
C50 Enumerative & Asymptotic Combinatorics

Notes 9 Spring 2003

We saw in Part 1 an asymptotic estimate forn! which began by comparing logn! =
∑n

i=1 logi to
∫ n

1 logx dx. Obviously the comparison is not exact, but the approximation
can often be improved by the Euler–Maclaurin sum formula. This formula involves
the somewhat mysterious Bernoulli numbers, which crop up in a wide variety of other
situations too.

Bernoulli numbers

The Bernoulli numbersBn can be defined by the recurrence relation

B0 = 1,
n

∑
k=0

(
n+1

k

)
Bk = 0 for n≥ 1.

Note that we can write the recurrence as

n+1

∑
k=0

(
n+1

k

)
Bk = Bn+1,

since the termBn+1 cancels from this equation (which expressesBn in terms of earlier
terms).

Conway and Guy, inThe Book of Numbers, have a typically elegant presentation
of the Bernoulli numbers. They write this relation as

(B+1)n+1 = Bn+1

for n≥ 1, whereBk is to be interpreted asBk after the left-hand expression has been
evaluated using the Binomial Theorem.

Thus,

B2 +2B1 +1 = B2, whence B1 =−1
2
,

B3 +3B2 +3B1 +1 = B3, whence B2 =
1
6
,
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and so on. Note that, unlike most of the sequences we have considered before, the
Bernoulli numbers are not integers.

Theorem 1 The exponential generating function for the Bernoulli numbers is

∑
n≥0

Bnxn

n!
=

x
exp(x)−1

.

Proof Let F(x) be the e.g.f., and considerF(x)(exp(x)− 1). The coefficient of
xn+1/(n+1)! is

(n+1)!
n

∑
k=0

(
Bk

k!

)(
1

(n+1−k)!

)
=

n

∑
k=0

(
n+1

k

)
Bk = 0

for n≥ 1. (Note that the sum runs from 0 ton rather thann+1 because we subtracted
the constant term from the exponential.) The coefficient ofx, however, is clearly 1. So
the product isx.

Corollary 2 Bn = 0 for all odd n> 1.

Proof

F(x)+
x
2

=
x
2
· exp(x/2)+exp(−x/2)
exp(x/2)−exp(−x/2)

=
x
2

coth
(x

2

)
which is an even function ofx; so the coefficients of the odd powers ofx are zero.

Corollary 3

Bn =
n

∑
k=1

(−1)kk!S(n,k)
k+1

.

Proof Let f (x) = log(1+x)/x = ∑anxn/n!, where

an =
(−1)nn!
(n+1)

.

By Proposition 9 of Notes 2,f (exp(x)−1) = x/(exp(x)−1) = ∑Bnxn/n!, where

Bn =
n

∑
k=1

S(n,k)ak.
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One application of the Bernoulli numbers is inFaulhaber’s formulafor the sum of
thekth powers of the firstn natural numbers. Everyone knows that

n

∑
i=1

i = n(n+1)/2,

n

∑
i=1

i2 = n(n+1)(2n+1)/6,

n

∑
i=1

i3 = n2(n+1)2/4,

but how does the sequence continue?

Theorem 4

n

∑
i=1

ik =
1

k+1

k

∑
j=0

(
k+1

j

)
B j(n+1)k+1− j .

So, for example,

n

∑
i=1

i4 =
1
5

(
(n+1)5− 5

2
(n+1)4 +

5
3

(n+1)3− 1
6

(n+1)
)

= n(n+1)(6n3 +9n2 +n−1)/30.

Proof This argument is written out in the shorthand notation of Conway and Guy.
Check that you can turn it into a more conventional proof!

We calculate

(n+1+B)k+1− (n+B)k+1 =
k+1

∑
j=1

(
k+1

j

)
nk− j((B+1) j −B j).

Now (B+1) j = B j for all j ≥ 2, so the only surviving term in this expression is

(k+1)nk((B+1)1−B1) = (k+1)nk.

Thus we have
1

k+1
((n+1+B)k+1− (n+B)k+1) = nk,

from which by induction we obtain

1
k+1

((n+1+B)k+1−Bk+1) =
n

∑
i=1

ik.
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The left-hand side of this expression is

1
k+1

k

∑
j=0

(
k+1

j

)
B j(n+1)k+1− j ,

as required.

Warning Conway and Guy use a non-standard definition of the Bernoulli numbers,
as a result of which they haveB1 = 1/2 rather than−1/2. As a result, their formulae
look a bit different.

How large are the Bernoulli numbers? The generating functionx/(exp(x)−1) has
a removable singularity at the origin; apart from this, the nearest singularities are at
±2πi, and soBn is aboutn!(2π)−n; in fact, it can be shown that

|Bn|=
2n! ζ(n)
(2π)n

for n even, whereζ(n) = ∑k≥1k−n. Of course,Bn = 0 if n is odd andn> 1.
Another curious formula forBn is due to von Staudt and Clausen:

B2n = N− ∑
p−1|2n

1
p

for some integerN, where the sum is over the primesp for which p−1 divides 2n.

Bernoulli polynomials

TheBernoulli polynomials Bn(t) are defined by the formula

xexp(tx)
exp(x)−1

= ∑
n≥0

Bn(t)xn

n!
.

Proposition 5 The Bernoulli polynomials satisfy the following conditions:

(a) Bn(0) = Bn(1) = Bn for n 6= 1, and B1(0) =−1/2, B1(1) = 1/2..

(b) Bn(t +1)−Bn(t) = ntn−1.

(c) B′n(t) = nBn−1(t).

(d) Bn(t) =
n

∑
k=0

(
n
k

)
Bn−kt

k
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Proof All parts are easy exercises. LetF(t) = xexp(tx)/(exp(x)−1).
(a)F(0) is the e.g.f. for the regular Bernoulli numbers, andF(1) = x+F(0).
(b) F(t +1)−F(t) = xexp(tx).
(c) F ′(t) = xF(t).
(d) F(t) = F(0)exp(xt): use the rule for multiplying e.g.f.s.

The first few Bernoulli polynomials are

B0(t) = 1, B1(t) = t− 1
2, B2(t) = t2− t + 1

6,

B3(t) = t3− 3
2t2 + 1

2t, B4(t) = t4−2t3 + t2− 1
30.

The Euler–Maclaurin sum formula

Faulhaber’s formula gives us an exact value for the sum of the values of a polynomial
over the firstn natural numbers. The Euler–Maclaurin formula generalises this to
arbitrary well-behaved functions; instead of an exact value, we must be content with
error estimates, which in some cases enable us to show that we have an asymptotic
series.

The Euler–Maclaurin sum formula connects the sum
n

∑
i=1

f (i)

with the series∫ n

1
f (t)dt +

1
2

( f (1)+ f (n))+∑ B2i

(2i)!

(
f (2i−1)(n)− f (2i−1)(1)

)
,

where f is a “sufficiently nice” function.
Here is a precise formulation due to de Bruijn.

Theorem 6 Let f be a real function with continuous(2k)th derivative. Let

Sk =
∫ n

1
f (t)dt +

1
2

( f (1)+ f (n))+
k

∑
i=1

B2i

(2i)!

(
f (2i−1)(n)− f (2i−1)(1)

)
.

Then
n

∑
i=1

f (i) = Sk−Rk,

where the error term is

Rk =
∫ n

1
f (2k)(t)

B2k({t})
(2k)!

dt,

with B2k(t) the Bernoulli polynomial and{t}= t−btc the fractional part of t.

5



Proof First letg be any function with continuous(2k)th derivative on[0,1]. We claim
that

1
2

(g(0)+g(1))−
∫ 1

0
g(t)dt

=
k

∑
i=1

B2i

(2i)!

(
g(2i−1)(1)−g(2i−1)(0)

)
−
∫ 1

0
g(2k)(t)

B2k(t)
(2k)!

dt.

The proof is by induction: both the start of the induction (atk = 1) and the inductive
step are done by integrating the last term by parts twice, using the fact thatB′n(t) =
nBn−1(t) (see Proposition 5).

Now the result is obtained by applying this claim successively to the functions
g(x) = f (x+1), g(x) = f (x+2), . . . ,g(x) = f (x+n−1), and adding.

If f is a polynomial, thenf (2k)(x) = 0 for sufficiently largek, and the remainder
term vanishes, giving Faulhaber’s formula. For other applications, we must estimate
the size of the remainder term.

There are various analytic conditions which guarantee a bound on the size ofRk,
so that it can be shown that we have an asymptotic series for the sum. I will not give
precise conditions here.

Example: Stirling’s formula Let f (x) = logx. Then f (k)(x) = (−1)k−1(k−1)!
xk . We

obtain the asymptotic series

c+nlogn−n+
1
2

logn+∑ B2k

2k(2k−1)n2k−1

for
n

∑
i=1

logi = logn! .

The series begins 1/(12n)− 1/(360n3) + 1/(1260n5) + · · · . Exponentiating term-
by-term (using the fact that, if logX = logY + o(n−k) thenX = Y(1+ o(n−k))), we
obtain

n! ∼
√

2π
nn+1/2

en

(
1+

1
12n

+
1

288n2 + · · ·
)
.

Note in passing that, for fixedn, this asymptotic series is divergent (see our earlier
estimate forBk).

6



Example: The harmonic series Applying Euler–Maclaurin tof (x) = 1/x, we get

n

∑
i=1

1
i
∼ logn+ γ−∑ Bk

knk ,

where the sum begins 1/(2n)− 1/(12n2) + 1/(120n4) + · · · . Hereγ is the Euler–
Mascheroni constant(orEuler’s constant), a somewhat mysterious constant with value
approximately 0.5772157. . . . Again the series is divergent for fixedn.
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