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1 We construct a bijection between the unordered selectiokslgects from a sefxy, ..., Xn}
with repetitions allowed, anki-element subsets of a set of size- k— 1.

Take a line oin — k+ 1 boxes. Suppose first that we are givelrelement subses of the
set of boxes. Place “markersi, . ..,a,_1 in the remainingh— 1 boxes. Now

e the number of boxes befors is the number of occurrencesxfin the selection;

e the number of boxes betweananda;. 1 is the number of occurrences xf.; in the
selection, for I<i < n-—2;

e the number of boxes aftey,_1 is the number of occurrencesxfin the selection.

It is clear that the sum of the numbers of occurrences okitieequal tok.
Conversely, suppose that we have a selectionaffthe objects{xs,...,x,}, with repeti-
tions allowed. Letn; be the number of occurrencesx@fn the selection. Now

e |leavingmy empty boxes, put markes in the next box;

e leavingm, empty boxes after markex_1, put markerg; in the next box, for X i <
n—1;

e thenm, empty boxes remain at the end.

The corresponding subset consists of the unmarked boxes.
For example, the subsél, 3,4} of {1,...,7} corresponds to the selection containing no
X1, ON€Xy, N0 X3, and threex,.

2 By the Binomial Theorem witlx =y = 1, we have

27

Since all terms are positive, each individual term cannot exced 2

On the other hand,
n _n—k n
k+1) k+1\k/)’

sSo we see that



e if n—k>k+1 (thatisk < (n—1)/2), then(y) < (. ,);
n

o if n—k=k+1 (thatisk= (n—1)/2), then(y) = (,",);
e if n—k>k+1 (thatisk> (n—1)/2), then(y) > ().
We are given thah is even, so the second alternative doesn’t hold; thus the binomial coeffi-

cients increase as far éﬁ/‘z) and then decrease. $F§/12) is the largest of th@ + 1 terms in
the sum, sc(n;‘z) >2"/(n+1).

Using Stirling’s formula we obtain

( n ) oo \/ﬁnn”. e
n/2) ~ ((n/2)!)? e  mn/2" /m/2

Forn = 10, we have(Y) = 252, while 2/,/mn/2 = 258368... .

3 If we use Stirling’s formula in the fornm! ~ Cn**%/2/¢€", then the above estimate would

become
) 22
n/2) Cyn’

So, innindependent trials with probability/2 of success on each trial, the probabilityngp

successes would be
AV
n/2 cyn’

Comparison with the Central Limit Theorem shows thaC2= 1/./1/2, soC = /2m, as
required.

4 For the first equality,

3w () = 2 e

= 30 )

In the last expressiomn runs fromk to n, and soj = m—k runs from 0 ton—Kk, so the

expression is
m\ "k /n—k n
—1J< _ >= ( > 1-1)"k =0,
(%) s (") = (e
sincek < n.

The second equality is proved similarly.

5 The formulation is as follows: Ifa,) and(b,) are sequences with exponential generating
functionsA(x) andB(x) respectively, then the following are equivalent:

2



n n )
@hbn= k;) <k> a forall n;
(b) B(x) = A(x) exp(x).

Your job to prove it!

6 There is a function from the set of permutations onto the set of partitions, which maps each
permutation to its cycle decomposition. Herig{@) < n!.

There are many ways to do the first part: here is one requiring not much calculation. Let
s(n) be the number of partitions dfl,...,n} with all parts of size 2; this is also equal to the
number ofinvolutions that is, permutations whose square is the identity. Clesnly< B(n).
Furthermore, | claim that any permutation is the product of two involutions. It is enough to
prove this for cyclic permutations; now generalise the patterns

(172737475) = ((275)(374))((172)(375))7
(1,2,3,4,5,6) = ((2,6)(3,5))((1,2)(3,6)(4,5)).

Son! < s(n)2. The result follows.
7 This is clear from the proof of Stirling’s formula in the notes.

8 For an arbitrary permutatiom, letk be the smallest positive integer such titahaps the set
{1,...,k} toitself. (Thusk = nif and only if Ttis connected.) Nowr is the concatenation of
a connected permutation dd, ..., k} and an arbitrary permutation dk+1,...,n}; and the
expression is unique. So

n = i c(k)(n—k)!.
K=1

This identity shows that in the product

<1+ > x”) : (1— > c(n)x”) :
n>1 n>1

the coefficient ok" is zero forn > 0, so the product is 1.

9 In this question(—1)""¥ should read —1)k — sorry!

~1)---(n—k+1) (-n)(-n+1)---(—n+k-1) [—n+k-1
(_1)k<E>:(_1)kn(n ) k!(n ):( n)( n )k| ( n ):( n o )

Proposition 3 asserts (after noting that the termsfark are all zero) that
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Dividing by x€ and puttingj = n—k, we have

k+]) i —(k+1)
> X =(1-x) :
iz < J

Now replacex by —x. According to the first part of the questio@ﬁj)(—l)j = (*(kj“)), and
so we have
—(k+1)

as required.

10 Apply Proposition 14 of the notes with(x) = x¢/k! (so thata, = 1 anda; = O fori # k).
Sincey-18(n,k) = 0 for n > 2, the sum of the left-hand sides is juston the right we
have
(log(1+x)¥)

i =exp(log(1+x)) —1=x.

K>1
11 We see that
n
nT(n,k) = <
a,...,ak

where themultinomial coefficient

n B n!
aj,az,....a/) a!l---al

is the number of choices of subséts ..., A of {1,...,n} which partition the set, anfa; —
1)! is the number of cyclic permutations on a set of sizeso the numben! T (n, k) is just the
number of choices of a permutation {f,. .., n} with k cycles together with an ordering of
the cycles. That is,

ym—bhih—bh

n!' T(n,k) = k!'|s(n,k)|.

12 (a) To show that is an equivalence relation:
e XpXxandxp X, SOXO X.
e Symmetry is clear by definition.

e Suppose thatoyandyo z Thenxpyandypz soxpz andzpyandyp X, SOzp X.
Thusxo z

Let [x] be the equivalence class xf Define[x] < [y] if xpy. This does not depend on the
choice of representatives, fonif € [x] andy’ € [y], thenX pxpypy, soX py. If [X] <[y]
andly] < [x], thenxpy andy p x, sox oy and[x] = [y]; so the relation is antisymmetric. It is
clearly transitive and satisfies trichotomy. So it is a total order.
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Given an equivalence relation and a total order of its equivalence classes ppuif
[x] < [y]; itis easily seen that this is a total preorder. The constructions are mutually inverse.
It follows that a total preorder is uniquely determined by a partition of the point set and a
total order of its parts. So the number of total preorders withuivalence classes®n, k)k!,
and the result follows.

(b) The e.g.f. of the sequenaceéis 1/(1—x). The result now follows from Proposition 9.

(c) The radius of convergence of the series is log 2; 9w, i§ the number of total preorders
on{l,...,n}, then
nl((log2) 1 —&)" < py < nl((log2) " +¢)"

for all n > np(g).

13 The sum defining the Lah numbk(n,k) can be interpreted as the number of choices in
the following scheme: choose a permutatior{ ®f...,n} with mcycles, and then a partition
of the set of cycles witk parts, and sum oven. This can also be regarded as follows: choose
a partition of{1,...,n} with k parts, and then choose a permutation of each part. (The total
number of cycles is ‘summed out’). If the parts are regarded as ordered, the number having
parts of sizea,...,a is |
n!

So the total number is obtained by dividing this kly(the number of ways of ordering the
parts) and multiplying b)(’lzj) (the number of choices d&fpositive integers with sum).

To see the last assertion, note tha&jft --- +ax = n, thenby + --- + by = n—k, where
b, = g — 1 is non-negative; conversely akynon-negative integers with sum- k give rise
to k positive integers with sum. Now k non-negative integers with sum- k correspond to
a selection ofh — k objects from a set ok, with repetitions allowed and order unimportant
(whereby is the number of times thigh object is chosen); by Question 1 on this sheet, this

number is
(n—k)+k-1\ (n-1
n—k \k—-1)/"

14 The coefficient ok" on the left-hand side of

(B0 om0
SMG)-5 ()

while the coefficient on the right i€").
Argue similarly with

ai!---a!=nl.
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The coefficient ok” on the left is

n /N 2
co'(7)
2\
while on the right we have only even powers, so the answer is zerdsibdd, while ifn is
even itis(—1)"?(,,), as claimed.

15 By the Binomial Theorem,

(1-4x)"Y2= n; (_i/2> (=4x)".

The coefficient ok" is

(=4"(=D(=3) - (=(2n-1)) _ (2n)! <20>'

n

n2...2 (n!)2

The coefficient ok" in the square of this function is

50 ()

But this is just(1— 4x) %, and the coefficient of" is 4", as required.



