University of London

C50 Enumerative \& Asymptotic Combinatorics

Solutions to Exercises 2
 Spring 2003

1 We construct a bijection between the unordered selections of k objects from a set $\left\{x_{1}, \ldots, x_{n}\right\}$ with repetitions allowed, and k-element subsets of a set of size $n+k-1$.

Take a line of $n-k+1$ boxes. Suppose first that we are given a k-element subset S of the set of boxes. Place "markers" a_{1}, \ldots, a_{n-1} in the remaining $n-1$ boxes. Now

- the number of boxes before a_{1} is the number of occurrences of x_{1} in the selection;
- the number of boxes between a_{i} and a_{i+1} is the number of occurrences of x_{i+1} in the selection, for $1 \leq i \leq n-2$;
- the number of boxes after a_{n-1} is the number of occurrences of x_{n} in the selection.

It is clear that the sum of the numbers of occurrences of the x_{i} is equal to k.
Conversely, suppose that we have a selection of k of the objects $\left\{x_{1}, \ldots, x_{n}\right\}$, with repetitions allowed. Let m_{i} be the number of occurrences of x_{i} in the selection. Now

- leaving m_{1} empty boxes, put marker a_{1} in the next box;
- leaving m_{i} empty boxes after marker a_{i-1}, put marker a_{i} in the next box, for $2 \leq i \leq$ $n-1$;
- then m_{n} empty boxes remain at the end.

The corresponding subset consists of the unmarked boxes.
For example, the subset $\{1,3,4\}$ of $\{1, \ldots, 7\}$ corresponds to the selection containing no x_{1}, one x_{2}, no x_{3}, and three x_{4}.

2 By the Binomial Theorem with $x=y=1$, we have

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Since all terms are positive, each individual term cannot exceed 2^{n}.
On the other hand,

$$
\binom{n}{k+1}=\frac{n-k}{k+1}\binom{n}{k}
$$

so we see that

- if $n-k>k+1$ (that is, $k<(n-1) / 2$), then $\binom{n}{k}<\binom{n}{k+1}$;
- if $n-k=k+1$ (that is, $k=(n-1) / 2$), then $\binom{n}{k}=\binom{n}{k+1}$;
- if $n-k>k+1$ (that is, $k>(n-1) / 2$), then $\binom{n}{k}>\binom{n}{k+1}$.

We are given that n is even, so the second alternative doesn't hold; thus the binomial coefficients increase as far as $\binom{n}{n / 2}$ and then decrease. So $\binom{n}{n / 2}$ is the largest of the $n+1$ terms in the sum, so $\binom{n}{n / 2} \geq 2^{n} /(n+1)$.

Using Stirling's formula we obtain

$$
\binom{n}{n / 2}=\frac{n!}{((n / 2)!)^{2}} \sim \frac{\sqrt{2 \pi n} n^{n}}{\mathrm{e}^{n}} \cdot \frac{\mathrm{e}^{n}}{\pi n(n / 2)^{n}}=\frac{2^{n}}{\sqrt{\pi n / 2}}
$$

For $n=10$, we have $\binom{10}{5}=252$, while $2^{n} / \sqrt{\pi n / 2}=258.368 \ldots$.
3 If we use Stirling's formula in the form $n!\sim C n^{n+1 / 2} / \mathrm{e}^{n}$, then the above estimate would become

$$
\binom{n}{n / 2} \sim \frac{2}{C} \frac{2^{n}}{\sqrt{n}}
$$

So, in n independent trials with probability $1 / 2$ of success on each trial, the probability of $n / 2$ successes would be

$$
\binom{n}{n / 2} / 2^{n} \sim \frac{2}{C \sqrt{n}}
$$

Comparison with the Central Limit Theorem shows that $2 / C=1 / \sqrt{\pi / 2}$, so $C=\sqrt{2 \pi}$, as required.

4 For the first equality,

$$
\begin{aligned}
\sum_{m}(-1)^{m-k}\binom{n}{m}\binom{m}{k} & =\sum_{m}(-1)^{m-k} \frac{n!}{(n-m)!(m-k)!k!} \\
& =\sum_{m}(-1)^{m-k}\binom{n}{k}\binom{n-k}{m-k}
\end{aligned}
$$

In the last expression, m runs from k to n, and so $j=m-k$ runs from 0 to $n-k$, so the expression is

$$
\binom{n}{k} \sum_{j=0}^{n-k}(-1)^{j}\binom{n-k}{j}=\binom{n}{k}(1-1)^{n-k}=0
$$

since $k<n$.
The second equality is proved similarly.
5 The formulation is as follows: If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are sequences with exponential generating functions $A(x)$ and $B(x)$ respectively, then the following are equivalent:
(a) $b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k}$ for all n;
(b) $B(x)=A(x) \exp (x)$.

Your job to prove it!

6 There is a function from the set of permutations onto the set of partitions, which maps each permutation to its cycle decomposition. Hence $B(n) \leq n!$.

There are many ways to do the first part: here is one requiring not much calculation. Let $s(n)$ be the number of partitions of $\{1, \ldots, n\}$ with all parts of size 2 ; this is also equal to the number of involutions, that is, permutations whose square is the identity. Clearly $s(n) \leq B(n)$. Furthermore, I claim that any permutation is the product of two involutions. It is enough to prove this for cyclic permutations; now generalise the patterns

$$
\begin{aligned}
(1,2,3,4,5) & =((2,5)(3,4))((1,2)(3,5)) \\
(1,2,3,4,5,6) & =((2,6)(3,5))((1,2)(3,6)(4,5))
\end{aligned}
$$

So $n!\leq s(n)^{2}$. The result follows.

7 This is clear from the proof of Stirling's formula in the notes.

8 For an arbitrary permutation π, let k be the smallest positive integer such that π maps the set $\{1, \ldots, k\}$ to itself. (Thus $k=n$ if and only if π is connected.) Now π is the concatenation of a connected permutation on $\{1, \ldots, k\}$ and an arbitrary permutation on $\{k+1, \ldots, n\}$; and the expression is unique. So

$$
n!=\sum_{k=1}^{n} c(k)(n-k)!.
$$

This identity shows that in the product

$$
\left(1+\sum_{n \geq 1} n!x^{n}\right) \cdot\left(1-\sum_{n \geq 1} c(n) x^{n}\right)
$$

the coefficient of x^{n} is zero for $n>0$, so the product is 1 .
9 In this question, $(-1)^{n-k}$ should read $(-1)^{k}$ - sorry!
$(-1)^{k}\binom{n}{k}=(-1)^{k} \frac{n(n-1) \cdots(n-k+1)}{k!}=\frac{(-n)(-n+1) \cdots(-n+k-1)}{k!}=\binom{-n+k-1}{k}$.
Proposition 3 asserts (after noting that the terms for $n<k$ are all zero) that

$$
\sum_{n \geq k}\binom{n}{k} x^{n}=\frac{x^{k}}{(1-x)^{k+1}}
$$

Dividing by x^{k} and putting $j=n-k$, we have

$$
\sum_{j \geq 0}\binom{k+j}{j} x^{j}=(1-x)^{-(k+1)} .
$$

Now replace x by $-x$. According to the first part of the question, $\binom{k+j}{j}(-1)^{j}=\binom{-(k+1)}{j}$, and so we have

$$
\sum_{j \geq 0}\binom{-(k+1)}{j} x^{j}=(1+x)^{-(k+1)}
$$

as required.
10 Apply Proposition 14 of the notes with $A(x)=x^{k} / k$! (so that $a_{k}=1$ and $a_{i}=0$ for $i \neq k$).
Since $\sum_{k \geq 1} s(n, k)=0$ for $n \geq 2$, the sum of the left-hand sides is just x; on the right we have

$$
\sum_{k \geq 1} \frac{\left(\log (1+x)^{k}\right)}{k!}=\exp (\log (1+x))-1=x
$$

11 We see that

$$
n!T(n, k)=\binom{n}{a_{1}, \ldots, a_{k}}\left(a_{1}-1\right)!\cdots\left(1_{k}-1\right)!
$$

where the multinomial coefficient

$$
\binom{n}{a_{1}, a_{2}, \ldots, a_{k}}=\frac{n!}{a_{1}!\cdots a_{k}!}
$$

is the number of choices of subsets A_{1}, \ldots, A_{k} of $\{1, \ldots, n\}$ which partition the set, and $\left(\left(a_{i}-\right.\right.$ $1)!$ is the number of cyclic permutations on a set of size a_{i}; so the number $n!T(n, k)$ is just the number of choices of a permutation of $\{1, \ldots, n\}$ with k cycles together with an ordering of the cycles. That is,

$$
n!T(n, k)=k!|s(n, k)| .
$$

12 (a) To show that σ is an equivalence relation:

- $x \rho x$ and $x \rho x$, so $x \sigma x$.
- Symmetry is clear by definition.
- Suppose that $x \sigma y$ and $y \sigma z$. Then $x \rho y$ and $y \rho z$, so $x \rho z$; and $z \rho y$ and $y \rho x$, so $z \rho x$. Thus $x \sigma z$.

Let $[x]$ be the equivalence class of x. Define $[x] \leq[y]$ if $x \rho y$. This does not depend on the choice of representatives, for if $x^{\prime} \in[x]$ and $y^{\prime} \in[y]$, then $x^{\prime} \rho x \rho$ y ρy^{\prime}, so $x^{\prime} \rho y^{\prime}$. If $[x] \leq[y]$ and $[y] \leq[x]$, then $x \rho y$ and $y \rho x$, so $x \sigma y$ and $[x]=[y]$; so the relation is antisymmetric. It is clearly transitive and satisfies trichotomy. So it is a total order.

Given an equivalence relation and a total order of its equivalence classes, put $x \rho y$ if $[x] \leq[y]$; it is easily seen that this is a total preorder. The constructions are mutually inverse.

It follows that a total preorder is uniquely determined by a partition of the point set and a total order of its parts. So the number of total preorders with k equivalence classes is $S(n, k) k$!, and the result follows.
(b) The e.g.f. of the sequence n ! is $1 /(1-x)$. The result now follows from Proposition 9 .
(c) The radius of convergence of the series is $\log 2$; so, if p_{n} is the number of total preorders on $\{1, \ldots, n\}$, then

$$
n!\left((\log 2)^{-1}-\varepsilon\right)^{n}<p_{n}<n!\left((\log 2)^{-1}+\varepsilon\right)^{n}
$$

for all $n \geq n_{0}(\varepsilon)$.
13 The sum defining the Lah number $L(n, k)$ can be interpreted as the number of choices in the following scheme: choose a permutation of $\{1, \ldots, n\}$ with m cycles, and then a partition of the set of cycles with k parts, and sum over m. This can also be regarded as follows: choose a partition of $\{1, \ldots, n\}$ with k parts, and then choose a permutation of each part. (The total number of cycles is 'summed out'). If the parts are regarded as ordered, the number having parts of size a_{1}, \ldots, a_{k} is

$$
\frac{n!}{a_{1}!\cdots a_{k}!} a_{1}!\cdots a_{k}!=n!
$$

So the total number is obtained by dividing this by k ! (the number of ways of ordering the parts) and multiplying by $\binom{n-1}{k-1}$ (the number of choices of k positive integers with sum n).

To see the last assertion, note that if $a_{1}+\cdots+a_{k}=n$, then $b_{1}+\cdots+b_{k}=n-k$, where $b_{i}=a_{i}-1$ is non-negative; conversely any k non-negative integers with sum $n-k$ give rise to k positive integers with sum n. Now k non-negative integers with sum $n-k$ correspond to a selection of $n-k$ objects from a set of k, with repetitions allowed and order unimportant (where b_{i} is the number of times the i th object is chosen); by Question 1 on this sheet, this number is

$$
\binom{(n-k)+k-1}{n-k}=\binom{n-1}{k-1}
$$

14 The coefficient of x^{n} on the left-hand side of

$$
\left(\sum_{k=0}^{n}\binom{n}{k} x^{k}\right)^{2}=(1+x)^{2 n}=\sum_{k=0}^{2} n\binom{2 n}{k} n^{k}
$$

is

$$
\sum_{l=0}^{n}\binom{n}{l}\binom{n}{n-l}=\sum_{l=0}^{n}\binom{n}{l}^{2}
$$

while the coefficient on the right is $\binom{2 n}{n}$.
Argue similarly with

$$
\left(\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} x^{k}\right)\left(\sum_{k=0}^{n}\binom{n}{k} x^{k}\right)=(1-x)^{n}(1+x)^{n}=\left(1-x^{2}\right)^{n}
$$

The coefficient of x^{n} on the left is

$$
\sum_{l=0}^{n}(-1)^{l}\binom{n}{l}^{2}
$$

while on the right we have only even powers, so the answer is zero if n is odd, while if n is even it is $(-1)^{n / 2}\binom{n}{n / 2}$, as claimed.

15 By the Binomial Theorem,

$$
(1-4 x)^{-1 / 2}=\sum_{n \geq 0}\binom{-1 / 2}{n}(-4 x)^{n}
$$

The coefficient of x^{n} is

$$
\frac{(-4)^{n}(-1)(-3) \cdots(-(2 n-1))}{n!2 \cdots 2}=\frac{(2 n)!}{(n!)^{2}}=\binom{2 n}{n}
$$

The coefficient of x^{n} in the square of this function is

$$
\sum_{k=0}^{n}\binom{2 k}{k}\binom{2(n-k)}{n-k}
$$

But this is just $(1-4 x)^{-1}$, and the coefficient of x^{n} is 4^{n}, as required.

