) = ((2,5)(3,4))((1,2)(3,5)) ,
(1,2,3,4,5,6) = ((2,6)(3,5))((1,2)(3,6)(4,5)) .

Son! ≤ s(n)2. The result follows.

7 This is clear from the proof of Stirling’s formula in the notes.

8 For an arbitrary permutationπ, let k be the smallest positive integer such thatπ maps the set
{1, . . . ,k} to itself. (Thusk = n if and only if π is connected.) Nowπ is the concatenation of
a connected permutation on{1, . . . ,k} and an arbitrary permutation on{k+ 1, . . . ,n}; and the
expression is unique. So

n! =
n

∑
k=1

c(k)(n−k)!.

This identity shows that in the product(
1+ ∑

n≥1

n! xn

)
·

(
1−∑

n≥1

c(n)xn

)
,

the coefficient ofxn is zero forn> 0, so the product is 1.

9 In this question,(−1)n−k should read(−1)k – sorry!

(−1)k
(

n
k

)
= (−1)k n(n−1) · · ·(n−k+1)

k!
=

(−n)(−n+1) · · ·(−n+k−1)
k!

=
(
−n+k−1

k

)
.

Proposition 3 asserts (after noting that the terms forn< k are all zero) that

∑
n≥k

(
n
k

)
xn =

xk

(1−x)k+1 .
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Dividing by xk and puttingj = n−k, we have

∑
j≥0

(
k+ j

j

)
x j = (1−x)−(k+1).

Now replacex by−x. According to the first part of the question,
(k+ j

j

)
(−1) j =

(−(k+1)
j

)
, and

so we have

∑
j≥0

(
−(k+1)

j

)
x j = (1+x)−(k+1),

as required.

10 Apply Proposition 14 of the notes withA(x) = xk/k! (so thatak = 1 andai = 0 for i 6= k).
Since∑k≥1s(n,k) = 0 for n≥ 2, the sum of the left-hand sides is justx; on the right we

have

∑
k≥1

(log(1+x)k)
k!

= exp(log(1+x))−1 = x.

11 We see that

n!T(n,k) =
(

n
a1, . . . ,ak

)
(a1−1)! · · ·(1k−1)!,

where themultinomial coefficient(
n

a1,a2, . . . ,ak

)
=

n!
a1! · · ·ak!

is the number of choices of subsetsA1, . . . ,Ak of {1, . . . ,n} which partition the set, and((ai−
1)! is the number of cyclic permutations on a set of sizeai ; so the numbern! T(n,k) is just the
number of choices of a permutation of{1, . . . ,n} with k cycles together with an ordering of
the cycles. That is,

n! T(n,k) = k! |s(n,k)|.

12 (a) To show thatσ is an equivalence relation:

• x ρ x andx ρ x, sox σ x.

• Symmetry is clear by definition.

• Suppose thatx σ y andy σ z. Thenx ρ y andy ρ z, sox ρ z; andzρ y andy ρ x, sozρ x.
Thusx σ z.

Let [x] be the equivalence class ofx. Define[x] ≤ [y] if x ρ y. This does not depend on the
choice of representatives, for ifx′ ∈ [x] andy′ ∈ [y], thenx′ ρ x ρ y ρ y′, sox′ ρ y′. If [x] ≤ [y]
and[y]≤ [x], thenx ρ y andy ρ x, sox σ y and[x] = [y]; so the relation is antisymmetric. It is
clearly transitive and satisfies trichotomy. So it is a total order.
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Given an equivalence relation and a total order of its equivalence classes, putx ρ y if
[x]≤ [y]; it is easily seen that this is a total preorder. The constructions are mutually inverse.

It follows that a total preorder is uniquely determined by a partition of the point set and a
total order of its parts. So the number of total preorders withk equivalence classes isS(n,k)k!,
and the result follows.

(b) The e.g.f. of the sequencen! is 1/(1−x). The result now follows from Proposition 9.

(c) The radius of convergence of the series is log2; so, ifpn is the number of total preorders
on{1, . . . ,n}, then

n!((log2)−1− ε)n < pn < n!((log2)−1 + ε)n

for all n≥ n0(ε).

13 The sum defining the Lah numberL(n,k) can be interpreted as the number of choices in
the following scheme: choose a permutation of{1, . . . ,n} with m cycles, and then a partition
of the set of cycles withk parts, and sum overm. This can also be regarded as follows: choose
a partition of{1, . . . ,n} with k parts, and then choose a permutation of each part. (The total
number of cycles is ‘summed out’). If the parts are regarded as ordered, the number having
parts of sizea1, . . . ,ak is

n!
a1! · · ·ak!

a1! · · ·ak! = n! .

So the total number is obtained by dividing this byk! (the number of ways of ordering the
parts) and multiplying by

(n−1
k−1

)
(the number of choices ofk positive integers with sumn).

To see the last assertion, note that ifa1 + · · ·+ ak = n, thenb1 + · · ·+ bk = n− k, where
bi = ai −1 is non-negative; conversely anyk non-negative integers with sumn− k give rise
to k positive integers with sumn. Now k non-negative integers with sumn−k correspond to
a selection ofn− k objects from a set ofk, with repetitions allowed and order unimportant
(wherebi is the number of times theith object is chosen); by Question 1 on this sheet, this
number is (

(n−k)+k−1
n−k

)
=
(

n−1
k−1

)
.

14 The coefficient ofxn on the left-hand side of(
n

∑
k=0

(
n
k

)
xk

)2

= (1+x)2n =
2

∑
k=0

n

(
2n
k

)
nk

is
n

∑
l=0

(
n
l

)(
n

n− l

)
=

n

∑
l=0

(
n
l

)2

,

while the coefficient on the right is
(2n

n

)
.

Argue similarly with(
n

∑
k=0

(−1)k
(

n
k

)
xk

)(
n

∑
k=0

(
n
k

)
xk

)
= (1−x)n(1+x)n = (1−x2)n.
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The coefficient ofxn on the left is
n

∑
l=0

(−1)l
(

n
l

)2

,

while on the right we have only even powers, so the answer is zero ifn is odd, while ifn is
even it is(−1)n/2

( n
n/2

)
, as claimed.

15 By the Binomial Theorem,

(1−4x)−1/2 = ∑
n≥0

(
−1/2

n

)
(−4x)n.

The coefficient ofxn is

(−4)n(−1)(−3) · · ·(−(2n−1))
n!2 · · ·2

=
(2n)!
(n!)2 =

(
2n
n

)
.

The coefficient ofxn in the square of this function is

n

∑
k=0

(
2k
k

)(
2(n−k)

n−k

)
.

But this is just(1−4x)−1, and the coefficient ofxn is 4n, as required.
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