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A cube has six faces, so if we paint each face red, white or blue, the total numbers
of ways that we can apply the colours is 36 = 729. However, if we can pick up the
cube and move it around, it is natural to count in a different way, where two coloured
cubes differing only by a rotation are counted as “the same”. There are 24 rotations of
the cube into itself, but the answer to our question is not obtained just by dividing 729
by 24. The purpose of this section is to develop tools for answering such questions.

Group actions

Let X be a set, andG a set of permutations ofX. We write the image ofx∈ X under
the permutationg asxg. We denote the identity permutation (leaving every element
of X where it is) by 1, and the inverse of a permutationg (the permutationh with
xg = y⇔ xh = x) by g−1. The composition of two permutationsg andh, denoted by
gh, is defined by the rule that

xgh = (xg)h

(in other words, apply firstg, thenh).
We say thatG is apermutation groupif the following conditions hold:

• G contains the identity permutation;

• G contains the inverse of each of its elements;

• G contains the composition of any two of its elements.

For example, the 24 rotational symmetries of a cube form a permutation group on
the set of points of the cube.

Until the middle of the nineteenth century, what we have just defined would have
simply been called agroup. Now the definition of a group is more abstract. We don’t
go into abstract group theory here, but note some terminology arising from this. If
G is an abstract group in the modern sense, anactionof G on the setX is a function
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associating a permutation ofX with each group element, in such a way that the iden-
tity, inverse, and composition of permutations correspond to the same concepts in the
abstract group.

In particular, ifG is a permutation group on a setX, then we can construct actions
of G on various auxiliary sets built fromX: for example, the set of ordered pairs of
elements ofX, the set of subsets ofX, the set of functions fromX to another set (or
from another set toX).

For example,G acts on the setX×X of ordered pairs of elements ofX by the rule

(x,y)g = (xg,yg)

for x,y∈ X, g∈ G; that is, the permutationg acts coordinate-wise on ordered pairs,
mapping(x,y) to (xg,yg).

Thus, the phrases “G is a permutation group onX” and “G acts onX” are al-
most synonymous; the difference is of less interest to a combinatorialist than to an
algebraist.

Suppose thatG acts onX. We define a relation∼ on X by the rule thatx∼ y if
y = xg for someg∈G.

Proposition 1 ∼ is an equivalence relation.

Proof We check the three conditions.

• x = x1, sox∼ x: ∼ is reflexive.

• Let x∼ y. Theny = xg, sox = yg−1
, soy∼ x: ∼ is symmetric.

• Let x∼ y andy∼ z. Thenx = xg andz = yh, for someg,h ∈ G. Thus,z =
(xg)h = xgh, sox∼ z: ∼ is transitive.

Note that the three conditions in the definition of a permutation group translate
precisely into the three conditions of an equivalence relation.

The equivalence classes of this relation are theorbitsof G onX.
In our coloured cube example, the group of 24 rotations of the cube acts on the set

of 729 colourings of the faces of the cube. Two colourings count “the same” if and
only if they are in the same orbit. So our task is to count orbits.
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The Orbit-Counting Lemma

For any permutationg of X, we let fix(g) denote the number offixed pointsof g
(elementsx∈ X such thatxg = x).

Theorem 2 (Orbit-Counting Lemma)Let G be a permutation group on the finite set
X. Then the number of orbits of G on X is given by the formula

1
|G| ∑g∈G

fix(g).

Proof We count in two different ways the numberN of pairs(x,g), with x∈X, g∈G,
andxg = x.

On the one hand, clearly
N = ∑

g∈G

fix(g).

On the other hand, we claim that if the pointx lies in an orbit{x = x1, . . . ,xn},
then the number of permutationsg∈G with xg = x is |G|/n. More generally, for anyi
with 1≤ i ≤ n, the number of permutationsg∈G with xg = xi is independent ofi (the
proof is an exercise), and so is|G|/n.

Hence the number of pairs(y,g) with yg = y for which y lies in a fixed orbit of
sizen is n · |G|/n = |G|. So each orbit contributes|G| to the sum, and soN = |G|k,
wherek is the number of orbits.

Equating the two values gives the result.

Using this, we can count our coloured cubes. WE have to examine the 24 rotations
and find the number of colourings fixed by each.

• The identity fixes all 36 = 729 colourings.

• There are three axes of rotation through the mid-points of opposite faces. A
rotation through a half-turn about such an axis fixes 34 = 81 colourings: we
can choose arbitrarily the colour for the top face, the bottom face, the east and
west faces, and the north and south faces (assuming that the axis is vertical). A
rotation about a quarter turn fixes 33 = 27 colourings, since all four faces except
top and bottom must have the same colour. There are three half-turns and six
quarter-turns.

• A half-turn about the axis joining the midpoints of opposite edges fixes 33 = 27
colourings. There are six such rotations.
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• A third-turn about the axis joining opposite vertices fixes 32 = 9 colourings.
There are eight such rotations.

By Theorem 2, the number of orbits is

1
24

(1·729+3·81+6·27+6·27+8·9) = 57,

so there are 57 different colourings up to rotation.

At this point, we can give a more combinatorial proof of the formula

x(x−1) · · ·(x−n+1) =
n

∑
k=1

s(n,k)xk

from chapter 2. We prove the equivalent form

x(x+1) · · ·(x+n−1) =
n

∑
k=1

|s(n,k)|xk

from which the required equation is obtained by substituting−x for x and multiplying
by (−1)n. Suppose first thatx is a positive integer. Consider the set of functions from
{1, . . . ,n} to a setX of cardinalityx. There arexn such functions. Now the symmetric
groupSn acts on these functions: the permutationg maps the functionf to f g, where

f g(i) = f (ig−1).

The orbits are simply the selections ofn things fromX, where repetitions are allowed
and order is not important. So the number of orbits is(

x+n−1
n

)
= x(x+1) · · ·(x+n−1)/n!

(see Exercise 2.1).
We can also count the orbits using the Orbit-Counting Lemma. Letg be a permu-

tation inSn havingk cycles. How many functions are fixed byg? Clearly a functionf
is fixed if and only if it is constant on each cycle ofg; its values on the cycles can be
chosen arbitrarily. So there arexk fixed functions. Since the number of permutations
with k cycles is|s(n,k)|, the Orbit-Counting Lemma shows that the number of orbits
is

1
n!

n

∑
k=1

|s(n,k)|xk.

Equating the two expressions and multiplying byn! gives the result.
Now the required equation holds for all positive integer values ofx, and so it is a

polynomial identity.
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Cycle index

It is possible to develop a method for solving the coloured cubes problem which
doesn’t require extensive recalculation when small changes are made (such as chang-
ing the number of colours).

Suppose that we have a setF of objects called “figures”, each of which (sayf ) has
a non-negative integer “weight”w( f ) associated with it. The number of figures may
be infinite, but we assume that there are only a finite number of any given weight: say
an figures of weightn. Thefigure-counting seriesis the (ordinary) generating function
for these numbers:

A(x) = ∑
n≥0

anxn.

We attach a figure to each point of a finite setX. (Equivalently, we take a function
φ from X to the setF of figures.) Theweightof the functionφ is just

w(φ) = ∑
x∈X

w(φ(x)).

Finally, we have a groupG of permutations ofX. ThenG acts on the set of func-
tions by the rule that

φg(x) = φ(xg−1).

Clearlyw(φg) = w(φ) for any functionφ.
We want to find the generating function for the number of functions of each pos-

sible weight, but counting two functions as “the same” if they lie in the same orbit
of G with the above action. In other words, we want to calculate thefunction-counting
series

B(x) = ∑
n≥0

bnxn,

wherebn is the number of orbits consisting of functions of weightn.
In the coloured cubes example, if we take three figures Red, White and Blue, each

of weight 0, the figure-counting series is simply 3, and the function-counting series is
57. We could, say, change the weight of Red to 1, so that the figure-counting series is
2+ x; then the function-counting series is the generating function for the numbers of
colourings with 0,1,2, . . . ,6 red faces (up to rotations).

The gadget that does this job is thecycle indexof G. Each elementg ∈ G can
be decomposed into disjoint cycles; letci(g) be the number of cycles of lengthi, for
i = 1, . . . ,n = |X|. Now put

z(g) = sc1(g)
1 sc2(g)

2 · · ·scn(g)
n ,
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wheres1, . . . ,sn are indeterminates. Then thecycle indexof G is defined to be

Z(G) =
1
|G| ∑g∈G

z(g).

For example, our analysis of the rotations of the cube shows that the cycle index
of this group (acting on faces) is

1
24

(s6
1 +3s2

1s2
2 +6s2

1s4 +6s3
2 +8s2

3).

We use the notation
Z(G;si ← fi for i = 1, . . . ,n)

for the result of substituting the expressionfi for the indeterminatesi for i = 1, . . . ,n.

Theorem 3 If G acts on X, and we attach figures to the points of X with figure-
counting series A(x), then the function-counting series is given by

B(x) = Z(G;si ← A(xi) for i = 1, . . . ,n).

For example, in the coloured cubes, let Red have weight 1 and the other colours
weight 0. ThenA(x) = 2+x, and the function-counting series is

B(x) =
1
24

((2+x)6 +3(2+x)2(2+x2)2 +6(2+x)2(2+x4)

+6(2+x2)3 +8(2+x3)2)
= 10+12x+16x2 +10x3 +6x4 +2x5 +x6.

Note that puttingx = 1 recovers the value 57.

Proof The first step is to note that, if we ignore the group action and simply count
all the functions, the function-counting series isB(x) = A(x)n, wheren = |X|. For the
term inxm in A(x)n is obtained by taking all expressionsm= m1 + · · ·+mn for mas a
sum ofn non-negative integers, multiplying the corresponding termsami

mi
in A(x), and

summing the result. The indicated product counts the number of choices of functions
of weightsm1, . . . ,mn to attach at the points 1, . . . ,n of X, so the result is indeed the
function-counting series.

Note that this proves the theorem in the case whereG is the trivial group.
Next, we have to count the functions of given weight fixed by a permutationg∈G.

As we have seen, a function is fixed byg if and only if it is constant on the cycles ofg.
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Now if we choose a function of weightr to attach to the points of a particulari-cycle
of g, the number of choices isar but the contribution to the weight isir . Arguing as
above, the generating function for the number of fixed functions is

A(x)c1(g)A(x2)c2(g) · · ·A(xn)cn(g) = z(g;si ← A(xi) for i = 1, . . . ,n).

Finally, by the Orbit-Counting Lemma, if we sum overg∈ G and divide by|G|,
we find that the function-counting series is

B(x) = Z(G;si ← A(xi) for i = 1, . . . ,n).
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