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Often we are in the situation where we have a number of conditions of varying strength,
and we have information about the number of objects which satisfy various combina-
tions of conditions (inclusion); we want to count the objects satisfying none of the
conditions (exclusion), or perhaps satisfying some but not others. Of course, the con-
ditions may not all be independent!

The Principle of Inclusion and Exclusion

LetAy,...,A, be subsets of a finite s&t For any non-empty subsébf the index set
{1,...,n}, we put
A=A
jed
by convention, we takéy = X. The Principle of Inclusion and Exclusio(PIE, for
short) asserts the following.

Theorem 1 The number of elements of X lying in none of the sets équal to

T (-DPAl

JC{1,...,n}

Proof The expression in the theorem is a linear combination of the cardinalities of
the setd\;, and so we can calculate it by working out, for eachX, the contribution

of x to the sum. IfK is the set of all indiceg for which x € Aj, thenx contributes to

the terms involving set3 C K, and the contribution is

P

If |K| =k > 0, then there ar(a'j‘) sets of sizg in the sum, which is
, () -a-vt
V-1l = a-1k=o,
2\
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whereas ifK = 0 then the sum is 1. So the points with= 0 (those lying in no set
Aj) each contribute 1 to the sum, and the remaining points contribute nothing. So the
theorem is proved.

If there are numbensy, . .., my such thatA;| = m; wheneverJ| = j, then PIE can

be written in the simpler form
n

jzo(—l)imj.

Here are a couple of applications.

Example: Surjections The number of functions from an-setontoann-setis given

by the formula ]
3 ()=

For letM andN be the sets, wittN = {1,...,n}. Let X be the set of all functions
f: M — N, andA; the set of functions whose range does not include the point
ThenA; is the set of functions whose range includes none of the poiniqtbat is,
functions fromM to N\ J); so|A;| = (n— j)™when|J| = j. A function is a surjection
if and only if it lies in none of the set&;. The result follows.

In particular, ifm = n, then surjections are permutations, and we have

Ji<—1>i (No-ir=n.

Example: Derangements This time, letX be the set of all permutations 1, ..., n},
andA the set of permutations fixing ThenA,; is the set of permutations fixing every
pointinJ; so|A;| = (n—j)! when|J| = j. The permutations lying in none of the sets
A are the derangements, and so we have

N n
am = 3 i) -y
jZo 1
L (-1)
= n!Z)T,
=
in agreement with our earlier result.

The statement of PIE can be generalised to give a formula for the number of el-
ements ofX which lie in a given collection of set; and not in the remaining ones.
Indeed, the same formula applies if the numbers concerned are arbitrary real numbers
rather than cardinalities of sets:



Theorem 2 Let real numbers gand ky be given for each subset J of-N{1,...,n}.
Then the following are equivalent:

@ a= b forallJ C N;

JCICN

(b) by = Z (—1)!'lg forallJ N,
JCICN

Proof The theorem asserts the form of the solution to a system of linear equations;
in other words, the inverse of a certain matrix. However, the same matrix occurs in
the original form of PIE.

The theorem as stated involves sums over supersets of the given index set. How-
ever, it is easily transformed to involve sums over subsets. In this form, it is a generali-
sation of the inverse relationship between the triangular matrix of binomial coefficients
and the signed version. See the Exercises for these formulations.

Partially ordered sets

In this section, we formalise the kind of lower-triangular matrices which occurred in
the last.

A partial orderon a sei is a binary relatior< on X which satisfies the following
conditions:

o X < X (reflexivity);
e if X< yandy < xthenx =y (antisymmetry;
e if x <yandy < zthenx < z (transitivity).
It is atotal orderif it satisfies the further condition
e for anyx,y, exactly one ok <y, x=Yy, y < x holds ¢richotomy),

wherex <y is short forx <y andx #y. (Note that antisymmetry implies that at most
one of these three conditions holds.)

The usual order relations on the natural numbers, integers, and real numbers are
total orders. An important example of a partial order is the relatiomafisionon
the set of all subsets of a given set. Other important examples of partially ordered sets
include



e the positive integers ordered by divisibility (thatis< y if and only if X | y);

¢ the subspaces of a finite vector space, ordered by inclusion. (This is known as a
projective spacg

Any finite totally ordered set can be writtenfg, X, ..., X}, wherex; <x; if and
onlyifi <j.

A set carrying a partial order relation is callepartially ordered setor posetfor
short.

We need to use the following result. A relatioris anextensiorof a relationp if
x rho y=- x sigma y that is, regarding a relation in the usual way as a set of ordered
pairs,p is a subset of.

Theorem 3 Any partial order on a set X can be extended to a total order on X.

This theorem is easily proved for finite sets: take any pair of elemewptahich
are incomparable in the given relation; sef y, and include all consequences of
transitivity (show that no conflicts arise from this); and repeat until all pairs are com-
parable. Itis more problematic for infinite sets; it cannot be proved from the Zermelo—
Fraenkel axioms, but requires an additional principle such as the Axiom of Choice.

The upshot of the theorem for finite sets is that any finite partially ordered set
can be written aX = {x1,...,X,} so that, ifx; <x;j, theni < j (but not necessarily
conversely). This is often possible in many ways. For example, the subgetdod},
ordered by inclusion, can be written as

XJ_:@, X2:{a}7 X3:{b}7 X4:{C}7
Xs={a,b}, Xs={ac}, X;={b,c}, Xg={ab,c}.

Now any functionf from X x X to the real numbers can be written asrar n
matrix A¢, whose(i, j) entry is f (x;,X;).

Our results extend to some infinite partially ordered sets, namely, those which are
locally finite (A partially ordered seX is locally finite if, for anyx,y € X, theinterval

Xyl ={ze X:x<z<y}

is finite.)
Examples of infinite, locally finite posets include:
e The natural numbers; the integers (with the usual order).

¢ All finite subsets of an infinite set (ordered by inclusion).

¢ All finite-dimensional subspaces of an infinite-dimemsional vector space over a
finite field (ordered by inclusion).

e The positive integers (ordered by divisibility).

4



The incidence algebra of a poset

The incidence algebraof the partially ordered seX is defined to be the set of all
functionsa : X x X — R which have the property that(x,y) = 0 unlesx <y. Note

that, for such a function, the matrixAq is lower triangular. The algebra operations
of addition and multiplication are defined to be the usual matrix operations on the
corresponding matrices; that is,

(@+B)(xy) = axy) +B(XxY),
@B)(xy) = > a(x2zBzy).
X<y
(These equations shows that the way in which we extend the partial order to a total
order does not affect the definitions.)

The definitions of addition and multiplication work equally well for an infinite
locally finite poset (since the sum in the formula for multiplication is finite). So the
incidence algebra of a locally finite poset is defined.

The incidence algebra has an identity, the functigiven by

(1 ifx=y,
Hxy) = {O otherwise.

(The matrixA, is the usual identity matrix.) Another important algebra element is the
zeta functior, defined by

(1 ifx<y,
xy) = {0 otherwise.

Thus( is the characteristic function of the partial order, and an arbitrary function
belongs to the incidence algebra if and only if

{(xy)=0=a(xy) =0.

A lower triangular matrix with ones on the diagonal has an inverse. Mlgius
function pof a poset is the inverse of the zeta function. In other words, it satisfies

1 ifx=y
M(X,y) = z
X<Z<y { 0 otherwise.

In particular,u(x,x) = 1 for all x. Moreover, if we knowu(x, z) for x < z <y, then we
can calculate

HXY) =— % HX2).

x<z<y

In particular, we see that the values of thélls function are all integers.
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Some Mobius functions

By definition, the Mdbius function of a poset satisfies the following:

Proposition 4 Let f and g be elements of the incidence algebra of a poset X (that is,
functions on Xx X satisfying fx,y) = g(x,y) = 0 unless x< y. Then the following
conditions are equivalent:

@axy) = > f(x2);

x<Zy

(b) f(X,y) = Z g(X,Z)l,l(Z,y).

X<ZLy

This resultis referred to adobius inversionIn order to use it, we have to compute
the Mobius functions of various posets. Note that théliis function is local, in the
sense that the value pfx, y) is determined by the structure of the interfsaly] = {z:
x<z<y}.

One important result is the following. L&, ..., X, be posets. Thdirect product
Xy x -+ x X is the poset whose elements arerafliples(x, ..., X ) with x; € X; for
1 <i <r; the order is given by

(Xla"'7xr) < (ylv'-'ayl’)@Xi SII forlgigr?
where the ordex; <; is that in the pose;.

Proposition 5 The Mdbius function of the direct product X - -- x X is given by

r

“((X17"'>Xr)7(y17---vyl’)) = _uM'(Xi,Yi),

where iis the Mobius function of X
Proof Itis enough to show that

2, lj“*'(XiaZi) 0.

1<i<r

Now the left-hand side of this expression factorises as

M3 woxw

and the inner sum is zero by definition of theéMus functiony;.
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Example: the integers In the poset of integers, with the usual order, thédilis
function is given by
1 if y=x;
H(X,Y) = {—1 if y=x+1;
0  otherwise.

Example: Finite subsets of a set In this case, the Mbius function is
HX,Y) = (=YX forx C,

and of coursgi(X,Y) = 0 otherwise. For leK CY, and letY \ X = {z,...,z,}. We
claim that the intervalX, Y] is isomorphic to{0,1}", the direct product oh copies of
{0,1} C Z. The isomorphism takes a séwith X <Z <Y to then-tuple(ey,...,en),
where )

o= {1 ifz eZ,

0 otherwise.

Sou(X,Y) is equal top((0,...,0),(1,...,1)) calculated ir{0,1}"; by Proposition 5
this isp(0,1)", andu(0,1) = —1 by the preceding example.

Example: Positive integers ordered by divisibility Suppose than dividesn. Let
n/m= pi*p32... p¥, wherepy,..., pr are distinct primes ana, ..., a, positive inte-
gers. Then the intervain, n] is isomorphic to the direct product

[Oaal] Xoeee X [Oaar]
of intervals|0, a] in Z. The correspondence is given by

(by,...,b) & mpt... pPr.

By the first example, we see thaim,n) = 0 if anya; > 1, that s, ifn/mis divisible by
the square of a prime. if/mis the product o distinct primes, thep(m,n) = (—1)3.
To summarise:

(mn) = (—=1)% if n/mis the product o&distinct primes;
HM=10 if mdoesn’t dividen or if n/mis not squarefree.

Example: Subspaces of a finite vector spaceBy the Second Isomorphism Theo-
rem, ifU andW are subspaces & with U C W, then the intervalU, W] is isomor-
phic to the poset of subspaceswifU, and in particular depends only on divd) —
dim(U). It suffices to calculat@({0},V), whereV is ann-dimensional vector space
over GHqQ).



Now puttingx = —1 in theg-binomial theorem, we obtain

1 n
Z (_1)qu(k1)/2|: }
k=0 K q

forn> 0. This is exactly the inductive step in the proof thef0},V) = (—1)"gq"("-1)/2
for n> 0. For there aréﬂ]q k-dimensional subspacesf and the induction hypoth-

esis asserts that {0}, W) = (—1)kg*~1/2 for each such subspace; then the identity
shows thapi({0},V) must have the claimed value.

So, in generalp(U,W) = (—1)"q"™Y/2 if U C W and dim{W/U) = n; and of
coursep(U,W) =0ifU ZW.

Classical Mobius inversion

All our examples in the preceding section have the special property that each interval
[X,y] is isomorphic tole, Z], wheree is a fixed element of the poset, andlepends
on x andy. Thus, for the integerge = 0 andz =y — x; for subsets of a seg =0
andz=y\ x; for positive integers ordered by divisibilitg = 1 andz = y/x; and for
subspaces of a vector spaee; {0} andz= y/x (the quotient space).

Thus, in these cases, thedlius function satisfiep(x,y) = p(e, z), so it can be
written as a function of one variabie Abusing notation, we use the same symjol
In the four cases, we have:

e U0)=1,1(1)=-1,u(z) =0forz>2;

. NZ)=(~1)7;
e U(z) = (—1)%if zis the product ok distinct primesy(z) = 0 if zis not square-
free,

o W(Z) = (—1)kgk-1/2 wherek = dim(Z).

The third of these is the “classical’ dbius function, and plays an important role
in number theory. If you seg(z) without any further explanation, it probably means
the classical Mbius function. In this case, &bius inversion can be stated as follows:

Proposition 6 Let f and g be functions on the positive integers. Then the following
are equivalent:

@ g(n) = ; f(m);



(b) f(n) =% g(m)pu(n/m).

m|n

Here are two applications of this result.

Example: Euler’s function Euler’s g¢-function (sometimes called thetient func-
tionis the functionpdefined on the positive integers by the rule that) is the number
of integersx with 1 < x < n coprime ton.

If gcd(x,n) = d, then gcdx/d,n/d) = 1. So the number of in this range with
gcdx,n) =dis @(n/d), and we have

S g(n/d) =n,
djn
or, puttingm=n/d,
> om)=n.
min

Now Maobius inversion gives

o(n) = 3 my(n/m).

min

From this it is easy to deduce thathif= p’i‘l ---p%, wherep; are distinct primes and
a; > 0, then

@) = PP H(pr—1)---p¥ Hpr—1).

Now we can write down the cycle index of the cyclic gratyof ordern, generated
by a cyclic permutatiog of {1,...,n}. For 0< m< n—1, the elemeng™ has order
d = gcd(m,n), and has/d cycles of lengttd. Now the number of elements of order
is equal to the number of choices mfwith gcd'm,n) = 1, which isg(n); and more
generally, the number of elements of ordkis ¢(d), for eachd dividing n. So the
cycle index is

Z@mzégwmﬁ”

Example: Irreducible polynomials Let fy(n) be the number of monic irreducible
polynomials of degre@ over GHq). By a counting result from the section op
analogues, we have

> mig(m) = q.

min



So, by Mbbius inversion, we have a formula fég(n):
l m
fq(n) = n ;q p(n/m).
mn

For example, the number of irreducible polynomials of degree 6 ové2 G&

2(26—23—2%21) =)

(Why is the word “monic” not needed here?)
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