University of London

C50
 Enumerative \& Asymptotic Combinatorics

Prize question

The second prize question was the following:
Let ω be a primitive d th root of unity. Express $\left[\begin{array}{l}n \\ k\end{array}\right]_{\omega}$ in terms of binomial coefficients (whenever you can).

Here is the solution by Pablo Spiga.
Let d be a natural number, and let ω be a primitive d th root of unity in \mathbb{C}, i.e. $\omega^{d}=1$. Then, if $0 \leq a, b \leq d-1$, we have

$$
\left[\begin{array}{l}
n d+a \\
k d+b
\end{array}\right]_{\omega}=\binom{n}{k}\left[\begin{array}{l}
a \\
b
\end{array}\right]_{\omega} .
$$

Note that we are assuming that $\left[\begin{array}{l}a \\ b\end{array}\right]_{\omega}=0$ whenever $a<b$.
Solution By induction on a. We have

$$
\begin{aligned}
1-\xi^{d} & =\prod_{i=1}^{d}\left(\omega^{i-1}-\xi\right) \\
& =\prod_{i=1}^{d}\left(\omega^{i-1} \cdot\left(1-\omega^{-i+1} \xi\right)\right) \\
& =\prod_{i=1}^{d} \omega^{i-1} \cdot \prod_{i=1}^{d}\left(1-\omega^{i-1} \xi\right) .
\end{aligned}
$$

Thus, we get

$$
\prod_{i=1}^{n d}\left(1+\omega^{i-1}(-\xi)\right)=\sum_{j=0}^{n d} \omega^{j(j-1) / 2}(-1)^{j}\left[\begin{array}{c}
n d \tag{1}\\
j
\end{array}\right]_{\omega} \xi^{j},
$$

but

$$
\begin{equation*}
\prod_{i=1}^{n d}\left(1+\omega^{i-1}(-\xi)\right)=\left(1-\xi^{d}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \xi^{k d} \tag{2}
\end{equation*}
$$

We have proved that $\left[\begin{array}{c}n d \\ j\end{array}\right]_{\omega}=0$ if d does not divide j. Assume $j=d k$. By (1) and (2), as

$$
\begin{equation*}
\omega^{d k(d k-1) / 2}(-1)^{k(d+1)}=1, \tag{3}
\end{equation*}
$$

we get

$$
\left[\begin{array}{l}
n d \\
k d
\end{array}\right]_{\omega}=\binom{n}{k}
$$

(For (3), note that if d is odd then $-1^{d+1}=1$, while if d is even than we can write -1 as $\omega^{d / 2}$, and we find $\omega^{d k(d k+d) / 2}=\omega^{d^{2} k(k+1) / 2}$.) This proves the result for $a=0$.

Assume $a \geq 1$. If $b \neq 0$ then, by induction hypothesis and by the usual recurrence relation, we get

$$
\begin{aligned}
{\left[\begin{array}{l}
n d+a \\
k d+b
\end{array}\right]_{\omega} } & =\left[\begin{array}{l}
n d+a-1 \\
k d+b-1
\end{array}\right]_{\omega}+\omega^{k d+b}\left[\begin{array}{c}
n d+a-1 \\
k d+b
\end{array}\right]_{\omega} \\
& =\binom{n}{k}\left[\begin{array}{l}
a-1 \\
b-1
\end{array}\right]_{\omega}+\omega^{b}\binom{n}{k}\left[\begin{array}{c}
a-1 \\
b
\end{array}\right]_{\omega} \\
& =\binom{n}{k}\left[\begin{array}{l}
a \\
b
\end{array}\right]_{\omega}
\end{aligned}
$$

Finally, if $b=0$, then, as $a-1<d-1$,

$$
\begin{aligned}
{\left[\begin{array}{c}
n d+a \\
k d
\end{array}\right]_{\omega} } & =\left[\begin{array}{c}
n d+a-1 \\
(k-1) d+d-1
\end{array}\right]_{\omega}+\omega^{k d}\left[\begin{array}{c}
n d+a-1 \\
k d
\end{array}\right]_{\omega} \\
& =\binom{n}{k} \omega^{0}\left[\begin{array}{c}
a-1 \\
0
\end{array}\right]_{\omega} \\
& =\binom{n}{k}\left[\begin{array}{l}
a \\
b
\end{array}\right]_{\omega}
\end{aligned}
$$

Remark Compare Lucas' formula

$$
\binom{n p+a}{k p+b} \equiv\binom{n}{k}\binom{a}{b} \quad(\bmod p)
$$

if p is prime and $0 \leq a, b<p$.

