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Often we are in the situation where we have a number of conditions of varying strength,
and we have information about the number of objects which satisfy various combina-
tions of conditions (inclusion); we want to count the objects satisfying none of the
conditions (exclusion), or perhaps satisfying some but not others. Of course, the con-
ditions may not all be independent!

The Principle of Inclusion and Exclusion

Let A1, . . . ,An be subsets of a finite setX. For any non-empty subsetJ of the index set
{1, . . . ,n}, we put

AJ =
⋂
j∈J

A j ;

by convention, we takeA/0 = X. ThePrinciple of Inclusion and Exclusion(PIE, for
short) asserts the following.

Theorem 1 The number of elements of X lying in none of the sets Ai is equal to

∑
J⊆{1,...,n}

(−1)|J||AJ|.

Proof The expression in the theorem is a linear combination of the cardinalities of
the setsAJ, and so we can calculate it by working out, for eachx∈ X, the contribution
of x to the sum. IfK is the set of all indicesj for which x∈ A j , thenx contributes to
the terms involving setsJ⊆ K, and the contribution is

∑
J⊆K

(−1)|J|.

If |K|= k> 0, then there are
(k

j

)
sets of sizej in the sum, which is

k

∑
j=0

(
k
j

)
((−1) j = (1−1)k = 0,
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whereas ifK = /0 then the sum is 1. So the points withK = /0 (those lying in no set
Ai) each contribute 1 to the sum, and the remaining points contribute nothing. So the
theorem is proved.

If there are numbersm0, . . . ,mn such that|AJ|= mj whenever|J|= j, then PIE can
be written in the simpler form

n

∑
j=0

(−1) jmj .

Here are a couple of applications.

Example: Surjections The number of functions from anm-setontoann-set is given
by the formula

n

∑
j=0

(−1) j
(

n
j

)
(n− j)m.

For let M andN be the sets, withN = {1, . . . ,n}. Let X be the set of all functions
f : M → N, andAi the set of functions whose range does not include the pointi.
ThenAJ is the set of functions whose range includes none of the points ofJ (that is,
functions fromM to N\J); so|AJ|= (n− j)m when|J|= j. A function is a surjection
if and only if it lies in none of the setsAi . The result follows.

In particular, ifm= n, then surjections are permutations, and we have
n

∑
j=0

(−1) j
(

n
j

)
(n− j)n = n!.

Example: Derangements This time, letX be the set of all permutations of{1, . . . ,n},
andAi the set of permutations fixingi. ThenA j is the set of permutations fixing every
point inJ; so|AJ|= (n− j)! when|J|= j. The permutations lying in none of the sets
Ai are the derangements, and so we have

d(n) =
n

∑
j=0

(−1) j

(
n
j

)
(n− j)!

= n!
n

∑
j=0

(−1) j

j!
,

in agreement with our earlier result.

The statement of PIE can be generalised to give a formula for the number of el-
ements ofX which lie in a given collection of setsAi and not in the remaining ones.
Indeed, the same formula applies if the numbers concerned are arbitrary real numbers
rather than cardinalities of sets:
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Theorem 2 Let real numbers aJ and bJ be given for each subset J of N= {1, . . . ,n}.
Then the following are equivalent:

(a) aJ = ∑
J⊆I⊆N

bI for all J ⊆ N;

(b) bJ = ∑
J⊆I⊆N

(−1)|I |aI for all J ⊆ N.

Proof The theorem asserts the form of the solution to a system of linear equations;
in other words, the inverse of a certain matrix. However, the same matrix occurs in
the original form of PIE.

The theorem as stated involves sums over supersets of the given index set. How-
ever, it is easily transformed to involve sums over subsets. In this form, it is a generali-
sation of the inverse relationship between the triangular matrix of binomial coefficients
and the signed version. See the Exercises for these formulations.

Partially ordered sets

In this section, we formalise the kind of lower-triangular matrices which occurred in
the last.

A partial orderon a setX is a binary relation≤ onX which satisfies the following
conditions:

• x≤ x (reflexivity);

• if x≤ y andy≤ x thenx = y (antisymmetry);

• if x≤ y andy≤ z thenx≤ z (transitivity).

It is a total order if it satisfies the further condition

• for anyx,y, exactly one ofx< y, x = y, y< x holds (trichotomy),

wherex< y is short forx≤ y andx 6= y. (Note that antisymmetry implies that at most
one of these three conditions holds.)

The usual order relations on the natural numbers, integers, and real numbers are
total orders. An important example of a partial order is the relation ofinclusionon
the set of all subsets of a given set. Other important examples of partially ordered sets
include
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• the positive integers ordered by divisibility (that is,x≤ y if and only if x | y);

• the subspaces of a finite vector space, ordered by inclusion. (This is known as a
projective space.)

Any finite totally ordered set can be written as{x1,x2, . . . ,xn}, wherexi ≤ x j if and
only if i ≤ j.

A set carrying a partial order relation is called apartially ordered set, or posetfor
short.

We need to use the following result. A relationσ is anextensionof a relationρ if
x rho y⇒ x sigma y; that is, regarding a relation in the usual way as a set of ordered
pairs,ρ is a subset ofσ.

Theorem 3 Any partial order on a set X can be extended to a total order on X.

This theorem is easily proved for finite sets: take any pair of elementsx,y which
are incomparable in the given relation; setx ≤ y, and include all consequences of
transitivity (show that no conflicts arise from this); and repeat until all pairs are com-
parable. It is more problematic for infinite sets; it cannot be proved from the Zermelo–
Fraenkel axioms, but requires an additional principle such as the Axiom of Choice.

The upshot of the theorem for finite sets is that any finite partially ordered set
can be written asX = {x1, . . . ,xn} so that, ifxi ≤ x j , theni ≤ j (but not necessarily
conversely). This is often possible in many ways. For example, the subsets of{a,b,c},
ordered by inclusion, can be written as

X1 = /0, X2 = {a}, X3 = {b}, X4 = {c},
X5 = {a,b}, X6 = {a,c}, X7 = {b,c}, X8 = {a,b,c}.

Now any function f from X×X to the real numbers can be written as ann× n
matrixAf , whose(i, j) entry is f (xi ,x j).

Our results extend to some infinite partially ordered sets, namely, those which are
locally finite. (A partially ordered setX is locally finite if, for anyx,y∈X, theinterval

[x,y] = {z∈ X : x≤ z≤ y}

is finite.)
Examples of infinite, locally finite posets include:

• The natural numbers; the integers (with the usual order).

• All finite subsets of an infinite set (ordered by inclusion).

• All finite-dimensional subspaces of an infinite-dimemsional vector space over a
finite field (ordered by inclusion).

• The positive integers (ordered by divisibility).
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The incidence algebra of a poset

The incidence algebraof the partially ordered setX is defined to be the set of all
functionsα : X×X→ R which have the property thatα(x,y) = 0 unlessx≤ y. Note
that, for such a functionα, the matrixAα is lower triangular. The algebra operations
of addition and multiplication are defined to be the usual matrix operations on the
corresponding matrices; that is,

(α + β)(x,y) = α(x,y)+ β(x,y),
(αβ)(x,y) = ∑

x≤z≤y
α(x,z)β(z,y).

(These equations shows that the way in which we extend the partial order to a total
order does not affect the definitions.)

The definitions of addition and multiplication work equally well for an infinite
locally finite poset (since the sum in the formula for multiplication is finite). So the
incidence algebra of a locally finite poset is defined.

The incidence algebra has an identity, the functionι given by

ι(x,y) =
{

1 if x = y,
0 otherwise.

(The matrixAι is the usual identity matrix.) Another important algebra element is the
zeta functionζ, defined by

ζ(x,y) =
{

1 if x≤ y,
0 otherwise.

Thusζ is the characteristic function of the partial order, and an arbitrary functionα
belongs to the incidence algebra if and only if

ζ(x,y) = 0⇒ α(x,y) = 0.

A lower triangular matrix with ones on the diagonal has an inverse. TheMöbius
function µof a poset is the inverse of the zeta function. In other words, it satisfies

∑
x≤z≤y

µ(x,y) =
{

1 if x = y,
0 otherwise.

In particular,µ(x,x) = 1 for all x. Moreover, if we knowµ(x,z) for x≤ z< y, then we
can calculate

µ(x,y) =− ∑
x≤z<y

µ(x,z).

In particular, we see that the values of the Möbius function are all integers.
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Some Möbius functions

By definition, the M̈obius function of a poset satisfies the following:

Proposition 4 Let f and g be elements of the incidence algebra of a poset X (that is,
functions on X×X satisfying f(x,y) = g(x,y) = 0 unless x≤ y. Then the following
conditions are equivalent:

(a) g(x,y) = ∑
x≤z≤y

f (x,z);

(b) f(x,y) = ∑
x≤z≤y

g(x,z)µ(z,y).

This result is referred to asMöbius inversion. In order to use it, we have to compute
the Möbius functions of various posets. Note that the Möbius function is local, in the
sense that the value ofµ(x,y) is determined by the structure of the interval[x,y] = {z :
x≤ z≤ y}.

One important result is the following. LetX1, . . . ,Xr be posets. Thedirect product
X1×·· ·×Xr is the poset whose elements are allr-tuples(x1, . . . ,xr) with xi ∈ Xi for
1≤ i ≤ r; the order is given by

(x1, . . . ,xr)≤ (y1, . . . ,yr)⇔ xi ≤ i i for 1≤ i ≤ r,

where the orderxi ≤ yi is that in the posetXi .

Proposition 5 The M̈obius function of the direct product X1×·· ·×Xr is given by

µ((x1, . . . ,xr),(y1, . . . ,yr)) =
r

∏
i=1

µi(xi ,yi),

where µi is the M̈obius function of Xi .

Proof It is enough to show that

∑
xi≤zi≤yi

1≤i≤r

r

∏
i=1

µi(xi ,zi) = 0.

Now the left-hand side of this expression factorises as

r

∏
i=1

∑
xi≤zi≤yi

µi(xi ,zi),

and the inner sum is zero by definition of the Möbius functionµi .
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Example: the integers In the poset of integers, with the usual order, the Möbius
function is given by

µ(x,y) =

{
1 if y = x;
−1 if y = x+1;
0 otherwise.

Example: Finite subsets of a set In this case, the M̈obius function is

µ(X,Y) = (−1)|Y−|X| for X ⊆Y,

and of courseµ(X,Y) = 0 otherwise. For letX ⊆Y, and letY \X = {z1, . . . ,zn}. We
claim that the interval[X,Y] is isomorphic to{0,1}n, the direct product ofn copies of
{0,1} ⊆ Z. The isomorphism takes a setZ with X ≤ Z≤Y to then-tuple(e1, . . . ,en),
where

ei =
{

1 if zi ∈ Z,
0 otherwise.

Soµ(X,Y) is equal toµ((0, . . . ,0),(1, . . . ,1)) calculated in{0,1}n; by Proposition 5
this isµ(0,1)n, andµ(0,1) =−1 by the preceding example.

Example: Positive integers ordered by divisibility Suppose thatm dividesn. Let
n/m= pa1

1 pa2
2 · · · par

r , wherep1, . . . , pr are distinct primes anda1, . . . ,ar positive inte-
gers. Then the interval[m,n] is isomorphic to the direct product

[0,a1]×·· ·× [0,ar ]

of intervals[0,ai ] in Z. The correspondence is given by

(b1, . . . ,br)↔mpb1
1 · · · p

br
r .

By the first example, we see thatµ(m,n) = 0 if anyai > 1, that is, ifn/m is divisible by
the square of a prime. Ifn/m is the product ofsdistinct primes, thenµ(m,n) = (−1)s.
To summarise:

µ(m,n) =
{

(−1)s if n/m is the product ofs distinct primes;
0 if m doesn’t dividen or if n/m is not squarefree.

Example: Subspaces of a finite vector spaceBy the Second Isomorphism Theo-
rem, if U andW are subspaces ofV with U ⊆W, then the interval[U,W] is isomor-
phic to the poset of subspaces ofW/U , and in particular depends only on dim(W)−
dim(U). It suffices to calculateµ({0},V), whereV is ann-dimensional vector space
over GF(q).
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Now puttingx =−1 in theq-binomial theorem, we obtain

n−1

∑
k=0

(−1)kqk(k−1)/2
[
n
k

]
q

for n>0. This is exactly the inductive step in the proof thatµ({0},V) = (−1)nqn(n−1)/2

for n> 0. For there are
[n

k

]
q k-dimensional subspaces ofV, and the induction hypoth-

esis asserts thatµ({0},W) = (−1)kqk(k−1)/2 for each such subspace; then the identity
shows thatµ({0},V) must have the claimed value.

So, in general,µ(U,W) = (−1)nqn(n−1)/2 if U ⊆W and dim(W/U) = n; and of
course,µ(U,W) = 0 if U 6⊆W.

Classical Möbius inversion

All our examples in the preceding section have the special property that each interval
[x,y] is isomorphic to[e,z], wheree is a fixed element of the poset, andz depends
on x andy. Thus, for the integers,e = 0 andz = y− x; for subsets of a set,e = /0
andz= y\ x; for positive integers ordered by divisibility,e= 1 andz= y/x; and for
subspaces of a vector space,e= {0} andz= y/x (the quotient space).

Thus, in these cases, the Möbius function satisfiesµ(x,y) = µ(e,z), so it can be
written as a function of one variablez. Abusing notation, we use the same symbolµ.
In the four cases, we have:

• µ(0) = 1, µ(1) =−1, µ(z) = 0 for z≥ 2;

• µ(Z) = (−1)|Z|;

• µ(z) = (−1)s if z is the product ofs distinct primes,µ(z) = 0 if z is not square-
free;

• µ(Z) = (−1)kqk(k−1)/2, wherek = dim(Z).

The third of these is the “classical” M̈obius function, and plays an important role
in number theory. If you seeµ(z) without any further explanation, it probably means
the classical M̈obius function. In this case, M̈obius inversion can be stated as follows:

Proposition 6 Let f and g be functions on the positive integers. Then the following
are equivalent:

(a) g(n) = ∑
m|n

f (m);
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(b) f(n) = ∑
m|n

g(m)µ(n/m).

Here are two applications of this result.

Example: Euler’s function Euler’s φ-function (sometimes called thetotient func-
tion is the functionφ defined on the positive integers by the rule thatφ(n) is the number
of integersx with 1≤ x< n coprime ton.

If gcd(x,n) = d, then gcd(x/d,n/d) = 1. So the number ofx in this range with
gcd(x,n) = d is φ(n/d), and we have

∑
d|n

φ(n/d) = n,

or, puttingm= n/d,

∑
m|n

φ(m) = n.

Now Möbius inversion gives

φ(n) = ∑
m|n

mµ(n/m).

From this it is easy to deduce that, ifn = pa1
1 · · · par

r , wherepi are distinct primes and
ai > 0, then

φ(n) = pa1−1
1 (p1−1) · · · par−1

r (pr −1).

Now we can write down the cycle index of the cyclic groupCn of ordern, generated
by a cyclic permutationg of {1, . . . ,n}. For 0≤m≤ n−1, the elementgm has order
d = gcd(m,n), and hasn/d cycles of lengthd. Now the number of elements of ordern
is equal to the number of choices ofm with gcd(m,n) = 1, which isφ(n); and more
generally, the number of elements of orderd is φ(d), for eachd dividing n. So the
cycle index is

Z(Cn) =
1
n∑

d|n
φ(d)sn/d

d .

Example: Irreducible polynomials Let fq(n) be the number of monic irreducible
polynomials of degreen over GF(q). By a counting result from the section onq-
analogues, we have

∑
m|n

m fq(m) = qn.
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So, by Möbius inversion, we have a formula forfq(n):

fq(n) =
1
n ∑

m|n
qmµ(n/m).

For example, the number of irreducible polynomials of degree 6 over GF(2) is

1
6

(26−23−22 +21) = 9.

(Why is the word “monic” not needed here?)
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