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Notes 4 Spring 2003

Much of the enumerative combinatorics of sets and functions can be generalised
in a manner which, at first sight, seems a bit unmotivated. In this chapter, we develop
a small amount of this large body of theory.

Motivation

We can look atq-analogues in several ways:

• The q-analogues are, typically, formulae which tend to the classical ones as
q→ 1. Most basic is the fact that

lim
q→1

qa−1
q−1

= a

for any real numbera (this is immediate from l’Ĥopital’s rule).

• There is a formal similarity between statements about subsets of a set and sub-
spaces of a vector space, with cardinality replaced by dimension. For example,
the inclusion-exclusion rule

|U ∪V|+ |U ∩V|= |U |+ |V|

for sets becomes

dim(U +V)+dim(U ∩V) = dim(U)+dim(V)

for vector spaces. Now, if the underlying field hasq elements, then the number
of 1-dimensional subspaces of ann-dimensional vector space is(qn−1)/(q−
1), which is exactly theq-analogue ofn.
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• The analogy can be interpreted at a much higher level, in the language ofbraided
categories. I will not pursue this here. You can read more in various papers of
Shahn Majid, for example Braided Groups,J. Pure Appl. Algebra86 (1993),
187–221; Free braided differential calculus, braided binomial theorem and the
braided exponential map,J. Math. Phys.34 (1993), 4843–4856.

In connection with the second interpretation, note the theorem of Galois:

Theorem 1 The cardinality of any finite field is a prime power. Moreover, for any
prime power q, there is a unique field with q elements, up to isomorphism.

To commemorate Galois, finite fields are calledGalois fields, and the field withq
elements is denoted by GF(q).

Definition TheGaussian coefficient, or q-binomial coefficient,

[
n
k

]
q
, wheren andk

are natural numbers andq a real number different from 1, is defined by[
n
k

]
q

=
(qn−1)(qn−1−1) · · ·(qn−k+1−1)

(qk−1)(qk−1−1) · · ·(q−1)
.

Proposition 2 (a) lim
q→1

[
n
k

]
q

=
(

n
k

)
.

(b) If q is a prime power, then the number of k-dimensional subspaces of an n-

dimensional vector space overGF(q) is equal to

[
n
k

]
q
.

Proof The first assertion is almost immediate from limq→1(qn−1)/(q−1) = n.
For the second, note that the number of choices ofk linearly independent vectors

in GF(q)n is
(qn−1)(qn−q) · · ·(qn−qk−1),

since theith vector must be chosen outside the span of its predecessors. Any such
choice is the basis of a uniquek-dimensional subspace. Puttingn = k, we see that the
number of bases of ak-dimensional space is

(qk−1)(qk−q) · · ·(qk−qk−1).

Dividing and cancelling powers ofq gives the result.
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The q-binomial theorem

Theq-binomial coefficients satisfy an analogue of the recurrence relation for binomial
coefficients.

Proposition 3
[
n
0

]
q

=
[
n
n

]
q

= 1,

[
n
k

]
q

=
[
n−1
k−1

]
q
+qk

[
n−1

k

]
q

for 0< k< n.

Proof This comes straight from the definition. Suppose that 0< k< n. Then[
n
k

]
q
−
[
n−1
k−1

]
q

=
(

qn−1
qk−1

−1

)[
n−1
k−1

]
q

= qk
(

qn−k−1
qk−1

)[
n−1
k−1

]
q

= qk
[

n
k−1

]
q
.

The array of Gaussian coefficients has the same symmetry as that of binomial
coefficients. From this we can deduce another recurrence relation.

Proposition 4 (a) For 0≤ k≤ n, [
n
k

]
q

=
[

n
n−k

]
q
.

(b) For 0< k< n, [
n
k

]
q

= qn−k
[
n−1
k−1

]
q
+
[
n−1

k

]
q
.

Proof (a) is immediate from the definition. For (b),[
n
k

]
q

=
[

n
n−k

]
q

=
[

n−1
n−k−1

]
q
+qn−k

[
n−1
n−k

]
q

=
[
n−1

k

]
q
+qn−k

[
n−1
k−1

]
q
.

We come now to theq-analogue of the binomial theorem, which states the follow-
ing.

3



Theorem 5 For a positive integer n, a real number q6= 1, and an indeterminate z, we
have

n

∏
i=1

(1+qi−1z) =
n

∑
k=0

qk(k−1)/2zk
[
n
k

]
q
.

Proof The proof is by induction onn; starting the induction atn = 1 is trivial. Sup-
pose that the result is true forn−1. For the inductive step, we must compute(

n−1

∑
k=0

qk(k−1)/2zk
[
n−1

k

]
q

)(
1+qn−1z

)
.

The coefficient ofzk in this expression is

qk(k−1)/2
[
n−1

k

]
q
+q(k−1)(k−2)/2+n−1

[
n−1
k−1

]
q

= qk(k−1)/2

([
n−1

k

]
q
+qn−k

[
n−1
k−1

]
q

)

= qk(k−1)/2
[
n
k

]
q

by Proposition 4(b).

Elementary symmetric functions

In this section we touch briefly on the theory of elementary symmetric functions.
Let x1, . . . ,xn be n indeterminates. For 1≤ k≤ n, thekth elementary symmetric

function ek(x1, . . . ,xn) is the sum of all monomials which can be formed by multiply-
ing togetherk distinctindeterminates. Thus,ek has

(n
k

)
terms, and

ek(1,1, . . . ,1) =
(

n
k

)
.

For example, ifn = 3, the elementary symmetric functions are

e1 = x1 +x2 +x3, e2 = x1x2 +x2x3 +x3x1, e3 = x1x2x3.

We adopt the convention thate0 = 1.
Newton observed that the coefficients of a polynomial of degreen are the elemen-

tary symmetric functions of its roots, with appropriate signs:
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Proposition 6
n

∏
i=1

(z−xi) =
n

∑
k=0

(−1)kek(x1, . . . ,xn)zn−k.

Consider the generating function for theek:

E(z) =
n

∑
k=0

ek(x1, . . . ,xn)zk.

A slight rewriting of Newton’s Theorem shows that

E(z) =
n

∏
i=1

(1+xiz).

Hence the binomial theorem and itsq-analogue give the following specialisations:

Proposition 7 (a) If x1 = . . .= xn = 1, then

E(z) = (1+z)n =
n

∑
k=0

(
n
k

)
zk,

so

ek(1,1, . . . ,1) =
(

n
k

)
.

(b) If xi = qi−1 for i = 1, . . . ,n, then

E(z) =
n

∏
i=1

(1+qi−1z) =
n

∑
k=0

qk(k−1)/2zk
[
n
k

]
q
,

so

ek(1,q, . . . ,qn−1) = qk(k−1)/2
[
n
k

]
q
.

Partitions and permutations

The number of permutations of ann-set isn!. The linear analogue of this is the number
of linear isomorphisms from ann-dimensional vector space to itself; this is equal to
the number of choices of basis for then-dimensional space, which is

(qn−1)(qn−q) · · ·(qn−qn−1).

These linear maps form a group, thegeneral linear groupGL(n,q).
Using theq-binomial theorem, we can transform this multiplicative formula into

an additive formula:
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Proposition 8

|GL(n,q)|= (−1)nqn(n−1)/2
n

∑
i=0

(−1)kqk(k+1)/2
[
n
k

]
q
.

Proof We have

|GL(n,q)|= (−1)nqn(n−1)/2
n

∏
i=1

(1−qi),

and the right-hand side is obtained by substitutingz=−q in theq-binomial theorem.

The total number ofn×n matrices isqn2
, so the probability that a random matrix

is invertible is

pn(q) =
n

∏
i=1

(1−q−i).

As n→ ∞, we have
pn(q)→ p(q) = ∏

i≥1
(1−q−i).

According to Euler’s Pentagonal Numbers Theorem, we have

p(q) = ∑
k∈Z

(−1)kq−k(3k−1)/2 = 1−q−1−q−2 +q−5 +q−7−q−12−·· ·

So, for example,p(2) = 0.2887. . . is the limiting probability that a large random
matrix over GF(2) is invertible.

What is theq-analogue of the Stirling numberS(n,k), the number of partitions of
ann-set intok parts? This is a philosophical, not a mathematical question; I argue that
theq-analogue is the Gaussian coefficient

[n
k

]
q.

The number of surjective maps from ann-set to ak-set isk!S(n,k), since the preim-
ages of the points in thek-set form a partition of then-set whosek parts can be mapped
to thek-set in any order. Theq-analogue is the number of surjective linear maps from
ann-spaceV to ak-spaceW. Such a map is determined by its kernelU , an(n− k)-
dimensional subspace ofV, and a linear isomorphism fromV/U toW. So the analogue
of S(n,k) is the number of choices ofU , which is[

n
n−k

]
q

=
[
n
k

]
q
.
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Irreducible polynomials

Though it is not really aq-analogue of a classical result, the following theorem comes
up in various places. Recall that a polynomial of degreen is monic if the coefficient
of xn is equal to 1.

Theorem 9 The number fq(n) of monic irreducible polynomials of degree n overGF(q)
satisfies

∑
k|n

k fq(k) = qn.

Proof We give two proofs, one depending on some algebra, and the other a rather
nice exercise in manipulating formal power series.

First proof: We use the fact that the roots of an irreducible polynomial of de-
greek over GF(q) lie in the unique field GF(qk) of degreek over GF(q). Moreover,
GF(qk) ⊆ GF(qn) if and only if k | n; and every element of GF(qn) generates some
subfield over GF(q), which has the form GF(qk) for somek dividing n.

Now each of theqn elements of GF(qn satisfies a unique minimal polynomial. of
degreek for somek; and every irreducible polynomial arises in this way, and hask
distinct roots. So the result holds.

Second proof: All the algebra we use in this proof is that each monic polynomial
of degreen can be factorised uniquely into monic irreducible factors. If the number of
monic irreducibles of degreek is mk, then we obtain all monic polynomials of degreen
by the following procedure:

• Expressn = ∑akk, whereak are non-negative integers;

• Chooseak monic irreducibles of degreek from the set of allmk such, with
repetitions allowed and order not important;

• Multiply the chosen polynomials together.

Altogether there areqn monic polynomialsxn+c1xn−1+ · · ·+cn of degreen, since
there areq choices for each of then coefficients. Hence

qn = ∑∏
k

(
mk +ak−1

ak

)
, (1)

where the sum is over all sequencesa1,a2, . . . of natural numbers which satisfy∑kak =
n.
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Multiplying by xn and summing overn, we get

1
1−qx

= ∑
n≥0

qnxn

= ∑
a1,a2,...

∏
k≥1

(
mk +ak−1

ak

)
xkak

= ∏
k≥1

∑
a≥0

(
mk +a−1

a

)
(xk)a

= ∏
k≥1

(1−xk)−mk.

Here the manipulations are similar to those for the sum of cycle indices in Chapter 2;
we use the fact that the number of choices ofa things from a set ofm, with repeti-
tion allowed and order unimportant, is

(m+a−1
a

)
, and in the fourth line we invoke the

Binomial Theorem with negative exponent.
Taking logarithms of both sides, we obtain

∑
n≥1

qnxn

n
= − log(1−qx)

= ∑
k≥1

−mk log(1−xk)

= ∑
k≥1

mk ∑
r≥1

xkr

r
.

The coefficient ofxn in the last expression is the sum, over all divisorsk of n, of
mk/r = kmk/n. This must be equal to the coefficient on the left, which isqn/n. We
conclude that

qn = ∑
k|n

kmk, (2)

as required.

Note how the very complicated recurrence relation (1) for the numbersmk changes
into the much simpler recurrence relation (2) after taking logarithms!

We will see how to solve such a recurrence in the section on Möbius inversion.
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