
C50 Enumerative & Asymptotic Combinatorics

Stirling and Lagrange Spring 2003

This section of the notes contains proofs of Stirling’s formula and the Lagrange
Inversion Formula.

Stirling’s formula
Theorem 1 (Stirling’s Formula)

n! ∼
√

2πn
(n

e

)n

Proof Consider the graph of the functiony = logx betweenx = 1 andx = n, together
with the piecewise linear functions shown in Figure 1.
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Figure 1: Stirling’s formula
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Let f (x) = logx, let g(x) be the function whose value is logm for m≤ x<m+ 1,
and leth(x) be the function defined by the polygon with vertices(m, logm), for 1≤
m≤ n. Clearly ∫ n

1
g(x) dx = log2+ · · ·+ logn = logn! .

The difference between the integrals ofg andh is the sum of the areas of triangles
with base 1 and total height logn; that is,1

2 logn.
Some calculus1 shows that the difference between the integrals off andg tends to

a finite limit c asn→ ∞.
Finally, a simple integration shows that∫ n

1
f (x) dx = nlogn−n+1.

We conclude that

logn! = nlogn−n+ 1
2 logn+(1−c)+o(1),

so that

n! ∼ Cnn+1/2

en .

To identify the constantC, we can proceed as follows. Consider the integral

In =
∫ π/2

0
sinnxdx.

Integration by parts shows that

In =
n−1

n
In−2,

1Let F(x) = f (x)−g(x). The convexity of logx shows thatF(x) ≥ 0 for all x∈ [m,m+ 1]. For an
upper bound we use the fact, a consequence of Taylor’s Theorem, that

logx≤ logm+
x−m

m
≤ logm+

1
m

for x∈ [m,m+1]. Then

F(x) = logx− logm− log

(
1+

1
m

)
(x−m)≤ 1

m
− log

(
1+

1
m

)
≤ 1

2m2 ,

where the last inequality comes from another application of Taylor’s Theorem which yields log(1+x)≥
x−x2/2 for x∈ [0,1]. Now ∑(1/m2) converges, so the integral is bounded.
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and hence

I2n =
(2n)! π

22n+1(n!)2 ,

I2n+1 =
22n(n!)2

(2n+1)!
.

On the other hand,
I2n+2≤ I2n+1≤ I2n,

from which we get
(2n+1)π
4(n+1)

≤ 24n(n!)4

(2n)!(2n+1)!
≤ π

2
,

and so

lim
n→∞

24n(n!)4

(2n)!(2n+1)!
=

π
2
.

Puttingn! ∼Cnn+1/2/en in this result, we find that

C2e
4

lim
n→∞

(
1+

1
2n

)−(2n+3/2)

=
π
2
,

so thatC =
√

2π.

Lagrange Inversion

A formal power series over a field, with zero constant term and non-zero term inx,
has an inverse with respect to composition. The associative, closure, and identity laws
are obvious, and the rule for finding the inverse in characteristic zero is known as
Lagrange inversion. We work overR for convenience.

The theorem

The basic fact can be stated as follows.

Proposition 2 Let f be a formal power series overR, with f(0) = 0 and f′(0) 6= 0.
Then there is a unique formal power series g such that g( f (x)) = x; the coefficient of
yn in g(y) is [

dn−1

dxn−1

(
x

f (x)

)n]
x=0

/
n!.
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This can be expressed in a more convenient way for our purpose. Let

φ(x) =
x

f (x)
.

Then the inverse functiong is given by the functional equation

g(y) = yφ(g(y)).

Then Lagrange inversion has the form

g(y) = ∑
n≥1

bnyn

n!
,

where

bn =
[

dn−1

dxn−1φ(x)n
]

x=0
.

Example: Cayley’s Theorem The exponential generating function for rooted trees
satisfies the equation

T∗(x) = xexp(T∗(x)).

With φ(x) = exp(x), we find that the coefficient ofyn/n! in T∗(y) is[
dn−1

dxn−1 exp(nx)
]

x=0
= nn−1.

Now there aren ways to root a given tree; so the number of trees isnn−2, proving
Cayley’s Theorem.

Proof of the theorem

The proof of Lagrange’s inversion formula involves a considerable detour. The treat-
ment here follows the book by Goulden and Jackson. Throughout this section, we
assume that the coefficients form a field of characteristic zero; for convenience, we
assume that the coefficient ring isR.

First, we extend the notion of formal power series toformal Laurent series, defined
to be a series of the form

f (x) = ∑
n≥m

anxn,

wherem may be positive or negative. if the series is not identically zero, we may
assume without loss of generality thatam 6= 0, in which casem is thevaluationof f ,
written

m= val( f ).
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We define addition, multiplication, composition, differentiation, etc., for formal Lau-
rent series as for formal power series. In particular,f (g(x)) is defined for any formal
Laurent seriesf ,g with val(g) > 0. (This is less trivial than the analogous result for
formal power series. In particular, we need to know thatg(x)−m exists as a formal
Laurent series form> 0. It is enough to deal with the casem = 1, since certainly
g(x)m exists. If val(g) = r, theng(x) = xrg1(x), and sog(x)−1 = x−rg1(x)−1, and we
have seen thatg1(x)−1 exists as a formal power series, sinceg1(0) is invertible.

We denote the derivative of the formal Laurent seriesf (x) by f ′(x).
We also introduce the following notation:[xn] f (x) denotes the coefficient ofxn in

the formal power series (or formal Laurent series)f (x). The casen =−1 is especially
important, as we learn from complex analysis. The value of[x−1] f (x) is called the
residueof f (x), and is also written as Resf (x).

Everything below hinges on the following simple observation, which is too trivial
to need a proof.

Proposition 3 For any formal Laurent series f(x), we haveResf ′(x) = 0.

Now the following result describes the residue of the composition of two formal
Laurent series.

Theorem 4 (Residue Composition Theorem)Let f(x), g(x) be formal Laurent se-
ries withval(g) = r > 0. Then

Res( f (g(x))g′(x)) = r Res( f (x)).

Proof It is enough to consider the case wheref (x) = xn, since Res is a linear function.
Suppose thatn 6=−1, so that the right-hand side is zero. Then

Res(gn(x)g′(x)) =
1

n+1
Res

(
d
dx

gn+1(x)
)

= 0.

So consider the case wheren=−1. Letg(x) = axrh(x), wherea 6= 0 andh(0) = 1.
Then

g′(x)g(x)−1 =
d
dx

logg(x)

=
d
dx

(loga+ r logx+ logh(x))

=
r
x

+
d
dx

logh(x),

so
Resg′(x)g(x)−1 = r = r Resx−1.
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Note that we have cheated slightly in the first line of this argument: logg(x) may
not exist as a formal Laurent series; but it is the case that for if the equationf (x) =
g(x)h(x) holds for formal Laurent series, then

f ′(x)/ f (x) = g′(x)/g(x)+h′(x)/h(x),

and in the preceding argument it is the case that logh(x) exists (this is obtained
by substitutingy = h(x)− 1 in log(1 + y)) and its derivative ish′(x)/h(x). Con-
sider this point carefully; an error here would lead to the incorrect conclusion that
Res(g′(x)/g(x)) = 0.

From the Residue Composition Theorem, we can prove a more general version of
Lagrange Inversion.

Theorem 5 (Lagrange Inversion) Let φ be a formal power series withval(φ) = 1,
Then the equation

g(x) = xφ(g(x)

has a unique formal power solution g(x). Moreover, for any Laurent series f , we have

[xn] f (g(x)) =
{

1
n[xn−1]( f ′(x)φ(x)n) if n≥ val( f ) and n6= 0,
f (0)+Res( f ′(x) log(φ(0)−1φ(x)) if n = 0.

Proof Let Φ(x) = x/φ(x), so thatΦ(g(x)) = x and val(Φ(x)) = 1. Theng is the
inverse function ofΦ.

We have

[xn] f (g(x)) = Resx−n−1 f (g(x))
= ResΦ(y)−n−1Φ′(y) f (y),

where we have made the swubstitutionx = Φ(y) (so thaty = g(x)) and used the
Residue Composition Theorem.

For n 6= 0, we have

[xn] f (g(x)) = −1
n

[y−1] f (y)
(
Φ(y)−n)′

=
1
n

[y−1] f ′(y)Φ(y)−n

=
1
n

[yn−1] f ′(y)φ(y)n.

Here, in the second line, we have used the fact that

Res( f ′(x)g(x)) =−Res( f (x)g′(x)),
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a consequence of the fact that Res( f (x)g(x))′ = 0; in the third line we use the fact that
Φ(x) = x/φ(x).

For n = 0, we have

[x0] f (g(x)) = [y0] f (y)− [y−1] f (y)φ′(y)φ(y)−1

= f (0)+Res( f ′(y) log(φ(y)φ−1(0)),

using the same principle as before and the fact that

(log(φ(y)φ−1(0)))′ = φ′(y)φ(y)−1.

Taking f (x) = x in this result gives the form of Lagrange Inversion quoted earlier.
We proceed to an application, also taken from Goulden and Jackson, of the Residue

Composition Theorem.

Example: a binomial identity We use the Residue Composition Theorem to prove
that

n

∑
k=0

(
2n+1
2k+1

)(
j +k
2n

)
=
(

2 j
2n

)
.

We begin with the sum of the odd terms in(1+x)2n+1:
n

∑
k=0

(
2n+1
2k+1

)
x2k =

1
2x

(
(1+x)2n+1− (1−x)2n+1) .

Call the right-hand side of this equationf (x). Now, if S is the sum that we want to
evaluate, then

S = [y2n](1+y) j
n

∑
k=0

(
2n+1
2k+1

)
(1+y)k

= Resy−(2n+1)(1+y) j f ((1+y)1/2).

Now we do the following rather strange thing: make the substitutiony= z2(z2−2).
Then val(y(z)) = 2, and(1+ y)1/2 = 1− z2. So the Residue Composition Theorem
gives

S = Res(z2−1)2 j
(

1
(z2−2)2n+1 −

1
z4n+2

)
z

= Res(z2−1)2 jz−(4n+1)

= [z4n](z2−1)2 j

=
(

2 j
2n

)
,

as required. (In the second line we have used the fact that(z2−2)−(2n+1) is a formal
power series and so its residue is zero.)
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