University of London

C50 Enumerative \& Asymptotic Combinatorics

Prize question 3

This question is due to Marcio Soares.
1 Prove that

$$
\frac{x^{m+1}-1}{x-1}=\sum_{k=0}^{\lfloor m / 2\rfloor}\binom{m-k}{k}(-x)^{k}(1+x)^{m-2 k} .
$$

Solution More generally,

$$
\frac{x^{m+1}-y^{m+1}}{x-y}=\sum_{k=0}^{\lfloor m / 2\rfloor}\binom{m-k}{k}(-x y)^{k}(x+y)^{m-2 k} .
$$

We have

$$
\frac{1}{1-(x+y) t+x y t^{2}}=\sum_{n=0}^{\infty}\left((x+y) t-x y t^{2}\right)^{n} .
$$

The term in t^{m} on the right is obtained from the terms with $n=m-k$, with $0 \leq k \leq m / 2$, by taking $-x y t^{2}$ from k factors and $(x+y) t$ from the other $m-2 k$; so its coefficient is the right-hand side of the given identity.

Now

$$
\begin{aligned}
\frac{1}{1-(x+y) t+x y t^{2}} & =\frac{1}{(1-x t)(1-y t)} \\
& =\frac{x}{x-y} \cdot \frac{1}{1-x t}-\frac{y}{x-y} \cdot \frac{1}{1-y t} \\
& =\frac{x}{x-y} \sum_{m=0}^{\infty}(x t)^{m}-\frac{y}{x-y} \sum_{m=0}^{\infty}(y t)^{m},
\end{aligned}
$$

so the coefficient of t^{m} is

$$
\frac{x}{x-y} x^{m}-\frac{y}{x-y} \cdot y^{m}=\frac{x^{m+1}-y^{m+1}}{x-y}
$$

as required.
Remark Putting x and y equal to the golden ratio and its algebraic conjugate, so that $x+y=$ $-x y=1$, we deduce the equality of two well-known formulae for the Fibonacci numbers.

