
C50 Enumerative & Asymptotic Combinatorics

Notes 7 Spring 2003

This part of the notes is about species. We begin with two preliminary topics:
labelled and unlabelled objects; and Cayley’s formula for the number of trees onn
vertices.

Labelled and unlabelled

Group actions can be used to clarify the difference between two types of counting of
combinatorial objects, namely counting labelled and unlabelled objects.

Typically, we are counting structures “based on” a set ofn points: these may be
partitions or permutations, or more elaborate relational structures such as graphs, trees,
partially ordered sets, etc. Anisomorphismbetween two such objects is a bijection
between their base sets which preserves the structure.

A labelled objectis simply an object whose base set is{1,2, . . . ,n}. Two objects
count as different unless they are identical. On the other hand, for unlabelled objects,
we wish to count them as the same obtain one from the other by re-labelling the points
of the base set. In other words, anunlabelled objectis an isomorphism class of objects.

For example, for graphs on three vertices, there are eight labelled objects, but four
unlabelled ones.

Now the symmetric groupSn acts on the set of all labelled objects on the set
{1, . . . ,n}; its orbits are the unlabelled objects. So counting unlabelled objects is
equivalent to counting orbits ofSn in an appropriate action.

A given objectA has an automorphism group Aut(A), consisting of all permu-
tations of the set of points which map the object to itself. The number of different
labellings ofA is n!/|Aut(A)|, since of then! labellings, two are the same if and only
if they are related by an automorphism ofA. (More formally, labellings correspond
bijectively to cosets of Aut(A) in the symmetric groupSn.) So the number of labelled
objects is

∑
A

n!
|Aut(A)|

,
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where the sum is over the unlabelled objects onn points.
The cycle index method can be applied to give more sophisticated counts. For

example, let us count graphs on 4 vertices. The number of pairs of vertices is 6, and
each pair is either an edge or a non-edge. So the number of labelled graphs is 26 = 64,
and the number of labelled graphs withk edges is

(6
k

)
for k = 0, . . . ,6.

In order to count orbits, we must letS4 act on the set of 64 graphs. But we can
think of a graph as the set of

(4
2

)
= 6 pairs of vertices with a figure (either an edge or a

non-edge) attached to each. So we must compute the cycle index ofS4 acting on pairs
of vertices. Table 1 gives details. The notation 1221, for example, means “two fixed
points and one 2-cycle”. Such an element, say the transposition(1,2), fixes the two
pairs{1,2} and{3,4}, and permutes the other four pairs in two 2-cycles; so its cycle
structure on pairs is 1222.

Cycles on Cycles on Number
vertices pairs

14 16 1
1221 1222 6
22 1222 3
13 32 8
4 24 6

Table 1: Cycle index ofS4

So the cycle index of the permutation groupG induced on pairs byS4 is

Z(G) =
1
24

(s6
1 +9s2

1s2
2 +8s2

3 +6s2s4).

Now if we take edges to have weight 1 and non-edges to have weight 0 (that is,
figure-counting seriesA(x) = 1+x), the function-counting series is

B(x) = 1+x+2x2 +3x3 +2x4 +x5 +x6,

the generating function for unlabelled graphs on four vertices by number of edges.

We conclude by summarising some of our earlier results on counting labelled and
unlabelled structures. Table 2 gives the numbers of labelled and unlabelled structures
onn points;B(n) andp(n) are the Bell and partition numbers.

We see from the table that it is possible, even in very natural cases, to have the
same number of labelled objects but different numbers of unlabelled ones, orvice
versa.
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Structure Labelled Unlabelled

Subsets 2n n+1
Partitions B(n) p(n)

Permutations n! p(n)
Total orders n! 1

Table 2: Labelled and unlabelled

Cayley’s Theorem

We begin with a particular species where there is a simple but unexpected formula
for the labelled counting problem. Atree is a connected graph with no cycles. It is
straightforward to show that a tree onn vertices containsn− 1 edges, and that any
connected graph has a spanning tree (that is, some set ofn− 1 of its edges forms
a tree). Moreover, any tree has a vertex lying on only one edge (since the average
number of edges per vertex is 2(n−1)/n< 2). Such a vertex is called aleaf. If we
remove from a tree a leaf and its incident edge, the result is still a tree.

Cayley’s Theorem states:

Theorem 1 The number of labelled trees on n vertices is nn−2.

There are many different proofs of this theorem. Below, we will see two proofs
which are made clearer by means of the concept of species. But first, one of the
classics:

Prüfer’s proof of Cayley’s Theorem We construct a bijection between the set of
all trees on the vertex set{1, . . . ,n} and the set of all(n−2)-tuples of elements from
this set. The tuple associated with a tree is called itsPrüfer code.

First we describe the map from trees to Prüfer codes. Start with the empty code.
Repeat the following procedure until only two vertices remain: select the leaf with
smallest label; append the label of its unique neighbour to the code; and then remove
the leaf and its incident edge.

Next, the construction of a tree from a Prüfer codeP. We use an auxiliary listL of
vertices added as leaves, which is initially empty. Now, whileP is not empty, we join
the first element ofP to the smallest-numbered vertexv which is not in eitherP or L,
and then addv to L and remove the first element ofP. WhenP is empty, two vertices
have not been put intoL; the final edge of the tree joins these two vertices.

I leave to the reader the task of showing that these two constructions define inverse
bijections. The method actually gives much more information:
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Proposition 2 In the tree with Pr̈ufer code P, the valency of the vertex i is one more
than the number of occurrences of i in P.

For, at the conclusion of the second algorithm, if we add in the last two vertices
to L, thenL contains each vertex precisely once; and edges join each of the firstn−2
vertices ofL to the corresponding vertex inP, together with an edge joining the last
two vertices ofL.

Using this, one can count labelled trees with any prescribed degree sequence.

Species and counting

Species, invented by André Joyal in 1980, provide an attempt to unify some of the
many structures and techniques which appear in combinatorial enumeration. I don’t
attempt to be too precise about what a species is. Think of it as a set of “points”
carrying some structure (a graph, a poset, a permutation, etc.) We can ask for the
number of labelled or unlabelled structures onn points in a given species.

Almost the only thing we assume about a speciesG is that, for eachn, there are
only a finite number ofG-objects onn points (so that we can count them). The only
property we use of the objects in a species is that we “know” whether a bijective map
between the point sets of two objects is an isomorphism between them (and hence we
know the automorphism group of each object).

We make one further (inessential but convenient) assumption, namely that there is
a unique object on the empty set of points.

We say that two species areequivalent(written G ∼ H ) if there is a bijection
between the objects of the two species on a given point set such that the automorphism
groups of corresponding objects are equal.

The most important formal power series associated with a species is itscycle index,
which is defined by the rule

Z̃(G) = ∑
A∈G

Z(Aut(A)),

where Aut(A) is the automorphism group ofA. Clearly, equivalent objects have the
same cycle index.

The cycle index is well-defined since a monomialsa1
1 · · ·sar

r arises only from cycle
indices involvingn = ∑r

i=1 iai points, and by assumption there are only finitely many
of these.

There are two important specialisations of the cycle index of a speciesG ; these
are the exponential generating function

G(x) = ∑
n≥0

Gnxn

n!

4



for the numberGn of labelledn-elementG-objects (that is, objects on the point set
{1, . . . ,n}); and the ordinary generating function

g(x) = ∑
n≥0

gnxn

for the numbergn of unlabelledn-elementG-objects (that is, isomorphism classes).

Theorem 3 Let G be a species. Then

(a) G(x) = Z̃(G ;s1← x,si ← 0 for i > 1);

(b) g(x) = Z̃(G ;si ← xi).

Proof The number of different labellings of an objectAonnpoints is clearlyn!/|Aut(A)|.
So it is enough to show that, for any permutation groupG, we have

Z(G;s1← x,si ← 0 for i > 1) = xn/|G|,
Z(G;si ← xi) = xn.

The first equation holds because puttingsi = 0 for all i > 1 kills all permutations
except the identity. The second holds because, with this substitution, each group ele-
ment contributesxn, and the result is 1/|G|∑g∈Gxn = xn.

Examples of species

There are a few simple species for which we can do all the sums explicitly.

Example: Sets The speciesS has as its objects the finite sets, with one set of each
cardinality up to isomorphism. Its cycle index was calculated in Chapter 5:

Z̃(S) = ∑
n≥0

(Sn) = exp

(
∑
i≥1

(si

i

))
.

Hence we find that

S(x) = exp(x),

s(x) = exp

(
∑
i≥1

xi

i

)
= exp(− log(1−x))

=
1

1−x
,

in agreement with the fact thatSn = sn = 1 for all n≥ 0.
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Example: Total orders Let L be the species of total (or linear) orders. Eachn-set
can be totally ordered inn! ways, all of which are isomorhic, and each of which is
rigid (that is, has the trivial automorphism group).

We have

Z̃(L) = ∑
n≥0

sn
1 =

1
1−s1

,

so that

L(x) = l(x) =
1

1−x
.

Example: Circular orders The speciesC consists ofcircular orders. An element
of this species corresponds to placing the points of the object around a circle, where
only the relative positions are considered, and there is no distinguished starting point.
Thus, there is just one unlabelledn-element object inC for all n, and the number of
labelled objects is equal to the number(n−1)! of cyclic permutations forn≥ 1. The
uniquen-element structure hasφ(m) automorphisms each withn/mcycles of lengthm
for all m dividing n, whereφ is Euler’s function. Hence

Z̃(C ) = 1− ∑
m≥1

φ(m)
m

log(1−sm),

C(x) = 1+ ∑
n≥1

xn

n
= 1− log(1−x),

c(x) = ∑xn =
1

1−x
.

Example: Permutations An object of the speciesP consists of a set carrying a
permutation. We will see later howP can be expressed as a composition, from which
its cycle index can be deduced (Exercise 2 on Sheet 7). We have

Z̃(P ) = ∏
n≥1

(1−sn)−1,

P(x) =
1

1−x
,

p(x) = ∏
n≥1

(1−xn)−1.

The functionp(x) is the generating function for number partitions. For, as we saw
earlier, an unlabelled permutation is the same as a conjugacy class of permutations;
and conjugacy classes are determined by their cycle structure.
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Operations on species

There are several ways of building new species from old; only a few important ones
are discussed here.

Products Let G andH be species. We define theproductK = G ×H as follows:
an object ofK on a setX consists of a distinguished subsetY of X, aG-object onY,
and aH -object onX \Y.

Since these objects are chosen independently, it is easy to check that

Z̃(G ×H ) = Z̃(G)Z̃(H ).

Since the generating functions for labelled and unlabelled structures are specialisa-
tions of the cycle index, we have similar multiplicative formulae for them.

For example, ifS , G andG◦ are the species of sets, graphs, and graphs with no
isolated vertices respectively, then

G ∼ S ×G◦.

Substitution Let G and H be species. We define thesubstitutionK = G [H ] as
follows: an object ofK on a setX consists of a partition ofX, anH -object on each
part of the partition, and aG-object on the set of parts of the partition.

Alternatively, we may regard it as aG-object in which every point is replaced by
anon-emptyH -object.

The cycle index is obtained from that ofG by the substitution

si ← Z̃(H ;sj ← si j )−1

for all i. (The−1 in the formula corresponds to removing the emptyH -structure
before substituting.)

From this, we see that the exponential generating functions for labelled structures
obey the simple substitution law:

K(x) = G(H(x)−1).

The situaation for unlabelled structures is more complicated, andk(x) cannot be ob-
tained fromg(x) andh(x) alone. Instead, we have

k(x) = Z̃(G ;si ← h(xi)−1).

This equation also follows from the Cycle Index Theorem, since we are counting
functions onG-structures where the figures are non-emptyH -structures with weight
equal to cardinality.
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For example, ifS , P andC are the species of sets permutations, and circular orders,
then the standard decomposition of a permutation into disjoint cycles can be written

P ∼ S [C ].

The counting series for labelled structures are given by

S(x) = ∑
n≥0

xn

n!
= exp(x),

P(x) = ∑
n≥0

n!xn

n!
=

1
1−x

,

C(x) = 1+ ∑
n≥0

(n−1)!xn

n!
= 1− log(1−x);

so the equation above becomes

1
1−x

= exp(− log(1−x)),

So the decomposition of a permutation into cycles is the combinatorial equivalent of
the fact that exp and log are inverse functions!

Rooted (or pointed) structures Given a speciesG , let G∗ be the species ofrooted
G-structures: such a structure consists of aG-structure with a distinguished point.

We have

Z̃(G∗) = s1
∂

∂s1
Z̃(G),

and so

G∗(x) = x
d
dx

G(x).

Sometimes it is convenient to remove the distinguished point. This just removes the
factorss1 andt in the above formulae, so that this operation corresponds to differenti-
ation. As a result, we denote the result byG ′.

For example, ifC is the class of cycles, thenC ′ corresponds to the classL of total
(linear) orders. We have

L(x) =
d
dx

C(x) =
d
dx

(1− log(1−x)) =
1

1−x
,

in agreement with the preceding example.
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Cayley’s Theorem revisited

The notion of species can be used to give two further proofs of Cayley’s Theorem.

First proof Let L andP be the species of total (or linear) orders and permutations,
respectively. These species are quite different, but have the property that the numbers
of labelled objects onn points are the same (namelyn!).

Hence the numbers of labelled objects in the two speciesL [T ∗] andP [T ∗] are
equal. (HereT ∗ is the species of rooted trees.)

Consider an object inL [T ∗]. This consists of a linear order(x1, . . . ,xr), with a
rooted treeTi at xi for all i. I claim that this is equivalent to a tree with two distin-
guished vertices. Take edges{xi ,xi+1} for i = 1, . . . , r − 1, and identifyxi with the
root of Ti for all i. The resulting graph is a tree. Conversely, given a tree with two
distinguished verticesx andy, there is a unique path fromx to y in the tree, and the
remainder of the tree consists of rooted trees attached to the vertices of the path.

Now consider an object inP [T ∗]. Identify the root of each tree with a point of the
set on which the permutation acts, and orient each edge of this tree towards the root.
The resulting structure defines a functionf on the point set, where

• if v is a root, thenf (v) is the image ofv under the permutation;

• if v is not a root, thenf (v) is the unique vertex for which(v, f (v)) is a directed
edge of one of the trees.

Conversely, given a functionf : X → X, the setY of periodic points off has the
property thatf induces a permutation on it; the pairs(v, f (v)) for which v is not a
periodic point have the structure of a family of rooted trees, attached toY at the point
for which the iterated images ofv under f first enterY.

So the numbers of trees with two distinguished points is equal to the number of
functions from the vertex set to itself. Thus, if there areF(n) labelled trees, we see
that

n2F(n) = nn,

from which Cayley’s Theorem follows.

Second proof As in the preceding proof, letT ∗ denote the species of rooted trees.
If we remove the root from a rooted tree, the result consists of an unordered collection
of trees, each of which has a natural root (at the neighbour of the root of the original
tree). Conversely, given a collection of rooted trees, add a new root, joined to the roots
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of all the trees in the collection, to obtain a single rooted tree. So, ifE denotes the
species consisting of a single 1-vertex structure, andS the species of sets, we have

T ∗ ∼ E ×S [T ∗].

Hence, for the exponential generating functions for labelled structures, we have

T∗(x) = xexp(T∗(x)).

This is, formally, a recurrence relation for the coefficients ofT∗(x), and we need to
show that thenth coefficient isnn−1. This can be done most easily with the technique
of Lagrange inversion, which is discussed in the next section.

Lagrange inversion

A formal power series over a field, with zero constant term and non-zero term inx, has
an inverse with respect to composition. Indeed, the set of all such formal power series
is a group, which has recently become known as theNottingham group. However, the
basic facts are much older. The associative, closure, and identity laws are obvious,
and the rule for finding the inverse is known asLagrange inversion.

The basic fact can be stated as follows.

Proposition 4 Let f be a formal power series overQ, with f(0) = 0 and f′(0) 6= 0.
Then there is a unique formal power series g such that g( f (x)) = x; the coefficient of
yn in g(y) is [

dn−1

dxn−1

(
x

f (x)

)n]
x=0

/
n!.

This can be expressed in a more convenient way for our purpose. Let

φ(x) =
x

f (x)
.

Then the inverse functiong is given by the functional equation

g(y) = yφ(g(y)).

Then Lagrange inversion has the form

g(y) = ∑
n≥1

bnyn

n!
,

where

bn =
[

dn−1

dxn−1φ(x)n
]

x=0
.
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Example: Cayley’s Theorem The exponential generating function for rooted trees
satisfies the equation

T∗(x) = xexp(T∗(x)).

With φ(x) = exp(x), we find that the coefficient ofyn/n! in T∗(y) is[
dn−1

dxn−1 exp(nx)
]

x=0
= nn−1,

proving Cayley’s Theorem once again.

What is a species?

We have proceeded this far without ever giving a precise definition of a species. The
informal idea is that an object of a species is constructed from a finite set, and bijec-
tions between finite sets induce isomorphisms of the objects built on them.

It turns out that mathematics does provide a language to describe this, namely
category theory. It would take us too far afield to give all the definitions here. In
essence, a category consists of a collection ofobjectswith a collection ofmorphisms
between them. In the only case with which we deal, objects are sets and morphisms
are set mappings. In particular, the classS whose objects are all finite sets and whose
morphisms are all bijections between them satisfies the axioms for a category.

Now a species is simply afunctor F from S to itself. This means thatF associates
to each finite setSa setF(S), and to each bijectionf : S→S′ a bijectionF( f ) : F(S)→
F(S′), such thatF respects composition and identity (that is,F( f1 f2) = F( f1)F( f2)
andF(1S) = 1F(S), where 1S is the identity map onS).

The standard reference on species (apart from Joyal’s original paper) is the book
by Bergeron, Labelle and Leroux,Combinatorial Species and Tree-like Structures,
Encyclopedia of Mathematics and its Applications67, Cambridge University Press,
Cambridge, 1998.
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