
C50 Enumerative & Asymptotic Combinatorics

Prize question 3 Spring 2003

This question is due to Marcio Soares.
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Solution More generally,
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We have
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The term intm on the right is obtained from the terms withn = m− k, with 0≤ k ≤ m/2,
by taking−xyt2 from k factors and(x+ y)t from the otherm− 2k; so its coefficient is the
right-hand side of the given identity.
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as required.

Remark Puttingx andy equal to the golden ratio and its algebraic conjugate, so thatx+y=
−xy= 1, we deduce the equality of two well-known formulae for the Fibonacci numbers.
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