
C50 Enumerative & Asymptotic Combinatorics

Notes 2 Spring 2003

In this section we do some counting related to the fundamental objects of com-
binatorics: subsets, partitions, and permutations. The counting functions have two
parameters:n, the size of the underlying set; andk, a measure of the object in ques-
tion (the number of elements of a subset, parts of a partition, or cycles of a permutation
respectively).

Subsets

The number ofk-element subsets of the set{1, . . . ,n} is thebinomial coefficient(
n
k

)
=

{0 if k< 0 ork> n;
n(n−1) · · ·(n−k+1)

k(k−1) · · ·1
if 0 ≤ k≤ n.

For, if 0≤ k≤ n, there aren(n−1) · · ·(n− k) ways to choose in orderk distinct
elements from{1, . . . ,n}; eachk-element subset is obtained fromk! such ordered
selections. The result fork< 0 ork> n is clear.

Proposition 1 The recurrence relation for the binomial coefficients is(
n
0

)
=
(

n
n

)
= 1,

(
n
k

)
=
(

n−1
k−1

)
+
(

n−1
k

)
for 0< k< n.

Proof Partition thek-element subsets into two classes: those containingn (which
have the form{n}∪L, whereL is a (k−1)-element subset of{1, . . . ,n−1}, and so
are

(n−1
k−1

)
in number); and those not containingn (which arek-element subsets of

{1, . . . ,n−1}, and so are
(n−1

k

)
in number).

Thebinomial theoremfor natural number exponentsn asserts:

Proposition 2 (x+y)n =
n

∑
k=0

(
n
k

)
xn−kyk.
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Proof The proof is straightforward. On the left we have the product

(x+y)(x+y) · · ·(x+y) (n factors);

multiplying this out we get the sum of 2n terms, each of which is obtained by choosing
y from a subset of the factors andx from the remainder. There are

(n
k

)
subsets of sizek,

and each contributes a termxn−kyk to the sum, fork = 0, . . . ,n.

The Binomial Theorem can be looked at in various ways. From one point of view,
it gives the generating function for the binomial coefficients

(n
k

)
for fixedn:

∑
k≥0

(
n
k

)
yk = (1+y)n.

Since the binomial coefficients have two indices, we could ask for a two-variable
generating function:

∑
n≥0

∑
k≥0

(
n
k

)
xnyk = ∑

n≥0
xn(1+y)n

=
1

1−x(1+y)
.

If we expand this in powers ofy, we obtain

1
(1−x)−xy

=
1

1−x
· 1
1− (x/(1−x))y

= ∑
k≥0

(
xk

(1−x)k+1

)
yk,

so that we have the following:

Proposition 3 ∑
n≥k

(
n
k

)
xn =

xk

(1−x)k+1 .

Our next observation on the Binomial Theorem concernsPascal’s Triangle, the
triangle whosenth row contains the numbers

(n
k

)
for 0≤ k≤ n. (Despite the name,

this triangle was not invented by Pascal but occurs in earlier Chinese sources. Figure 1
shows the triangle as given in Chu Shi-Chieh’sSsu Yuan Ÿu Chien, dated 1303.) The
recurrence relation shows that each entry of the triangle is the sum of the two above it.

At risk of making the triangle asymmetric, we turn it into a matrixB = (bnk),
wherebnk =

(n
k

)
for n,k≥ 0. This infinite matrix is lower triangular, with ones on the
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Figure 1: Chu Shi-Chieh’s Triangle

diagonal. Now when two lower triangular matrices are multiplied, each term of the
product is only a finite sum: the(n,k) entry ofBC is ∑mbnmcmk, and this is non-zero
only for k≤m≤ n. In particular, we can ask “What is the inverse ofB?”

Thesigned matrix of binomial coefficientsis the matrixB∗ with (n,k) entry(−1)n−k
(n

k

)
.

That is, it is the same asB except that signs of alternate terms are changed in a chess-
board pattern. Now:

Proposition 4 The inverse of the matrix B of binomial coefficients is the matrix B∗ of
signed binomial coefficients.

Proof We consider the vector space of polynomials (overR). There is a natural basis
consisting of the polynomials 1,x,x2, . . .. Now, since

(1+x)n = ∑
k

(
n
k

)
xk,

we see thatB represents the change of basis to 1,y,y2, . . ., wherey = 1+ x. Hence
the inverse ofB represents the basis change in the other direction, given byx = y−1.
Since

(y−1)n = ∑
k

(−1)n−k
(

n
k

)
yk,
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the matrix of this basis change isB∗.

The other aspect of the Binomial Theorem is its generalisation to arbitrary real
exponents (due to Isaac Newton). This depends on a revised definition of the binomial
coefficients.

Let a be an arbitrary real (or complex) number, andk a non-negative integer. De-
fine (

a
k

)
=

a(a−1) · · ·(a−k+1)
k!

.

Note that this agrees with the previous definition in the case whenn is a non-negative
integer, since ifk> n then one of the factors in the numerator is zero. We do not define
this version of the binomial coefficients ifk is not a natural number.

Now thebinomial theoremasserts that, for any real numbera, we have

(1+x)a = ∑
k≥0

(
a
k

)
xk. (1)

Is this a theorem or a definition? If we regard it as an equation connecting real func-
tions (where the left-hand side is defined by

(1+x)a = exp(alog(1+x)), (2)

and the series on the right-hand side is convergent for|x| < 1), it is a theorem, and
was understood by Newton in this form. As an equation connecting formal power
series, we may follow the same approach, or we may instead choose to regard (1) as
the definition and (2) as the theorem, according to taste. Whichever approach we take,
we need to know that the laws of exponents hold:

(1+x)a · (1+y)a = (1+(x+y+xy))a,

(1+x)a+b = (1+x)a · (1+x)b,

(1+x)ab = ((1+x)a)b .

If (1) is our definition, these verifications will reduce to identities between binomial
coefficients; if (2) is the definition, they depend on properties of the power series for
exp and log, defined as in the last chapter.

Binomial coefficients can be estimated by using Stirling’s formula. For example,
if n is even, (

n
n/2

)
∼
√

2πn
(n

e

)n/
πn
( n

2e

)n
=

2n√
πn/2

.
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Thecentral limit theoremfrom probability theory can also be used to get estimates
for binomial coeffients. Suppose that a fair coin is tossedn times. Then the probability
of obtainingk heads is equal to

(n
k

)
/2n. Now the number of heads is a binomial random

variableX; so we have

P(X = k) =
(

n
k

)/
2n. (3)

According to the Central Limit Theorem, ifn is large thenX is approximated by
a normal random variableY with the same expected valuen/2 and variancen/4. The
probability density function ofY is given by

fY(y) =
1√

πn/2
e2(k−n/2)2/n. (4)

If k = n/2+ O(
√

n) and n→ ∞, then a precise statement of the Central Limit
Theorem shows that (4) gives an asymptotic formula for (3). In particular, whenk =
n/2, we obtain the preceding result. (You might like to check that the constant in
Stirling’s formula can be deduced from the Central Limit Theorem in this way.

Partitions

TheBell number B(n) is the number of partitions of the set{1, . . . ,n}. There is a re-
lated “unlabelled” counting numberp(n), thepartition number, which is the number
of partitions of the numbern (that is, lists in non-increasing order of positive integers
with sumn). Thus, given any set partition, the list of sizes of its parts is a number
partition; and two set partitions are equivalent under relabelling the elements of the
underlying set (that is, under permutations of{1, . . . ,n}) if and only if the correspond-
ing number partitions are equal.

What would be the analogous “unlabelled” counting function for subsets? Two
subsets of{1, . . . ,n} are equivalent under permutations if and only if they have the
same cardinality; so the unlabelled counting functionf for subsets would be simply
f (n) = n+1.

Set partitions

The Stirling numbers of the second kind, denoted byS(n,k), are defined by the rule
thatS(n,k) is the number of partitions of{1, . . . ,n} into k parts if 1≤ n≤ k, and zero
otherwise. Clearly we have

n

∑
k=1

S(n,k) = B(n),
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where the Bell numberB(n) is the total number of partitions of{1, . . . ,n}.

Proposition 5 The recurrence relation for the Stirling numbers is

S(n,1) = S(n,n) = 1, S(n,k) = S(n−1,k−1)+kS(n−1,k) for 1< k< n.

Proof We split the partitions into two classes: those for which{n} is a single part
(obtained by adjoining this part to a partition of{1, . . . ,n−1} into k−1 parts), and
the remainder (obtained by taking a partition of{1, . . . ,n−1} into k parts, selecting
one part, and addingn to it).

Proposition 6 (a) The Stirling numbers satisfy the recurrence

S(n,k) =
n−1

∑
i=1

(
n−1
i−1

)
S(n− i,k−1).

(b) The Bell numbers saisfy the recurrence

B(n) =
n

∑
i=1

(
n−1
i−1

)
B(n− i).

Proof Consider the part containingn of an arbitrary partition withk parts; suppose
that it has cardinalityi. Then there are

(n−1
k−1

)
choices for the remainingi−1 elements

in this part, andS(n− i,k− 1) partitions of the remainingn− i elements intok− 1
parts. This proves (a); the proof of (b) is almost identical.

The Stirling numbers also have the following property. Let(x)k denote the poly-
nomialx(x−1) · · ·(x−k+1).

Proposition 7 xn =
n

∑
k=1

S(n,k)(x)k.

Proof We prove this first whenx is a positive integer. We take a setX with x el-
ements, and count the number ofn-tuples of elements ofx. The total number is of
coursexn. We now count them another way. Given ann-tuple(x1, . . . ,xn), we define
an equivalence relation on{1, . . . ,n} by i ≡ j if and only if xi = x j . If this relation has
k different classes, then there arek distinct elements amongx1, . . . ,xn, sayy1, . . . ,yk

(listed in order). The choice of the partition and thek-tuple (y1, . . . ,yk) uniquely de-
termines(x1, . . . ,xn). So the number ofn-tuples is given by the right-hand expression
also.

Now this equation between two polynomials of degreen holds for any positive
integerx, so it must be a polynomial identity.
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Stirling numbers are involved in the substitution of exp(x)− 1 for x in formal
power series. The result depends on the following lemma:

Lemma 8

∑
n≥k

S(n,k)xn

n!
=

(exp(x)−1)k

k!
.

Proof The proof is by induction onk, the result being true whenk = 1 sinceS(n,1) =
1. Suppose that it holds whenk = l −1. Then (settingS(n,k) = 0 if n< k) we have

(exp(x)−1)l

l !
=

1
l
· (exp(x)−1) · (exp(x)−1)l−1

(l −1)!

=
1
l

(
∑
n≥1

xn

n!

)
·

(
∑
n≥1

S(n, l −1)xn

n!

)
.

The coefficient ofxn/n! here is

n!
l

n−1

∑
i=1

1
i!
· S(n− i, l −1)

(n− i)!
=

1
l

n−1

∑
i=1

(
n
i

)
S(n− i, l −1)

=
1
l
(S(n+1, l)−S(n, l −1)),

using the recurrence relation of Proposition 6(a). Finally, the recurrence relation of
Proposition 5 shows that this isS(n, l), as required.

Proposition 9 Let (a0,a1, . . .) and(b0,b1, . . .) be two sequences of numbers, with ex-
ponential generating functions A(x) and B(x) respectively. Then the following two
conditions are equivalent:

(a) b0 = a0 and bn = ∑n
k=1S(n,k)ak for n≥ 1;

(b) B(x) = A(exp(x)−1).

Proof Suppose that (a) holds. Without loss of generality we may assume thata0 =
b0 = 0. Then

B(x) = ∑
n≥1

bnxn

n!
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= ∑
n≥1

xn

n!

n

∑
k=1

S(n,k)ak

= ∑
k≥1

ak ∑
n≥k

S(n,k)xn

n!

= ∑
k≥1

ak(exp(x)−1)k

k!

= A(exp(x)−1),

by Lemma 8.
The converse is proved by reversing the argument.

Corollary 10 The exponential generating function for the Bell numbers is

∑
n≥0

B(n)xn

n!
= exp(exp(x)−1).

Proof Apply Proposition 9 to the sequence withan = 1 for all n; or sum the equation
of Lemma 8 overk.

Number partitions

The partition numberp(n) is the number of partitions of ann-set, up to permutations
of the set.

The key to evaluatingp(n) is its generating function:

∑
n≥0

p(n)xn =

(
∏
k≥1

(1−xk)

)−1

.

For(1−xk)−1 = 1+xk +x2k + · · ·. Thus a term inxn in the product, with coefficient 1,
arises from every expressionn = ∑ckk, where theck are non-negative integers, all but
finitely many equal to zero. This number isp(n), since we can regardn = ∑ckk as an
alternative expression for a partition ofn.

We will use this in the next chapter to give a recurrence relation forp(n).

Permutations

A permutation of{1, . . . ,n} is a bijective function from this set to itself.
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In the nineteenth century, a more logical terminology was used. Such a function
was called a substitution, while a permutation was a sequence(a1,a2, . . . ,an) con-
taining each element of the set precisely once. Since there is a natural ordering of
{1,2, . . . ,n}, there is a one-to-one correspondence between “permutations” and “sub-
stitutions”: the sequence(a1,a2, . . . ,an) corresponds to the functionπ : i 7→ ai , for
i = 1, . . . ,n.

The correspondence between permutations and total orderings of ann-set has pro-
found consequences for a number of enumeration problems. For now we return to the
usage “permutation = bijective function”. We refer to the sequence(a1, . . . ,an) as the
passive formof the permutationπ in the last paragraph; the function is theactive form
of the permutation.

Following the conventions of algebra, we write a permutation on the right of its
argument, so thatiπ is the image ofi under the permutationπ (that is, theith term of
the passive form ofπ).

The set of permutations of{1, . . . ,n}, with the operation of composition, is a
group, called thesymmetric group Sn. Products, identity, and inverses of permuta-
tions always refer to the operations in this group.

Unlabelled permutations

As for partitions, we can consider unlabelled or labelled permutations, that is, permu-
tations of ann-set or equivalence classes of permutations. We dispose of unlabelled
permutations first.

Two permutationsπ1 andπ2 of {1, . . . ,n} are equivalent if there is a bijectionσ of
{1, . . . ,n} (that is, a permutation!) such that, for alli ∈ {1, . . . ,n}, we have

(iσ)π2 = jσ if and only if iπ1 = j,

in other words,iσπ2 = iπ1σ for all i, so thatπ2 = σ−1π1σ. Thus, this equivalence
relation is the algebraic relation ofconjugacyin the symmetric group; the unlabelled
permutations are conjugacy classes ofSn..

Now recall thecycle decompositionof permutations:

Any permutation of a finite set can be written as the disjoint union of
cycles, uniquely up to the order of the factors and the choices of starting
points of the cycles.

Moreover,

Two permutations are equivalent if and only if the lists of cycle lengths of
the two permutations (written in non-increasing order) are equal.
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Thus equivalence classes of permutations correspond to partitions of the integern.
This means that the enumeration theory for “unlabelled permutations” is the same as
that for “unlabelled partitions”, discussed in the last section.

Labelled permutations

Theparity of a permutationπ of {1, . . . ,n} is defined as the parity ofn−k, wherek is
the number of cycles ofπ (in its decomposition as a product of distinct cycles). The
signof π is (−1)p, wherep is the parity ofπ.

Parity and sign have various important algebraic properties. For example,

• the parity ofπ is equal to the parity of the number of factors in any expression
for π as a product of disjoint cycles;

• parity is a homomorphism from the symmetric groupSn to the groupZ/(2) of
integers mod 2, and hence sign is a homomorphism to the multiplicative group
{±1}.

• For n> 1, these homomorphisms are onto; their kernel (the set of permutations
of even parity, or of sign+1) is a normal subgroup of index 2 inSn, called the
alternating group An.

TheStirling numbers of the first kindare defined by the rule thats(n,k) is (−1)n−k

times the number of permutations of{1, . . . ,n} havingk cycles. Sometimes the num-
ber of such permutations is referred to as theunsigned Stirling number.

Clearly we have
n

∑
k=1

|s(n,k)|= n! .

Slightly less obviously,
n

∑
k=1

s(n,k) = 0

for n> 1. The algebraic proof of this depends on the fact that sign is a homomorphism
to {±1}, so that the two values are taken equally often. We will see a combinatorial
proof later.

Proposition 11 The recurrence relation for the Stirling numbers is

s(n,1) = (−1)n−1(n−1)!, s(n,n) = 1,

s(n,k) = s(n−1,k−1)− (n−1)s(n−1,k) for 1< k< n.
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Proof We split the permutations into two classes: those for which(n) is a single part
(obtained by adjoining this cycle to a permutation of{1, . . . ,n−1} with k−1 cycles),
and the remainder (obtained by taking a permutation of{1, . . . ,n−1} with k cycles
and interpolatingn at some position in one of the cycles). The second construction,
but not the first, changes the sign of the permutations.

To see that there are(n− 1)! permutations with a single cycle, note that if we
choose to start the cycle with 1 then the remainingn−1 elements can be written into
the cycle in any order.

Note that, if we instead defines(n,0) ands(n,n+ 1) to be equal to 0 forn≥ 1,
then the recurrence holds also fork = 1 andk = n. We use this below.

The generating function is given by the following result:

Proposition 12
n

∑
k=1

s(n,k)xk = (x)n.

Proof The result is clear forn = 1, Suppose that it holds forn = m−1.

m

∑
k=1

s(m,k)xk =
m

∑
k=1

s(m−1,k−1)xk−
m

∑
k=1

(m−1)s(m−1,k)xk

= (x−m+1)(x)m−1

= (x)m.

Note that substitutingx = 1 into this equation shows that∑k s(n,k) = 0 for n≥ 2.

Corollary 13 The triangular matrices S1 and S2 whose entries are the Stirling num-
bers of the first and second kinds are inverses of each other.

Proof Propositions 7 and 12 show thatS1 andS2 are the transition matrices between
the bases(xn : n≥ 1) and((x)n n≥ 1) of the space of real polynomials with constant
term zero.

Proposition 14 Let (a0,a1, . . .) and (b0,b1, . . .) be two sequences of numbers, with
exponential generating functions A(x) and B(x) respectively. Then the following two
conditions are equivalent:

(a) b0 = a0 and bn = ∑n
k=1s(n,k)ak for n≥ 1;

(b) B(x) = A(log(1+x)).

Proof This is the “inverse” of Proposition 9.
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We have counted permutations by number of cycles. A more refined count is by
the list of cycle lengths.

Let ck(π) be the number ofk-cycles in the cycle decomposition ofπ.

Proposition 15 The size of the conjugacy class ofπ in Sn is

n!

∏k kck(π)ck(π)!
.

Proof Write out the pattern for the cycle structure of a permutation withck(π) cycles
of lengthk for all k, leaving blank the entries in the cycles. There aren! ways of
entering the numbers 1, . . . ,n in the pattern. However, each cycle of lengthk can be
written in k different ways, since the cycle can start at any point; and the cycles of
lengthk can be written in any of theck(π)! possible orders. So the number of ways of
entering the numbers 1, . . . ,n giving rise to each permutation in the conjugacy class is
∏kck(π)ck(π)! .

Thecycle indexof the symmetric groupSn is the generating function for the num-
bersck(π), for k = 1, . . . ,n. By convention it is normalised by dividing byn!. Thus,

Z(Sn) = ∑
π∈Sn

n

∏
k=1

sck(π)
k .

Because of the normalisation, this can be thought of as the probability generating
function for the cycle structure of a random permutation: that is, the coefficient of the
monomial∏sak

k (where∑kck = n) is the probability that a random permutationπ has
ck(π) = ak for k = 1, . . . ,n — this is

1

∏k kakak!
.

One result which we will meet later is the following. We adopt the convention that
Z(S0) = 1.

Proposition 16 ∑
n≥0

Z(Sn) = exp

(
∑
k≥1

sk

k

)
.

Proof The left-hand side is equal to

∑
n≥0

∑
∑ak=n

∏
k≥1

sak
k

kakak!
= ∑

a1,a2,...
∏
k≥1

sak
k

kakak!
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= ∏
k≥1

∑
a≥0

sa
k

kaa!

= ∏
k≥1

exp
(sk

k

)
= exp

(
∑
k≥1

sk

k

)

as required. (The sum on the right-hand side of the first line is over all infinite se-
quences of natural numbers(a1,a2, . . .) with only finitely many entries non-zero.)

We will see much more about cycle index in the chapter on orbit counting.
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