University of London

C50 Enumerative \& Asymptotic Combinatorics

Notes 4

Much of the enumerative combinatorics of sets and functions can be generalised in a manner which, at first sight, seems a bit unmotivated. In this chapter, we develop a small amount of this large body of theory.

Motivation

We can look at q-analogues in several ways:

- The q-analogues are, typically, formulae which tend to the classical ones as $q \rightarrow 1$. Most basic is the fact that

$$
\lim _{q \rightarrow 1} \frac{q^{a}-1}{q-1}=a
$$

for any real number a (this is immediate from l'Hôpital's rule).

- There is a formal similarity between statements about subsets of a set and subspaces of a vector space, with cardinality replaced by dimension. For example, the inclusion-exclusion rule

$$
|U \cup V|+|U \cap V|=|U|+|V|
$$

for sets becomes

$$
\operatorname{dim}(U+V)+\operatorname{dim}(U \cap V)=\operatorname{dim}(U)+\operatorname{dim}(V)
$$

for vector spaces. Now, if the underlying field has q elements, then the number of 1 -dimensional subspaces of an n-dimensional vector space is $\left(q^{n}-1\right) /(q-$ 1), which is exactly the q-analogue of n.

- The analogy can be interpreted at a much higher level, in the language of braided categories. I will not pursue this here. You can read more in various papers of Shahn Majid, for example Braided Groups, J. Pure Appl. Algebra 86 (1993), 187-221; Free braided differential calculus, braided binomial theorem and the braided exponential map, J. Math. Phys. 34 (1993), 4843-4856.

In connection with the second interpretation, note the theorem of Galois:
Theorem 1 The cardinality of any finite field is a prime power. Moreover, for any prime power q, there is a unique field with q elements, up to isomorphism.

To commemorate Galois, finite fields are called Galois fields, and the field with q elements is denoted by $\operatorname{GF}(q)$.

Definition The Gaussian coefficient, or q-binomial coefficient, $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$, where n and k are natural numbers and q a real number different from 1 , is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)} .
$$

Proposition 2 (a) $\lim _{q \rightarrow 1}\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\binom{n}{k}$.
(b) If q is a prime power, then the number of k-dimensional subspaces of an n dimensional vector space over $\operatorname{GF}(q)$ is equal to $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$.

Proof The first assertion is almost immediate from $\lim _{q \rightarrow 1}\left(q^{n}-1\right) /(q-1)=n$.
For the second, note that the number of choices of k linearly independent vectors in $\mathrm{GF}(q)^{n}$ is

$$
\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right),
$$

since the i th vector must be chosen outside the span of its predecessors. Any such choice is the basis of a unique k-dimensional subspace. Putting $n=k$, we see that the number of bases of a k-dimensional space is

$$
\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right) .
$$

Dividing and cancelling powers of q gives the result.

The q-binomial theorem

The q-binomial coefficients satisfy an analogue of the recurrence relation for binomial coefficients.

Proposition $3\left[\begin{array}{l}n \\ 0\end{array}\right]_{q}=\left[\begin{array}{l}n \\ n\end{array}\right]_{q}=1, \quad\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]_{q}+q^{k}\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{q}$ for $0<k<n$.
Proof This comes straight from the definition. Suppose that $0<k<n$. Then

$$
\begin{aligned}
{\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}-\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} } & =\left(\frac{q^{n}-1}{q^{k}-1}-1\right)\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} \\
& =q^{k}\left(\frac{q^{n-k}-1}{q^{k}-1}\right)\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} \\
& =q^{k}\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{q} .
\end{aligned}
$$

The array of Gaussian coefficients has the same symmetry as that of binomial coefficients. From this we can deduce another recurrence relation.

Proposition 4 (a) For $0 \leq k \leq n$,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{q}
$$

(b) For $0<k<n$,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=q^{n-k}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}+\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q} .
$$

Proof (a) is immediate from the definition. For (b),

$$
\begin{aligned}
{\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} } & =\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{q} \\
& =\left[\begin{array}{c}
n-1 \\
n-k-1
\end{array}\right]_{q}+q^{n-k}\left[\begin{array}{l}
n-1 \\
n-k
\end{array}\right]_{q} \\
& =\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+q^{n-k}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} .
\end{aligned}
$$

We come now to the q-analogue of the binomial theorem, which states the following.

Theorem 5 For a positive integer n, a real number $q \neq 1$, and an indeterminate z, we have

$$
\prod_{i=1}^{n}\left(1+q^{i-1} z\right)=\sum_{k=0}^{n} q^{k(k-1) / 2} z^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}
$$

Proof The proof is by induction on n; starting the induction at $n=1$ is trivial. Suppose that the result is true for $n-1$. For the inductive step, we must compute

$$
\left(\sum_{k=0}^{n-1} q^{k(k-1) / 2} z^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}\right)\left(1+q^{n-1} z\right) .
$$

The coefficient of z^{k} in this expression is

$$
\begin{aligned}
& q^{k(k-1) / 2}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+q^{(k-1)(k-2) / 2+n-1}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} \\
= & q^{k(k-1) / 2}\left(\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+q^{n-k}\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right]_{q}\right) \\
= & q^{k(k-1) / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}
\end{aligned}
$$

by Proposition 4(b).

Elementary symmetric functions

In this section we touch briefly on the theory of elementary symmetric functions.
Let x_{1}, \ldots, x_{n} be n indeterminates. For $1 \leq k \leq n$, the k th elementary symmetric function $e_{k}\left(x_{1}, \ldots, x_{n}\right)$ is the sum of all monomials which can be formed by multiplying together k distinct indeterminates. Thus, e_{k} has $\binom{n}{k}$ terms, and

$$
e_{k}(1,1, \ldots, 1)=\binom{n}{k}
$$

For example, if $n=3$, the elementary symmetric functions are

$$
e_{1}=x_{1}+x_{2}+x_{3}, \quad e_{2}=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}, \quad e_{3}=x_{1} x_{2} x_{3} .
$$

We adopt the convention that $e_{0}=1$.
Newton observed that the coefficients of a polynomial of degree n are the elementary symmetric functions of its roots, with appropriate signs:

Proposition $6 \prod_{i=1}^{n}\left(z-x_{i}\right)=\sum_{k=0}^{n}(-1)^{k} e_{k}\left(x_{1}, \ldots, x_{n}\right) z^{n-k}$.
Consider the generating function for the e_{k} :

$$
E(z)=\sum_{k=0}^{n} e_{k}\left(x_{1}, \ldots, x_{n}\right) z^{k} .
$$

A slight rewriting of Newton's Theorem shows that

$$
E(z)=\prod_{i=1}^{n}\left(1+x_{i} z\right)
$$

Hence the binomial theorem and its q-analogue give the following specialisations:
Proposition 7 (a) If $x_{1}=\ldots=x_{n}=1$, then

$$
E(z)=(1+z)^{n}=\sum_{k=0}^{n}\binom{n}{k} z^{k}
$$

so

$$
e_{k}(1,1, \ldots, 1)=\binom{n}{k} .
$$

(b) If $x_{i}=q^{i-1}$ for $i=1, \ldots, n$, then

$$
E(z)=\prod_{i=1}^{n}\left(1+q^{i-1} z\right)=\sum_{k=0}^{n} q^{k(k-1) / 2} z^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q},
$$

so

$$
e_{k}\left(1, q, \ldots, q^{n-1}\right)=q^{k(k-1) / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Partitions and permutations

The number of permutations of an n-set is $n!$. The linear analogue of this is the number of linear isomorphisms from an n-dimensional vector space to itself; this is equal to the number of choices of basis for the n-dimensional space, which is

$$
\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-1}\right) .
$$

These linear maps form a group, the general linear group $\operatorname{GL}(n, q)$.
Using the q-binomial theorem, we can transform this multiplicative formula into an additive formula:

Proposition 8

$$
|\mathrm{GL}(n, q)|=(-1)^{n} q^{n(n-1) / 2} \sum_{i=0}^{n}(-1)^{k} q^{k(k+1) / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Proof We have

$$
|\mathrm{GL}(n, q)|=(-1)^{n} q^{n(n-1) / 2} \prod_{i=1}^{n}\left(1-q^{i}\right)
$$

and the right-hand side is obtained by substituting $z=-q$ in the q-binomial theorem.
The total number of $n \times n$ matrices is $q^{n^{2}}$, so the probability that a random matrix is invertible is

$$
p_{n}(q)=\prod_{i=1}^{n}\left(1-q^{-i}\right) .
$$

As $n \rightarrow \infty$, we have

$$
p_{n}(q) \rightarrow p(q)=\prod_{i \geq 1}\left(1-q^{-i}\right) .
$$

According to Euler's Pentagonal Numbers Theorem, we have

$$
p(q)=\sum_{k \in \mathbb{Z}}(-1)^{k} q^{-k(3 k-1) / 2}=1-q^{-1}-q^{-2}+q^{-5}+q^{-7}-q^{-12}-\cdots
$$

So, for example, $p(2)=0.2887 \ldots$ is the limiting probability that a large random matrix over $\mathrm{GF}(2)$ is invertible.

What is the q-analogue of the Stirling number $S(n, k)$, the number of partitions of an n-set into k parts? This is a philosophical, not a mathematical question; I argue that the q-analogue is the Gaussian coefficient $\left[\begin{array}{c}n \\ k\end{array}\right]$.

The number of surjective maps from an n-set to a k-set is $k!S(n, k)$, since the preimages of the points in the k-set form a partition of the n-set whose k parts can be mapped to the k-set in any order. The q-analogue is the number of surjective linear maps from an n-space V to a k-space W. Such a map is determined by its kernel U, an $(n-k)$ dimensional subspace of V, and a linear isomorphism from V / U to W. So the analogue of $S(n, k)$ is the number of choices of U, which is

$$
\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{q}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Irreducible polynomials

Though it is not really a q-analogue of a classical result, the following theorem comes up in various places. Recall that a polynomial of degree n is monic if the coefficient of x^{n} is equal to 1 .

Theorem 9 The number $f_{q}(n)$ of monic irreducible polynomials of degree n over $\mathrm{GF}(q)$ satisfies

$$
\sum_{k \mid n} k f_{q}(k)=q^{n} .
$$

Proof We give two proofs, one depending on some algebra, and the other a rather nice exercise in manipulating formal power series.

First proof: We use the fact that the roots of an irreducible polynomial of degree k over $\mathrm{GF}(q)$ lie in the unique field $\mathrm{GF}\left(q^{k}\right)$ of degree k over $\operatorname{GF}(q)$. Moreover, $\mathrm{GF}\left(q^{k}\right) \subseteq \mathrm{GF}\left(q^{n}\right)$ if and only if $k \mid n$; and every element of $\mathrm{GF}\left(q^{n}\right)$ generates some subfield over $\mathrm{GF}(q)$, which has the form $\mathrm{GF}\left(q^{k}\right)$ for some k dividing n.

Now each of the q^{n} elements of $\operatorname{GF}\left(q^{n}\right.$ satisfies a unique minimal polynomial. of degree k for some k; and every irreducible polynomial arises in this way, and has k distinct roots. So the result holds.

Second proof: All the algebra we use in this proof is that each monic polynomial of degree n can be factorised uniquely into monic irreducible factors. If the number of monic irreducibles of degree k is m_{k}, then we obtain all monic polynomials of degree n by the following procedure:

- Express $n=\sum a_{k} k$, where a_{k} are non-negative integers;
- Choose a_{k} monic irreducibles of degree k from the set of all m_{k} such, with repetitions allowed and order not important;
- Multiply the chosen polynomials together.

Altogether there are q^{n} monic polynomials $x^{n}+c_{1} x^{n-1}+\cdots+c_{n}$ of degree n, since there are q choices for each of the n coefficients. Hence

$$
\begin{equation*}
q^{n}=\sum \prod_{k}\binom{m_{k}+a_{k}-1}{a_{k}} \tag{1}
\end{equation*}
$$

where the sum is over all sequences a_{1}, a_{2}, \ldots of natural numbers which satisfy $\sum k a_{k}=$ n.

Multiplying by x^{n} and summing over n, we get

$$
\begin{aligned}
\frac{1}{1-q x} & =\sum_{n \geq 0} q^{n} x^{n} \\
& =\sum_{a_{1}, a_{2}, \ldots} \prod_{k \geq 1}\binom{m_{k}+a_{k}-1}{a_{k}} x^{k a_{k}} \\
& =\prod_{k \geq 1} \sum_{a \geq 0}\binom{m_{k}+a-1}{a}\left(x^{k}\right)^{a} \\
& =\prod_{k \geq 1}\left(1-x^{k}\right)^{-m_{k}}
\end{aligned}
$$

Here the manipulations are similar to those for the sum of cycle indices in Chapter 2; we use the fact that the number of choices of a things from a set of m, with repetition allowed and order unimportant, is $\binom{m+a-1}{a}$, and in the fourth line we invoke the Binomial Theorem with negative exponent.

Taking logarithms of both sides, we obtain

$$
\begin{aligned}
\sum_{n \geq 1} \frac{q^{n} x^{n}}{n} & =-\log (1-q x) \\
& =\sum_{k \geq 1}-m_{k} \log \left(1-x^{k}\right) \\
& =\sum_{k \geq 1} m_{k} \sum_{r \geq 1} \frac{x^{k r}}{r}
\end{aligned}
$$

The coefficient of x^{n} in the last expression is the sum, over all divisors k of n, of $m_{k} / r=k m_{k} / n$. This must be equal to the coefficient on the left, which is q^{n} / n. We conclude that

$$
\begin{equation*}
q^{n}=\sum_{k \mid n} k m_{k}, \tag{2}
\end{equation*}
$$

as required.
Note how the very complicated recurrence relation (1) for the numbers m_{k} changes into the much simpler recurrence relation (2) after taking logarithms!

We will see how to solve such a recurrence in the section on Möbius inversion.

