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This part of the notes is about species. We begin with two preliminary topics:
labelled and unlabelled objects; and Cayley’s formula for the number of treas on
vertices.

Labelled and unlabelled

Group actions can be used to clarify the difference between two types of counting of
combinatorial objects, namely counting labelled and unlabelled objects.

Typically, we are counting structures “based on” a set pbints: these may be
partitions or permutations, or more elaborate relational structures such as graphs, trees,
partially ordered sets, etc. Asomorphisnmbetween two such objects is a bijection
between their base sets which preserves the structure.

A labelled objectis simply an object whose base se{i52,...,n}. Two objects
count as different unless they are identical. On the other hand, for unlabelled objects,
we wish to count them as the same obtain one from the other by re-labelling the points
of the base set. In other words, @mabelled objecis an isomorphism class of objects.

For example, for graphs on three vertices, there are eight labelled objects, but four
unlabelled ones.

Now the symmetric groufs, acts on the set of all labelled objects on the set
{1,...,n}; its orbits are the unlabelled objects. So counting unlabelled objects is
equivalent to counting orbits &, in an appropriate action.

A given objectA has an automorphism group AA), consisting of all permu-
tations of the set of points which map the object to itself. The number of different
labellings ofAis n! /| Aut(A)|, since of then! labellings, two are the same if and only
if they are related by an automorphismAf (More formally, labellings correspond
bijectively to cosets of Ay#A) in the symmetric grouf,.) So the number of labelled
objects is

n!
> TAUA)



where the sum is over the unlabelled objectsiqoints.

The cycle index method can be applied to give more sophisticated counts. For
example, let us count graphs on 4 vertices. The number of pairs of vertices is 6, and
each pair is either an edge or a non-edge. So the number of labelled grapksad 2
and the number of labelled graphs witedges i?) fork=0,...,6.

In order to count orbits, we must I&; act on the set of 64 graphs. But we can
think of a graph as the set ()g) = 6 pairs of vertices with a figure (either an edge or a
non-edge) attached to each. So we must compute the cycle in@gxacting on pairs
of vertices. Table 1 gives details. The notatici2!l for example, means “two fixed
points and one 2-cycle”. Such an element, say the transpositi@), fixes the two
pairs{1,2} and{3,4}, and permutes the other four pairs in two 2-cycles; so its cycle
structure on pairs is2P?.

Cycles on| Cycles on| Number
vertices pairs
14 16 1
1221 1222 6
22 1222 3
13 3? 8
4 24 6

Table 1: Cycle index o&,

So the cycle index of the permutation gro@pnduced on pairs b, is

2(6) = 5 (S + 955 +8 + 655%).

Now if we take edges to have weight 1 and non-edges to have weight O (that is,
figure-counting serie8(x) = 1+ x), the function-counting series is

B(X) = 1+ X+ 2 +3C+ 24 +° +58,

the generating function for unlabelled graphs on four vertices by number of edges.

We conclude by summarising some of our earlier results on counting labelled and
unlabelled structures. Table 2 gives the numbers of labelled and unlabelled structures
onn points;B(n) andp(n) are the Bell and partition numbers.

We see from the table that it is possible, even in very natural cases, to have the
same number of labelled objects but different numbers of unlabelled ones;eor
versa



| Structure | Labelled| Unlabelled|

Subsets 2" n+1

Partitions B(n) p(n)

Permutations  n! p(n)
Total orders n! 1

Table 2: Labelled and unlabelled

Cayley’s Theorem

We begin with a particular species where there is a simple but unexpected formula
for the labelled counting problem. #eeis a connected graph with no cycles. It is
straightforward to show that a tree onvertices containg — 1 edges, and that any
connected graph has a spanning tree (that is, some setdf of its edges forms
a tree). Moreover, any tree has a vertex lying on only one edge (since the average
number of edges per vertex i$r2— 1) /n < 2). Such a vertex is calledlaaf. If we
remove from a tree a leaf and its incident edge, the result is still a tree.

Cayley’s Theorem states:

Theorem 1 The number of labelled trees on n vertices'Ish

There are many different proofs of this theorem. Below, we will see two proofs
which are made clearer by means of the concept of species. But first, one of the
classics:

Prifer's proof of Cayley’'s Theorem We construct a bijection between the set of
all trees on the vertex séfl, ..., n} and the set of al{n— 2)-tuples of elements from
this set. The tuple associated with a tree is calle®itder code

First we describe the map from trees taifer codes. Start with the empty code.
Repeat the following procedure until only two vertices remain: select the leaf with
smallest label; append the label of its unique neighbour to the code; and then remove
the leaf and its incident edge.

Next, the construction of a tree from alifer codeP. We use an auxiliary ligt of
vertices added as leaves, which is initially empty. Now, wRils not empty, we join
the first element oP to the smallest-numbered vertexvhich is not in eithelP or L,
and then add to L and remove the first element Bf WhenP is empty, two vertices
have not been put intb; the final edge of the tree joins these two vertices.

| leave to the reader the task of showing that these two constructions define inverse
bijections. The method actually gives much more information:
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Proposition 2 In the tree with Péfer code P, the valency of the vertex i is one more
than the number of occurrences of i in P.

For, at the conclusion of the second algorithm, if we add in the last two vertices
to L, thenL contains each vertex precisely once; and edges join each of the-fidt
vertices ofL to the corresponding vertex i, together with an edge joining the last
two vertices ofL.

Using this, one can count labelled trees with any prescribed degree sequence.

Species and counting

Species, invented by AnérJoyal in 1980, provide an attempt to unify some of the
many structures and techniques which appear in combinatorial enumeration. | don’t
attempt to be too precise about what a species is. Think of it as a set of “points”
carrying some structure (a graph, a poset, a permutation, etc.) We can ask for the
number of labelled or unlabelled structuresropoints in a given species.

Almost the only thing we assume about a spedjess that, for eac, there are
only a finite number of5-objects om points (so that we can count them). The only
property we use of the objects in a species is that we “know” whether a bijective map
between the point sets of two objects is an isomorphism between them (and hence we
know the automorphism group of each object).

We make one further (inessential but convenient) assumption, namely that there is
a unique object on the empty set of points.

We say that two species asgjuivalent(written G ~ #) if there is a bijection
between the objects of the two species on a given point set such that the automorphism
groups of corresponding objects are equal.

The most important formal power series associated with a speciesysliésindex
which is defined by the rule

2(6)="Y Z(Aut(A),
AEG
where AutA) is the automorphism group @&. Clearly, equivalent objects have the
same cycle index.

The cycle index is well-defined since a monoma%l- .- arises only from cycle
indices involvingn = Si_; ia; points, and by assumption there are only finitely many
of these.

There are two important specialisations of the cycle index of a spé&tig¢isese
are the exponential generating function

Gpx"

G = n; n!
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for the numbeiG,, of labelledn-elementG-objects (that is, objects on the point set
{1,...,n}); and the ordinary generating function

g(x) =y gnX"

n>0
for the numbeug, of unlabelledn-elementG-objects (that is, isomorphism classes).
Theorem 3 Let G be a species. Then
(@) G(X) = Z(G;s1 — %,§ < Ofori > 1);
(b) 9(x) = Z(Gis < X).

Proof The number of different labellings of an objécbnn points is clearlyn! /| Aut(A)|.

So itis enough to show that, for any permutation gr@jpve have
Z(G;sp x5« 0fori >1) = x"/|G|,
n

Z(G;s —x) = x".

The first equation holds because puttgyg- O for all i > 1 kills all permutations
except the identity. The second holds because, with this substitution, each group ele-
ment contributes”, and the resultis G| y g X" = X"

Examples of species

There are a few simple species for which we can do all the sums explicitly.

Example: Sets The species has as its objects the finite sets, with one set of each
cardinality up to isomorphism. Its cycle index was calculated in Chapter 5:

25)= 3 (8- exp(i; (?)) .

Hence we find that

Sx) = expx),

s(x) = exp <Z XI—I>

= exp(—log(1—x))
1

1-—x
in agreement with the fact th& = s, =1 for alln > 0.
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Example: Total orders Let L be the species of total (or linear) orders. Eaebet
can be totally ordered in! ways, all of which are isomorhic, and each of which is
rigid (that is, has the trivial automorphism group).

We have
1

2= 3 8=

so that
1
1-x

Example: Circular orders The specieg” consists otircular orders An element

of this species corresponds to placing the points of the object around a circle, where
only the relative positions are considered, and there is no distinguished starting point.
Thus, there is just one unlabelleeelement object irC for all n, and the number of
labelled objects is equal to the numijar 1)! of cyclic permutations fon > 1. The
uniquen-element structure hagm) automorphisms each witlymcycles of lengthm

for all mdividing n, whereg@is Euler’s function. Hence

20) = 1- Y "Mioga-sw),

m>1
n

C(x) = 1+Z%:1—Iog(1—x),

n>1

c(x) = Zx”: %(

Example: Permutations An object of the specie® consists of a set carrying a
permutation. We will see later ho® can be expressed as a composition, from which
its cycle index can be deduced (Exercise 2 on Sheet 7). We have

Z(?) = Q-

n>1
P = [l

The functionp(x) is the generating function for number partitions. For, as we saw
earlier, an unlabelled permutation is the same as a conjugacy class of permutations;
and conjugacy classes are determined by their cycle structure.



Operations on species

There are several ways of building new species from old; only a few important ones
are discussed here.

Products Let G and#H be species. We define tipeoduct X = G x # as follows:
an object ofX on a seiX consists of a distinguished sub¥ebf X, a G-object onY,
and a -object onX \ Y.

Since these objects are chosen independently, it is easy to check that

2(G x #) = 2(G)Z(#).

Since the generating functions for labelled and unlabelled structures are specialisa-
tions of the cycle index, we have similar multiplicative formulae for them.

For example, ifS, G and G° are the species of sets, graphs, and graphs with no
isolated vertices respectively, then

G~ 5% G

Substitution Let G and H be species. We define tlsbstitution® = G[#] as
follows: an object ofX on a setX consists of a partition oX, an #/-object on each
part of the partition, and g-object on the set of parts of the partition.

Alternatively, we may regard it as @-object in which every point is replaced by
anon-emptyH -object.

The cycle index is obtained from that gfby the substitution

S <—Z(}[;Sj —sj)—1

for all i. (The —1 in the formula corresponds to removing the emgpfystructure
before substituting.)

From this, we see that the exponential generating functions for labelled structures
obey the simple substitution law:

K(x) = G(H () — 1).

The situaation for unlabelled structures is more complicated kéjdcannot be ob-
tained fromg(x) andh(x) alone. Instead, we have

k(x) = Z(G;s < h(xX) — 1).

This equation also follows from the Cycle Index Theorem, since we are counting
functions ong-structures where the figures are non-emgfystructures with weight
equal to cardinality.



For example, if§, ? andC are the species of sets permutations, and circular orders,
then the standard decomposition of a permutation into disjoint cycles can be written

P~ S[C].

The counting series for labelled structures are given by

X = g%zexmxx
Cx = 1+ (”_n?! S 1 log(1—x):

so the equation above becomes

1
—— =exp(—log(1—x
—— = exp(—log(1— X)),
So the decomposition of a permutation into cycles is the combinatorial equivalent of
the fact that exp and log are inverse functions!

Rooted (or pointed) structures Given a specieg;, let G* be the species aboted
G-structures such a structure consists ofastructure with a distinguished point.

We have 3
(g*> = SlEZ(G)v

Nz

and so q
*
G*(x) = xd—XG(x).
Sometimes it is convenient to remove the distinguished point. This just removes the
factorss; andt in the above formulae, so that this operation corresponds to differenti-
ation. As a result, we denote the result&y
For example, ifC is the class of cycles, thaff corresponds to the clagsof total
(linear) orders. We have

d X) = g(1—Iog(1—x)) =

LX) = HCx) = o

1
1-x

in agreement with the preceding example.



Cayley’s Theorem revisited

The notion of species can be used to give two further proofs of Cayley’s Theorem.

First proof Let £ and? be the species of total (or linear) orders and permutations,
respectively. These species are quite different, but have the property that the numbers
of labelled objects on points are the same (namei).
Hence the numbers of labelled objects in the two specigs*| and P[7*] are
equal. (HereZ ™ is the species of rooted trees.)
Consider an object iiL[7*]. This consists of a linear ordéky,...,X), with a
rooted treeT; atx; for all i. | claim that this is equivalent to a tree with two distin-
guished vertices. Take edgés,x 1} fori =1,...,r — 1, and identifyx; with the
root of T; for all i. The resulting graph is a tree. Conversely, given a tree with two
distinguished verticeg andy, there is a unique path fromto y in the tree, and the
remainder of the tree consists of rooted trees attached to the vertices of the path.
Now consider an object i®[7*]. Identify the root of each tree with a point of the
set on which the permutation acts, and orient each edge of this tree towards the root.
The resulting structure defines a functibion the point set, where

e if vis aroot, thenf (v) is the image ofs under the permutation;

e if vis not a root, therf (v) is the unique vertex for whiclw, f (v)) is a directed
edge of one of the trees.

Conversely, given a functiofi : X — X, the setY of periodic points off has the
property thatf induces a permutation on it; the pains f(v)) for which v is not a
periodic point have the structure of a family of rooted trees, attach¥dtdhe point
for which the iterated images ofunderf first entery.

So the numbers of trees with two distinguished points is equal to the number of
functions from the vertex set to itself. Thus, if there &r@) labelled trees, we see
that

n?F(n) = n",

from which Cayley’s Theorem follows.

Second proof As in the preceding proof, leT* denote the species of rooted trees.

If we remove the root from a rooted tree, the result consists of an unordered collection
of trees, each of which has a natural root (at the neighbour of the root of the original
tree). Conversely, given a collection of rooted trees, add a new root, joined to the roots



of all the trees in the collection, to obtain a single rooted tree. S8, denotes the
species consisting of a single 1-vertex structure, sitlte species of sets, we have

T* ~EXS[TH].
Hence, for the exponential generating functions for labelled structures, we have
T*(x) = xexp(T*(x)).

This is, formally, a recurrence relation for the coefficientsT6tx), and we need to
show that thenth coefficient isn"~1. This can be done most easily with the technique
of Lagrange inversionwhich is discussed in the next section.

Lagrange inversion

A formal power series over a field, with zero constant term and non-zero tegrhas
an inverse with respect to composition. Indeed, the set of all such formal power series
is a group, which has recently become known ad\tbgingham groupHowever, the
basic facts are much older. The associative, closure, and identity laws are obvious,
and the rule for finding the inverse is knownlaesgrange inversion

The basic fact can be stated as follows.

0 and f(0) # 0.

Proposition 4 Let f be a formal power series ov€, with f(0) =
= X; the coefficient of

Then there is a unique formal power series g such tti&txJ )

y'ing(y)is PN
oot (78) |, o/™

This can be expressed in a more convenient way for our purpose. Let

Then the inverse functiogis given by the functional equation

aly) = ye(ga(y)).

Then Lagrange inversion has the form

where



Example: Cayley’'s Theorem The exponential generating function for rooted trees
satisfies the equation
T*(x) = xexp(T*(x)).

With @(x) = exp(x), we find that the coefficient of*/nl in T*(y) is

dr* n—1
— exp(nx)} =n""
{dxn ! x=0

proving Cayley’s Theorem once again.

What is a species?

We have proceeded this far without ever giving a precise definition of a species. The
informal idea is that an object of a species is constructed from a finite set, and bijec-
tions between finite sets induce isomorphisms of the objects built on them.

It turns out that mathematics does provide a language to describe this, namely
category theory It would take us too far afield to give all the definitions here. In
essence, a category consists of a collectioalgpéctswith a collection ofmorphisms
between them. In the only case with which we deal, objects are sets and morphisms
are set mappings. In particular, the cl@svhose objects are all finite sets and whose
morphisms are all bijections between them satisfies the axioms for a category.

Now a species is simplyfanctor Ffrom G to itself. This means thd&t associates
to each finite seBa setF(S), and to each bijectioh : S— S a bijectionF () : F(S) —

F(S), such thaf respects composition and identity (thatk,f1fy) = F(f1)F(f2)
andF(1s) = 1¢ (g), Where kis the identity map o19).

The standard reference on species (apart from Joyal’s original paper) is the book
by Bergeron, Labelle and LerouGombinatorial Species and Tree-like Structyres
Encyclopedia of Mathematics and its Applicatiodis Cambridge University Press,
Cambridge, 1998.
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