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A cube has six faces, so if we paint each face red, white or blue, the total numbers
of ways that we can apply the colours &3 729. However, if we can pick up the
cube and move it around, it is natural to count in a different way, where two coloured
cubes differing only by a rotation are counted as “the same”. There are 24 rotations of
the cube into itself, but the answer to our question is not obtained just by dividing 729
by 24. The purpose of this section is to develop tools for answering such questions.

Group actions

Let X be a set, ané a set of permutations of. We write the image ok € X under
the permutatioryg asx3. We denote the identity permutation (leaving every element
of X where it is) by 1, and the inverse of a permutat@g(the permutatiorh with
X8 =y < x" =x) by g~L. The composition of two permutatiogsandh, denoted by
gh, is defined by the rule that
Xgh _ (Xg>h

(in other words, apply firsg, thenh).
We say thats is apermutation groupf the following conditions hold:

e G contains the identity permutation;
e G contains the inverse of each of its elements;
¢ G contains the composition of any two of its elements.

For example, the 24 rotational symmetries of a cube form a permutation group on
the set of points of the cube.

Until the middle of the nineteenth century, what we have just defined would have
simply been called group. Now the definition of a group is more abstract. We don't
go into abstract group theory here, but note some terminology arising from this. If
G is an abstract group in the modern senseacetion of G on the seiX is a function



associating a permutation ¥f with each group element, in such a way that the iden-
tity, inverse, and composition of permutations correspond to the same concepts in the
abstract group.

In particular, ifG is a permutation group on a s€f then we can construct actions
of G on various auxiliary sets built from: for example, the set of ordered pairs of
elements olX, the set of subsets &, the set of functions fronX to another set (or
from another set tX).

For exampleG acts on the seX x X of ordered pairs of elements ®fby the rule

(xy)?=0,y9)

for x,y € X, g € G; that is, the permutatiog acts coordinate-wise on ordered pairs,
mapping(x,y) to (x9,y9).

Thus, the phrasesG'is a permutation group oX” and “G acts onX” are al-
most synonymous; the difference is of less interest to a combinatorialist than to an
algebraist.

Suppose thaG acts onX. We define a relatioa- on X by the rule thax ~ vy if
y = X9 for someg € G.

Proposition 1 ~ is an equivalence relation.

Proof We check the three conditions.
e x=x! sox~ x: ~ is reflexive.
o Letx~Yy. Theny=x9, sox=y9 ', soy ~ X: ~ is symmetric.

e Letx~yandy~z Thenx=x9 andz=y", for someg,h € G. Thus,z=
(x9)" = x3" sox ~ z ~ is transitive.

Note that the three conditions in the definition of a permutation group translate
precisely into the three conditions of an equivalence relation.

The equivalence classes of this relation aredtmts of G on X.

In our coloured cube example, the group of 24 rotations of the cube acts on the set
of 729 colourings of the faces of the cube. Two colourings count “the same” if and
only if they are in the same orbit. So our task is to count orbits.



The Orbit-Counting Lemma

For any permutatiorg of X, we let fix(g) denote the number dixed pointsof g
(elements € X such tha? = x).

Theorem 2 (Orbit-Counting Lemma)Let G be a permutation group on the finite set
X. Then the number of orbits of G on X is given by the formula

1 ,
Gl ge%flx(g).

Proof We count in two different ways the numbeiof pairs(x,g), withx € X, g € G,

andxd = x.
N=§ fix(g).
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On the one hand, clearly

On the other hand, we claim that if the pointies in an orbit{x = x1,...,Xn},
then the number of permutatiogs G with x8 = xis |G|/n. More generally, for any
with 1 <i < n, the number of permutatiomgse G with x¢ = X; is independent af (the
proof is an exercise), and so|S|/n.

Hence the number of paify,g) with y8 =y for whichy lies in a fixed orbit of
sizenis n-|G|/n = |G|. So each orbit contributd§| to the sum, and sbl = |G|k,
wherek is the number of orbits.

Equating the two values gives the result.

Using this, we can count our coloured cubes. WE have to examine the 24 rotations
and find the number of colourings fixed by each.

e The identity fixes all 8 = 729 colourings.

e There are three axes of rotation through the mid-points of opposite faces. A
rotation through a half-turn about such an axis fixés=331 colourings: we
can choose arbitrarily the colour for the top face, the bottom face, the east and
west faces, and the north and south faces (assuming that the axis is vertical). A
rotation about a quarter turn fixed:3 27 colourings, since all four faces except
top and bottom must have the same colour. There are three half-turns and six
quarter-turns.

e A half-turn about the axis joining the midpoints of opposite edges fixes 37
colourings. There are six such rotations.
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e A third-turn about the axis joining opposite vertices fix€s=39 colourings.
There are eight such rotations.

By Theorem 2, the number of orbits is
1
24(1 729+ 3-81+6-27+6-27+8-9) =57,
so there are 57 different colourings up to rotation.

At this point, we can give a more combinatorial proof of the formula
X(x=1)---(x—n+1)= ZSn k)X
from chapter 2. We prove the equivalent form
X(X+1)---(x+n—1) = z Is(n,k)|x

from which the required equation is obtained by substitutixgor x and multiplying

by (—1)". Suppose first thatis a positive integer. Consider the set of functions from
{1,...,n} to a seX of cardinalityx. There are" such functions. Now the symmetric
group$, acts on these functions: the permutatgpmaps the functiorf to 9, where

f9(i) = f(ig™1).

The orbits are simply the selectionsrothings fromX, where repetitions are allowed
and order is not important. So the number of orbits is

(x+n—1

N ) =X(X+1)---(x+n-=1)/n!

(see Exercise.2).

We can also count the orbits using the Orbit-Counting Lemmaglbet a permu-
tation inS, havingk cycles. How many functions are fixed by Clearly a functiorf
is fixed if and only if it is constant on each cycle gifits values on the cycles can be
chosen arbitrarily. So there ax&fixed functions. Since the number of permutations
with k cycles is|s(n, k)|, the Orbit-Counting Lemma shows that the number of orbits

is
n
Equating the two expressions and multiplyingridygives the result.

Now the required equation holds for all positive integer values aihd so it is a
polynomial identity.
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Cycle index

It is possible to develop a method for solving the coloured cubes problem which
doesn’t require extensive recalculation when small changes are made (such as chang-
ing the number of colours).

Suppose that we have a $ebf objects called “figures”, each of which (s&yhas
a non-negative integer “weight¥( f) associated with it. The number of figures may
be infinite, but we assume that there are only a finite number of any given weight: say
a, figures of weighn. Thefigure-counting seriess the (ordinary) generating function

for these numbers:
A(X) = XOanx”.
n>

We attach a figure to each point of a finite Xet(Equivalently, we take a function
¢ from X to the seF of figures.) Thewveightof the functiongis just

w(p) = %W(q)(x))-

Finally, we have a grouf of permutations oX. ThenG acts on the set of func-
tions by the rule that
FX) = g(xg ).

Clearlyw(¢?) = w(g) for any functiong.

We want to find the generating function for the number of functions of each pos-
sible weight, but counting two functions as “the same” if they lie in the same orbit
of G with the above action. In other words, we want to calculatduhetion-counting

series
B(x) = XObnx”,
n>

whereb,, is the number of orbits consisting of functions of weight

In the coloured cubes example, if we take three figures Red, White and Blue, each
of weight 0, the figure-counting series is simply 3, and the function-counting series is
57. We could, say, change the weight of Red to 1, so that the figure-counting series is
2+ Xx; then the function-counting series is the generating function for the numbers of
colourings with 01,2, ..., 6 red faces (up to rotations).

The gadget that does this job is thgcle indexof G. Each elemeng € G can
be decomposed into disjoint cycles; tetg) be the number of cycles of lengthfor
i=1,...,n=|X|. Now put



wheresy, ..., S, are indeterminates. Then thgcle indexof G is defined to be

2(G) = ggyg)-

For example, our analysis of the rotations of the cube shows that the cycle index
of this group (acting on faces) is

2—14(5? + 35253 + 65254 + 63 + 8S3).

We use the notation
Z(G;s « fifori=1,...,n)

for the result of substituting the expressirior the indeterminatsg fori=1,...,n.

Theorem 3 If G acts on X, and we attach figures to the points of X with figure-
counting series &), then the function-counting series is given by

B(x) =Z(G;s < A(X) fori=1,...,n).

For example, in the coloured cubes, let Red have weight 1 and the other colours
weight 0. TherA(x) = 2+ x, and the function-counting series is

BOO = —((24%)5+32+ X224 x2)2+6(2+X)2(2+4)

24
+6(2+x%)3+8(2+x%)?)
= 10+ 12X+ 16x2 + 103+ 6x* + 2x° + x5,

Note that putting« = 1 recovers the value 57.

Proof The first step is to note that, if we ignore the group action and simply count
all the functions, the function-counting serie8ix) = A(x)", wheren = |X|. For the
term inx™in A(x)" is obtained by taking all expressioms=my +--- +m, for mas a
sum ofn non-negative integers, multiplying the corresponding teaffisn A(x), and
summing the result. The indicated product counts the number of choices of functions
of weightsmy, ..., m, to attach at the points, 1.,n of X, so the result is indeed the
function-counting series.

Note that this proves the theorem in the case wii®the trivial group.

Next, we have to count the functions of given weight fixed by a permutgtio(.
As we have seen, a function is fixed §¥yf and only if it is constant on the cycles gf
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Now if we choose a function of weigintto attach to the points of a particuliacycle
of g, the number of choices & but the contribution to the weight is. Arguing as
above, the generating function for the number of fixed functions is

AX) DA %29 .. AXMDO) = 7(g;5 — AX) fori =1,....n).

Finally, by the Orbit-Counting Lemma, if we sum owgk G and divide by|G|,
we find that the function-counting series is

B(X) = Z(G;s5 «— A(X) fori=1,...,n).



