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This section of the notes contains proofs of Stirling’s formula and the Lagrange
Inversion Formula.

Stirling’s formula

Theorem 1 (Stirling’s Formula)
n
N ~/2m (2)

Proof Consider the graph of the functign=logx betweerx = 1 andx = n, together
with the piecewise linear functions shown in Figure 1.

Figure 1: Stirling’s formula



Let f(x) = logx, letg(x) be the function whose value is lagfor m<x < m+1,
and leth(x) be the function defined by the polygon with vertides logm), for 1 <
m < n. Clearly

n
/ g(x) dx=1og2+---+logn=logn!.
1
The difference between the integralsgindh is the sum of the areas of triangles
with base 1 and total height logthat is, 1 logn.
Some calculusshows that the difference between the integrals ahdg tends to

a finite limitc asn — oo.
Finally, a simple integration shows that

n
/ f(x) dx=nlogn—n+1.
1
We conclude that
logn! = nlogn—n+ 3logn+ (1-c) +0(1),

so that

Cn“+1/2
n! ~ .

To identify the constanT, we can proceed as follows. Consider the integral
/2
lh= / sin"xdx.
0

Integration by parts shows that

n—-1

II’] - |n—27

1Let F(x) = f(x) — g(x). The convexity of log shows thaf (x) > 0 for all x € [m,m+ 1]. For an
upper bound we use the fact, a consequence of Taylor's Theorem, that

logx < logm+ 2= < 1o m+1
gx<log mo = g m

for x e [m,m+1]. Then

1 1 1 1
F(x) =logx—logm—log <1+ m) (x—m) < af|og <1+m> < ol

where the last inequality comes from another application of Taylor’'s Theorem which yie{[dsHag>
x—x2/2 forx € [0,1]. Now S (1/m?) converges, so the integral is bounded.



and hence
L — (2n)!' 1t
n = 22n+1(n!)2’
22n<n!)2
loni1 = —<2n+1)!-
On the other hand,
lont2 < lont1 < lon,

from which we get

(2n+Dm _ 240 (n14 _m
4n+1) — (2n)!(2n+ 1) — 2°
and so
240 (n1)4 T

am, 2ni(2n+1) 2

Puttingn! ~ Cn"t%/2/e" in this result, we find that

C2 1 —(2n+3/2) I
7o, (“ %) =7

so thatC = /21

Lagrange Inversion

A formal power series over a field, with zero constant term and non-zero texm in
has an inverse with respect to composition. The associative, closure, and identity laws
are obvious, and the rule for finding the inverse in characteristic zero is known as
Lagrange inversionWe work overR for convenience.

The theorem

The basic fact can be stated as follows.

0 and f(0) # 0.

Proposition 2 Let f be a formal power series ov&, with f(0) =
= X; the coefficient of

Then there is a unique formal power series g such tti&txg )

y'ing(y)is PN
oot (8) ], o/™



This can be expressed in a more convenient way for our purpose. Let

Then the inverse functiogis given by the functional equation

a(y) = yo(a(y)).

Then Lagrange inversion has the form

by

nl ’

a(y)

n>1
where
|: dn—l (p( )n:|
bh=|——0(X )
" dxn-1 0

Example: Cayley’s Theorem The exponential generating function for rooted trees
satisfies the equation
T*(x) = xexp(T*(x)).

With @(x) = exp(x), we find that the coefficient of'/n! in T*(y) is

n—1 1
——— exp(nx =n""
{dxn—l Fx )} x=0
Now there aren ways to root a given tree; so the number of treeg"is?, proving
Cayley’s Theorem.

Proof of the theorem

The proof of Lagrange’s inversion formula involves a considerable detour. The treat-
ment here follows the book by Goulden and Jackson. Throughout this section, we
assume that the coefficients form a field of characteristic zero; for convenience, we
assume that the coefficient ringlis
First, we extend the notion of formal power seriegional Laurent seriesdefined
to be a series of the form
f(x) = X",

(X) n;man
wherem may be positive or negative. if the series is not identically zero, we may
assume without loss of generality tregt # O, in which casemis thevaluationof f,
written

m=val(f).
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We define addition, multiplication, composition, differentiation, etc., for formal Lau-
rent series as for formal power series. In particufég(x)) is defined for any formal
Laurent seried, g with val(g) > 0. (This is less trivial than the analogous result for
formal power series. In particular, we need to know tiyad) ™ exists as a formal
Laurent series fom > 0. It is enough to deal with the case= 1, since certainly
g(x)™ exists. If valg) =r, theng(x) = x'g1(x), and sog(x) "1 = x g1 (x)~1, and we
have seen thag; (x) ! exists as a formal power series, sia€0) is invertible.

We denote the derivative of the formal Laurent sefieg by f’(x).

We also introduce the following notatiofx"] f (x) denotes the coefficient af' in
the formal power series (or formal Laurent serié§)). The casen= —1 is especially
important, as we learn from complex analysis. The valugof] f(x) is called the
residueof f(x), and is also written as Ré$x).

Everything below hinges on the following simple observation, which is too trivial
to need a proof.

Proposition 3 For any formal Laurent series(k), we haveResf’(x) = 0.

Now the following result describes the residue of the composition of two formal
Laurent series.

Theorem 4 (Residue Composition Theorem)et f(x), g(x) be formal Laurent se-
ries withval(g) =r > 0. Then

Regf(9(x))g'(x)) =rRegf(x)).

Proof Itis enough to consider the case whé(g) = X", since Res is a linear function.
Suppose that # —1, so that the right-hand side is zero. Then

ReSq" (X9 () = 11 Res( 5,0 09) =0

So consider the case where- —1. Letg(x) = ax h(x), wherea # 0 andh(0) = 1.
Then

g9t = 5 logg(x)

- dg)((loga+r|ogx+|09h(x))
rd
= )_(+d—xlogh(x),

SO

Resy (x)g(x) " =r =rResc1.

5



Note that we have cheated slightly in the first line of this argumentg(gmay
not exist as a formal Laurent series; but it is the case that for if the equitonr-
g(x)h(x) holds for formal Laurent series, then

F(%)/f(x) = g'(x)/9(x) + () /h(x),

and in the preceding argument it is the case thah(gy exists (this is obtained

by substitutingy = h(x) — 1 in log(1+y)) and its derivative is'(x)/h(x). Con-
sider this point carefully; an error here would lead to the incorrect conclusion that
Regg/(x)/9(x)) = 0.

From the Residue Composition Theorem, we can prove a more general version of
Lagrange Inversion.

Theorem 5 (Lagrange Inversion) Let @ be a formal power series withal(@) = 1,
Then the equation

9(x) = x@(g(x)
has a unique formal power solutior>y. Moreover, for any Laurent series f, we have
n I (0 e(x)™) if n > val(f) and n= 0,
xTHa09) = { £(0) + Reg f'(x)log(®(0)1g(x)) ifn =0O.

Proof Let ®(x) = x/@(x), so that®(g(x)) = x and va[®(x)) = 1. Theng is the
inverse function ofb.
We have

X"f(g(x)) = Resx " *f(g(x)
Resb(y) "1/ (y) f(y),

where we have made the swubstitutioa= ®(y) (so thaty = g(x)) and used the
Residue Composition Theorem.
Forn # 0, we have

X)) = —Z[y ) (o)™

— Iy e ey

n
Here, in the second line, we have used the fact that

Regf'(x)g(x)) = —Regf(x)g'(x)),
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a consequence of the fact that REx)g(x))’ = 0; in the third line we use the fact that
®(x) = X/@(x).
Forn= 0, we have
XIfEx) = I -y T YE@ey)
= f(0)+Regf'(y)log(e(y)¢ *(0)),
using the same principle as before and the fact that

(log(e(y)¢ (0)))' = @ (y)ay) ™

Taking f (x) = xin this result gives the form of Lagrange Inversion quoted earlier.
We proceed to an application, also taken from Goulden and Jackson, of the Residue
Composition Theorem.

Example: a binomial identity We use the Residue Composition Theorem to prove

that
i (2n+1) (j+k> B (2j>
& \2k+1/\ 2n 2n
We begin with the sum of the odd terms(ih+ x)2"1:

noong 1) 1 ,
N 1 n+1 —(1— 2n+1 )
kZO (2k+1>x o (1) (1-x")

Call the right-hand side of this equatidiix). Now, if Sis the sum that we want to
evaluate, then

_ on 2 /2n+1 K
S = BP0 S (500 ) @)
= Rey " U(14y)lf((1+y)Y2).

Now we do the following rather strange thing: make the substitytiez?(z% — 2).
Then valy(z)) = 2, and(1+y)Y2 = 1— 7. So the Residue Composition Theorem
gives

i 1 1
S = Res{zz_ 1)ZJ ((22_2)2n+1 o Z4n+2) z

— Re$22_1)2j27(4n+l)
~ 21

_ (2
—\2n)’
as required. (In the second line we have used the fac(#hat2)~(2"t1) is a formal

power series and so its residue is zero.)
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