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Notes 3 Spring 2003

A recurrence relation expresses thenth term of a sequence as a function of the
preceding terms. The most general form of a recurrence relation takes the form

xn = Fn(x0, . . . ,xn−1) for n≥ 0.

Clearly such a recurrence has a unique solution. (Note that this allows the possibility
of prescribing some initial values, by choosing the first few functions to be constant.)

In general there is no hope of “solving” such a relation. There is a small class of
relations whith can be solved systematically, and a larger class which can be solved
by trickery.

Example: Ordered number partitions In how manny ways is it possible to write
the positive integern as a sum of positive integers, where the order of the summands
is significant?

Let xn be this number. One possible expression has a single summandn. In any
other expression, ifn− i is the first summand, then it is followed by an expression for
i as an ordered sum, of which there arexi possibilities. Thus

xn = 1+x1 +x2 + · · ·+xn−1,

for n≥ 1. (Whenn = 1, this reduces tox1 = 1.)
Since

xn−1 = 1+x1 +x2 + · · ·+xn−2,

the recurrence reduces to the much simpler form

xn = 2xn−1 for n> 1,

with initial conditionx1 = 1. This obviously has the solutionxn = 2n−1 for n≥ 1.
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Linear recurrences with constant coefficients

Bounded recurrences

One type of linear recurrence which can be solved completely is of the form

xn = a1xn−1 +a2xn−2 + · · ·+akxn−k (1)

for n≥ k, where thek valuesx0,x1, . . . ,xk−1 are prescribed.
If we consider the recurrence (1) without the initial values, we see that sums and

scalar multiples of solutions are solutions. So, taking sequences over a field such as
the rational numbers, we see that the set of solutions is a vector space over the field.
Its dimension isk, since thek initial values can be prescribed abitrarily.

Thus, if we can write downk linearly independent solutions, the general solution
is a linear combination of them.

Thecharacteristic equationof the recurrence (1) is the equation

xk−a1xk−1−·· ·−ak = 0.

This polynomial hask roots, some of which may be repeated. Suppose that its distinct
roots areα1, . . . ,αr with multiplicities m1, . . . ,mr , wherem1 + · · ·+ mr = k. Then a
short calculation shows that thek functions

xn = αn
1, . . . ,n

m1−1αn
1, . . . ,α

n
r , . . . ,n

mr−1αn
r

are solutions of (1); they are clearly linearly independent. So the general solution is a
linear combination of them.

Example: Fibonacci numbers Consider the Fibonacci recurrence

Fn = Fn−1 +Fn−2 for n≥ 2.

The characteristic equation is
x2−x−1 = 0

with rootsα,β = (1±
√

5)/2. So the general solution is

Fn = Aαn +Bβn,

andA andB can be determined from the initial conditions.
For the usual Fibonacci numbers, we haveF0 = F1 = 1, giving the two equations

A+B = 1,

Aα +Bβ = 1.

Solving these equations gives the solution we found earlier.
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Example: Sequences with forbidden subwords Let a be a binary sequence of
lengthk. How many binary sequences of lengthn do not containa as a consecutive
subword?

Suppose, for example, thata = 11, so that we are counting sequences with no two
consecutive ones. Letf (n) denote the number of such sequences of lengthn, andg(n)
the number of these commencing with 1. Then

f (n) = 2 f (n−1)−g(n−1),
g(n) = f (n−1)−g(n−1),

since a sequence commencing with 0 can be preceded with either 0 or 1, while a
sequence commencing with 1 can only be preceded with 0. A little manipulation
gives

f (n) = f (n−1)+ f (n−2),

the Fibonacci recurrence relation. Sincef (1) = 2 = F2 and f (2) = 3 = F3, we con-
clude thatf (n) = Fn+1, the(n+1)st Fibonacci number.

Guibas and Odlyzko extended this approach to arbitrary forbidden substrings.
They defined thecorrelation polynomialof a binary stringa of lengthk to be

Ca(x) =
k−1

∑
j=0

ca( j)x j ,

whereca(0) = 1 and, for 1≤ j ≤ k−1,

ca( j) =
{

1 if a1a2 · · ·ak− j = a j+1a j+2 · · ·ak,
0 otherwise.

Thus, fora = 11, we haveCa(x) = 1+x.

Theorem 1 Let fa(n) be the number of binary strings of length n excluding the sub-
string a of length k. Then the generating function Fa(x) = ∑n≥0 fa(n)xn is given by

Fa(x) =
Ca(x)

xk +(1−2x)Ca(x)
,

where Ca(x) is the correlation polynomial of a.

Proof We definega(n) to be the number of binary sequences of lengthn which com-
mence witha but have no other occurrence ofa as a consecutive subsequence, and
Ga(x) = ∑n≥0ga(n)xn the generating function of this sequence of numbers.
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Letbbe a sequence counted byfa(n). Then forx∈{0,1}, the sequencexbcontains
a at most once at the beginning. So

2 fa(n) = fa(n+1)+ga(n+1).

Multiplying by xn and summing overn≥ 0 gives

2Fa(x) = x−1(Fa(x)−1+Ga(x)). (2)

Now letc be the concatenationab. Thenc starts witha, and may contain other oc-
currences ofa, but only at positions overlapping the initiala, that is, whereak− j+1 · · ·akb1 · · ·b j =
a1 · · ·ak. This can only occur whenca(k− j) = 1, and the sequenceak− j+1 · · ·akb then
has lengthn+ j and has a unique occurrence ofa at the beginning. So

fa(n) = ∑ga(n+ j),

where the sum is over allj with 1 ≤ j ≤ k for which ca(k− j) = 1. This can be
rewritten

fa(n) =
k

∑
j=1

ca(k− j)ga(n+ j),

or in terms of generating functions,

Fa(x) = x−kCa(x)Ga(x). (3)

Combining equations (2) and (3) gives the result.

In the case wherea = 11, we obtain

F11(x) =
1+x

x2 +(1−2x)(1+x)
=

1+x
1−x−x2 ,

so thatf11(n) = Fn +Fn−1 = Fn+1, as previously noted.

Unbounded recurrences

We will give here just one example. Recall from the last chapter that the generating
function for the numberp(n) of partitions of the integern is given by

∑
n≥0

p(n)xn =

(
∏
k≥1

(1−xk)

)−1

.
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Thus, to get a recurrence relation forp(n), we have to understand the coefficients
of its inverse:

∑
n≥0

a(n)xn = ∏
k≥1

(1−xk).

Now a term on the right arises from each expression forn as a sum of distinct
positive integers; its value is(−1)k, wherek is the number of terms in the sum. Thus,
c(n) is equal to the number of expressions forn as the sum of an even number of
distinct parts, minus the number of expressions forn as the sum of an odd number of
distinct parts.

This number is evaluated byEuler’s pentagonal numbers formula:

Proposition 2

c(n) =
{

(−1)k if n = k(3k−1)/2 for some k∈ Z,
0 otherwise.

Putting all this together, the recurrence relation forp(n) is

p(n) = ∑
k6=0

(−1)k−1p(n−k(3k−1)/2)

= p(n−1)+ p(n−2)− p(n−5)− p(n−7)+ p(n−12)+ · · ·

where the summation is over all values ofk for whichn−k(3k−1)/2 is non-negative.
The number of terms in the recurrence grows withn, but only asO(

√
n). So

evaluatingp(n) for n≤ N requires onlyO(n3/2) additions and subtractions.

Other recurrence relations

There is no recipe for solving more general recrrence relations. We do a few examples
for illustration.

Example: derangements Let d(n) be the number of derangements of{1, . . . ,n}
(permutations which have no fixed points). We obtain a recurrence relation as follows.
Each derangement mapsn to somei with 1 ≤ i ≤ n− 1, and by symmetry eachi
occurs equally often. So we need only count the derangements mappingn to n−1,
and multiply byn−1.

We divide these derangements into two classes. The first type mapn− 1 back
to n. Such a permutation must be a derangement of{1, . . . ,n−2} composed with the
transposition(n−1,n); so there ared(n−2) such. The second type mapi to n for
somei 6= n−1. Replacing the sequencei 7→ n 7→ n−1 by the sequencei 7→ n−1, we
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obtain a derangement ofn−1; every such derangement arises. So there ared(n−1)
deraggements of this type.

Thus,
d(n) = (n−1)(d(n−1)+d(n−2)).

There is a simpler recurrence satisfied byd(n), which can be deduced from this
one, namely

d(n) = nd(n−1)+(−1)n.

To prove this by induction, suppose that it is true forn−1. Then(n−1)d(n−2) =
d(n−1)− (−1)n−1; sod(n) = (n−1)d(n−1) + d(n−1) + (−1)n, and the inductive
step is proved. (Starting the induction is an exercise.)

Now this is a special case of a general recursion which can be solved, namely

x0 = c, xn = pnxn−1 +qn for n≥ 1.

We can include the initial condition in the recursion by settingq0 = c and adoopting
the convention thatx−1 = 0.

If qn = 0 for n≥ 1, then the solution is simplyxn = Pn for all n, where

Pn = c
n

∏
i=1

pi .

So we comparexn to pn. Puttingyn = xn/Pn, the recurrence becomes

y0 = 1, yn = yn−1 +
qn

Pn
for n≥ 1,

with solution

yn =
n

∑
i=0

qi

Pi
.

(Remember thatq0 = P0 = c.) Finally,

xn = Pn

n

∑
i=0

qi

Pi
.

For derangements, we havepn = n, c = 1 (so thatPn = n!), andqn = (−1)n. Thus

d(n) = n!
n

∑
i=0

(−1)i

i!
.

It follows thatd(n) is the nearest integer ton!/e, since

n!/e−d(n) = n! ∑
i≥n+1

(−1)i

i!
,

and the modulus of the alternating sum of decreasing terms on the right is smaller than
that of the first term, which isn!/(n+1)! = 1/(n+1).
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Example: Catalan numbers It is sometimes possible to use a recurrence relation to
derive an algebraic or differential equation for a generating function for the sequence.
If we are lucky, this equation can be solved, and the resulting function used to find the
terms in the sequence.

The nth Catalan number Cn is the number of ways of bracketing a product of
n terms, where we are not allowed to assume that the operation is associatuve or
commutative. For example, forn = 4, there are five bracketings

(a(b(cd))),(a((bc)d)),((ab)(cd)),((a(bc))d),(((ab)c)d),

soC4 = 5.
Any bracketed product ofn terms is of the form(AB), whereA andB are bracketed

products ofi andn− i terms respectively. So

Cn =
n−1

∑
i=1

CiCn−i for n≥ 2.

PuttingF(x) = ∑n≥1Cnxn, the recurrence relation shows thatF andF2 agree in all
coefficients exceptn = 1. SinceC1 = 1 we haveF = F2 + x, or F2− F + x = 0.
Solving this equation gives

F(x) = 1
2(1±

√
1−4x).

SinceC0 = 0 by definition, we must take the negative sign here.
This expression gives us a rough estimate forCn: the nearest singularity to the

origin is a branchpoint at 1/4, soCn grows “like” 4n. However, we can get the solution
explicitly.

From the binomial theorem, we have

F(x) = 1
2

(
1−∑

n≥0

(
1/2
n

)
(−4)n

)
.

Hence

Cn = −1
2

(
1/2
n

)
(−4)n

=
1
2
· 1
2
· 1
2
· 3
2
· · · 2n−3

2
· 2

2n

n!

=
1

2n+1 ·
(2n−2)!

2n−1(n−1)!
· 22n

n· (n−1)!

=
1
n

(
2n−2
n−1

)
.

Sometimes we cannot get an explicit solution, but can obtain some information
about the growth rate of the sequence.
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Example: Wedderburn–Etherington numbers Another interpretation of the Cata-
lan numberCn is the number of rooted binary trees withn leaves, where “left” and
“right” are distinguished. If we do not distinguish left and right, we obtain theWedderburn–
Etherington numbers Wn.

Such a tree is determined by the choice of trees withi andn− i leaves, but the
order of the choice is unimportant. Thus, ifi = n/2, the number of trees is only
Wi(Wi + 1)/2, rather thanW2

i . For i 6= n/2, we simply halve the number. This gives
the recurrence

Wn =


1
2

n−1

∑
i=1

WiWn−i if n is odd,

1
2

(
n−1

∑
i=1

WiWn−i +Wn/2

)
if n is even.

Thus,F(x) = ∑Wnxn satisfies

F(x) = x+ 1
2(F(x)2 +F(x2)).

This cannot be solved explicitly. We will obtain a rough estimate for the rate of growth.
Later, we find more precise asymptotics.

We seek the nearest singularity to the origin. Since all coefficients are real and
positive, this will be on the positive real axis. (If a power series with positive real
coefficiets converges atz= r, then it converges absolutely at anyzwith |z|= r.) Let s
be the required point. Thens< 1, sos2 < s; soF(z2) is analytic atz= s. Now write
the equation as

F(z)2−2F(z)+(F(z2)+2z) = 0,

with “solution”

F(z) = 1−
√

1−2z−F(z2)

(taking the negative sign as before). Thus,s is the real positive solution of

F(s2) = 1−2s.

Solving this equation numerically (using the fact thatF(s2) is the sum of a convergent
Taylor series and can be estimated from knowledge of a finite number of terms), we
find thats≈ 0.403. . ., so thatWn grows “like” (2.483. . .)n.

We will find more precise asymptotics forWn later in the course.

Example: Bell numbers We already calculated the exponential generating function
for the Bell numbers. Here is how to do it using the recurrence relation

B(n) =
n

∑
k=1

(
n−1
k−1

)
B(n−k).
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Multiply by xn/n! and sum overn: the e.g.fF(x) is given by

F(x) = ∑
n≥0

xn

n!

n

∑
k=1

(
n−1
k−1

)
B(n−k).

Differentiating with respect tox we obtain

d
dx

F(x) = ∑
n≥1

xn−1

(n−1)!

n

∑
k=1

(
n−1
k−1

)
B(n−k)

= ∑
l≥0

xl

l ! ∑
m≥0

B(m)xm

m!
.

Here we use new variablesl = k−1 andm= n−k; the constraints of the original sum
mean thatl andm independently take all natural number values. Hence

d
dx

F(x) = exp(x)F(x).

This first-order differential equation can be solved in the usual way with the initial
conditionF(0) = 1 to give

F(x) = exp(exp(x)−1),

in agreement with our earlier result.
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