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In this section we do some counting related to the fundamental objects of com-
binatorics: subsets, partitions, and permutations. The counting functions have two
parametersn, the size of the underlying set; akda measure of the object in ques-
tion (the number of elements of a subset, parts of a partition, or cycles of a permutation
respectively).

Subsets

The number ok-element subsets of the st ..., n} is thebinomial coefficient

n 0( " ) ifk<Oork>n;
—Jnn-1)---(n—k+1) .
- <k<n.
(k) { k1)1 ifO<k<n

For, if 0 < k < n, there aren(n— 1) --- (n— k) ways to choose in ordde distinct
elements from{1,...,n}; eachk-element subset is obtained frokh such ordered
selections. The result fdr< 0 ork > nis clear.

Proposition 1 The recurrence relation for the binomial coefficients is

()= (n) =1 (&)= (oop)+ (") roro<icen

Proof Partition thek-element subsets into two classes: those containifghich

have the form{n} UL, whereL is a(k— 1)-element subset dfl,...,n— 1}, and so

are (Ej) in number); and those not containimg(which arek-element subsets of

{1,...,n—1}, and so ar¢", ) in number).

Thebinomial theorenfor natural number exponentsasserts:

n
Proposition 2 (x+y)"= (E) XKk,
Ko



Proof The proof is straightforward. On the left we have the product
(X+Y)(X+Y) - (X+Y) (n factors);

multiplying this out we get the sum of'2erms, each of which is obtained by choosing
y from a subset of the factors ardrom the remainder. There a(%) subsets of sizk,

and each contributes a tenfir Ky to the sum, fok =0, ...,n

The Binomial Theorem can be looked at in various ways. From one point of view,
it gives the generating function for the binomial coefﬁciefﬁ)sfor fixed n:

by (j) =y

Since the binomial coefficients have two indices, we could ask for a two-variable

generating function:
n n n n
XMW = Y X(14y)
ng()k; (k> ngo

1
1-x(1+y)

If we expand this in powers of, we obtain

1 1 1
(1—Xx)—xy 1-x 1—(x/(1—x))y

so that we have the following:

K

n X
Proposition 3 ( )x” =
n;( k (1—x)k+1

Our next observation on the Binomial Theorem concdtascal’s Triangle the
triangle whosenth row contains the numbel(ﬁ) for 0 < k < n. (Despite the name,
this triangle was not invented by Pascal but occurs in earlier Chinese sources. Figure 1
shows the triangle as given in Chu Shi-Chief&u Yuan & Chien dated 1303.) The
recurrence relation shows that each entry of the triangle is the sum of the two above it.
At risk of making the triangle asymmetric, we turn it into a matlix= (bn),
wherebn = (}) for n,k > 0. This infinite matrix is lower triangular, with ones on the
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Figure 1: Chu Shi-Chieh’s Triangle

diagonal. Now when two lower triangular matrices are multiplied, each term of the
product is only a finite sum: th@, k) entry of BC is ¥ ybnmCmk, and this is non-zero
only fork < m< n. In particular, we can ask “What is the inverseB¥”

Thesigned matrix of binomial coefficieritsthe matrixB* with (n, k) entry(—l)“*"(ﬂ).
That is, it is the same @& except that signs of alternate terms are changed in a chess-
board pattern. Now:

Proposition 4 The inverse of the matrix B of binomial coefficients is the mattinfB
signed binomial coefficients.

Proof We consider the vector space of polynomials (dRerThere is a natural basis
consisting of the polynomials, &, %2, .... Now, since

(14+x)"= Z <E)xk,

we see thaB represents the change of basis tg,¥2, ..., wherey = 1+x. Hence
the inverse oB represents the basis change in the other direction, giversby— 1.

Since
=17 = 50
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the matrix of this basis changeBs.

The other aspect of the Binomial Theorem is its generalisation to arbitrary real
exponents (due to Isaac Newton). This depends on a revised definition of the binomial
coefficients.

Let a be an arbitrary real (or complex) number, dod non-negative integer. De-

fine
a\ a@a-1)---(a—k+1)
(&)
Note that this agrees with the previous definition in the case whga non-negative
integer, since ik > nthen one of the factors in the numerator is zero. We do not define
this version of the binomial coefficientskfis not a natural number.
Now thebinomial theorenasserts that, for any real numtzmwe have

(14+x)2= go (‘D X )

Is this a theorem or a definition? If we regard it as an equation connecting real func-
tions (where the left-hand side is defined by

(14+x)? = exp(alog(1+Xx)), (2)

and the series on the right-hand side is convergenpdor. 1), it is a theorem, and

was understood by Newton in this form. As an equation connecting formal power
series, we may follow the same approach, or we may instead choose to regard (1) as
the definition and (2) as the theorem, according to taste. Whichever approach we take,
we need to know that the laws of exponents hold:

(1+x)%-(1+y)? = (1+(X+y+xy)?,
1+x2™ = (1+x)? (1+x)°,
(1+x%® = ((1+x)?)°.

If (1) is our definition, these verifications will reduce to identities between binomial
coefficients; if (2) is the definition, they depend on properties of the power series for
exp and log, defined as in the last chapter.

Binomial coefficients can be estimated by using Stirling’s formula. For example,

if nis even, )
n n\n n\y\n n
(n/2> - \/ﬁ(é) /m (Ze) NGYA




Thecentral limit theorenfrom probability theory can also be used to get estimates
for binomial coeffients. Suppose that a fair coin is togs@ohes. Then the probability
of obtainingk heads is equal t(:{:) /2". Now the number of heads is a binomial random

variableX; so we have
_ _ n n
P(X = k) = (k)/z. (3)

According to the Central Limit Theorem, fifis large thenX is approximated by
a normal random variabM with the same expected valug2 and varianc@/4. The
probability density function oY is given by

_ 1 oten22n
fy(y) s /292 : 4)

If k=n/24 0O(y/n) andn — o, then a precise statement of the Central Limit
Theorem shows that (4) gives an asymptotic formula for (3). In particular, Wken
n/2, we obtain the preceding result. (You might like to check that the constant in
Stirling’s formula can be deduced from the Central Limit Theorem in this way.

Partitions

The Bell number Bn) is the number of partitions of the sgt,... n}. There is a re-
lated “unlabelled” counting numbga(n), the partition numbey which is the number

of partitions of the numbaenm (that is, lists in non-increasing order of positive integers
with sumn). Thus, given any set partition, the list of sizes of its parts is a number
partition; and two set partitions are equivalent under relabelling the elements of the
underlying set (that is, under permutationg df. . ., n}) if and only if the correspond-

ing number partitions are equal.

What would be the analogous “unlabelled” counting function for subsets? Two
subsets off1,...,n} are equivalent under permutations if and only if they have the
same cardinality; so the unlabelled counting functfofor subsets would be simply
f(n)=n+1.

Set partitions

The Stirling numbers of the second kindenoted byS(n, k), are defined by the rule
thatS(n, k) is the number of partitions dfl,...,n} into k parts if 1< n <k, and zero
otherwise. Clearly we have

S k) =B(n),
I(;S(n) (n)
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where the Bell numbeB(n) is the total number of partitions ¢fL, ..., n}.
Proposition 5 The recurrence relation for the Stirling numbers is

S(n,1) = S(n,n) =1, S(n,k) =S(n—1,k—1)+kSn—1,k) forL <k <n.

Proof We split the partitions into two classes: those for whiet} is a single part
(obtained by adjoining this part to a partition £f,...,n— 1} into k— 1 parts), and
the remainder (obtained by taking a partition{df... ,n— 1} into k parts, selecting
one part, and addingto it).

Proposition 6 (a) The Stirling numbers satisfy the recurrence

S(n, k) :ngl (?:ll)S(n—i,k—l).

(b) The Bell numbers saisfy the recurrence

B(n) = i (?:11) B(n—i).

Proof Consider the part containingof an arbitrary partition withk parts; suppose
that it has cardinality. Then there ar¢_71) choices for the remaininig- 1 elements
in this part, andS(n —i,k — 1) partitions of the remaining — i elements intk — 1
parts. This proves (a); the proof of (b) is almost identical.

The Stirling numbers also have the following property. Dek denote the poly-
nomialx(x—1)--- (x—k+1).

n
Proposition 7 x" = > S(n,K) (X
K=1

Proof We prove this first wherx is a positive integer. We take a sétwith x el-
ements, and count the numberrefuples of elements af. The total number is of
coursex". We now count them another way. Givenmtuple (Xq,...,%,), we define
an equivalence relation o, ...,n} byi = j if and only if x, = x;. If this relation has
k different classes, then there delistinct elements amongy,...,X,, sayyi,..., Yk
(listed in order). The choice of the partition and theuple (y1,...,yk) uniquely de-
termines(xy, ..., Xn). So the number af-tuples is given by the right-hand expression
also.

Now this equation between two polynomials of degrekolds for any positive
integerx, so it must be a polynomial identity.
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Stirling numbers are involved in the substitution of éxp— 1 for x in formal
power series. The result depends on the following lemma:

Lemma 8

n! kl

Ek S(n,k)x"  (exp(x) — 1)K

Proof The proofis by induction ok, the result being true whéo= 1 sinceS(n, 1) =
1. Suppose that it holds whén=1 — 1. Then (setting(n, k) = 0 if n < k) we have

_1\I-1
(oxpt - ) R

1 X" S(n,I —1)x"
o (éﬂ) ' (% n! ) '

The coefficient ok"/n! here is

(exp -1 1
[ |

n"l1 Sn-il-1) 17t /n

Ii;i!'w = Tizl(l>8(n—i,|—1)
= %(5(n+1,|)—8(n,l—1)),

using the recurrence relation of Proposition 6(a). Finally, the recurrence relation of
Proposition 5 shows that this&n, 1), as required.

Proposition 9 Let(ap,as,...) and(bp,bs,...) be two sequences of numbers, with ex-
ponential generating functions(® and Bx) respectively. Then the following two
conditions are equivalent:

(@) bp=ap and by = y_, S(n,k)ay for n > 1;
(b) B(x) = A(exp(x) — 1).

Proof Suppose that (a) holds. Without loss of generality we may assumeghat
bg=0. Then




Xnn

N ngl W kZlS(n’ k)ak

S(n,k)x"

= ay — 7
kgl ngk n!

ay(exp(x) — 1)
& k!

= Alexpx) - 1),

by Lemma 8.
The converse is proved by reversing the argument.

Corollary 10 The exponential generating function for the Bell numbers is

zom = exp(exp(x) — 1).

n:

Proof Apply Proposition 9 to the sequence wah= 1 for all n; or sum the equation
of Lemma 8 ovek.

Number partitions

The partition numbep(n) is the number of partitions of amset, up to permutations
of the set.
The key to evaluatingy(n) is its generating function:

-1
n_ 1 xK ‘
n; P(n)x <|!:|l< X ))

For (1—x€)~1 = 1+4+xK4x%4.... Thus a term inx" in the product, with coefficient 1,
arises from every expression= S ¢k, where theg, are non-negative integers, all but
finitely many equal to zero. This numberpsn), since we can regaml= y cck as an
alternative expression for a partition if

We will use this in the next chapter to give a recurrence relatiomp(oy.

Permutations

A permutation of{1,...,n} is a bijective function from this set to itself.



In the nineteenth century, a more logical terminology was used. Such a function
was called a substitution, while a permutation was a sequémcey,...,a,) con-
taining each element of the set precisely once. Since there is a natural ordering of
{1,2,...,n}, there is a one-to-one correspondence between “permutations” and “sub-
stitutions”: the sequenc@,ay,...,a,) corresponds to the function: i — g;, for
i=1,...,n

The correspondence between permutations and total orderingsefedinas pro-
found consequences for a number of enumeration problems. For now we return to the
usage “permutation = bijective function”. We refer to the sequénge..,ay) as the
passive fornof the permutationtin the last paragraph; the function is thetive form
of the permutation.

Following the conventions of algebra, we write a permutation on the right of its
argument, so thattis the image of under the permutation (that is, theith term of
the passive form off).

The set of permutations dfl,...,n}, with the operation of composition, is a
group, called thesymmetric group & Products, identity, and inverses of permuta-
tions always refer to the operations in this group.

Unlabelled permutations

As for partitions, we can consider unlabelled or labelled permutations, that is, permu-
tations of am-set or equivalence classes of permutations. We dispose of unlabelled
permutations first.

Two permutationsy andp of {1,...,n} are equivalent if there is a bijectianof
{1,...,n} (that is, a permutation!) such that, for akt {1,...,n}, we have

(io)lp=jo ifandonlyif im = j,

in other words,joty = iTyo for all i, so thatty, = o~lmo. Thus, this equivalence
relation is the algebraic relation obnjugacyin the symmetric group; the unlabelled
permutations are conjugacy classe§of

Now recall thecycle decompositioaf permutations:

Any permutation of a finite set can be written as the disjoint union of
cycles, uniquely up to the order of the factors and the choices of starting
points of the cycles.

Moreover,

Two permutations are equivalent if and only if the lists of cycle lengths of
the two permutations (written in non-increasing order) are equal.
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Thus equivalence classes of permutations correspond to partitions of the mteger
This means that the enumeration theory for “unlabelled permutations” is the same as
that for “unlabelled partitions”, discussed in the last section.

Labelled permutations

Theparity of a permutatiortof {1,...,n} is defined as the parity of— k, wherek is
the number of cycles af (in its decomposition as a product of distinct cycles). The
signof mtis (—1)P, wherep is the parity offt

Parity and sign have various important algebraic properties. For example,

¢ the parity ofrtis equal to the parity of the number of factors in any expression
for tas a product of disjoint cycles;

e parity is a homomorphism from the symmetric grdgyto the groupZ/(2) of
integers mod 2, and hence sign is a homomorphism to the multiplicative group
{£1}.

e Forn> 1, these homomorphisms are onto; their kernel (the set of permutations
of even parity, or of sign+-1) is a normal subgroup of index 2 &, called the
alternating group A.

The Stirling numbers of the first kindre defined by the rule than, k) is (—1)"k
times the number of permutations {f, ... ,n} havingk cycles. Sometimes the num-
ber of such permutations is referred to asuhsigned Stirling number

Clearly we have

i |s(n, k)| =n!.

K=1
Slightly less obviously,

S k) =0
k;S(n )

forn> 1. The algebraic proof of this depends on the fact that sign is a homomorphism
to {41}, so that the two values are taken equally often. We will see a combinatorial
proof later.

Proposition 11 The recurrence relation for the Stirling numbers is

s(n,1) = (-)"Yn-1), s(nn) =1,
s(nk) =s(n—1 k—1)—(n—1)s(n—1,k) for 1 <k < n.
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Proof We split the permutations into two classes: those for wiighs a single part
(obtained by adjoining this cycle to a permutation{ &f...,n— 1} with k— 1 cycles),
and the remainder (obtained by taking a permutatioflof.. n— 1} with k cycles
and interpolatingh at some position in one of the cycles). The second construction,
but not the first, changes the sign of the permutations.

To see that there argr— 1)! permutations with a single cycle, note that if we
choose to start the cycle with 1 then the remaimngl elements can be written into
the cycle in any order.

Note that, if we instead defingn,0) ands(n,n+ 1) to be equal to 0 fon > 1,
then the recurrence holds also foe 1 andk = n. We use this below.
The generating function is given by the following result:

n
Proposition 12 3" s(n, k)X = (X)n.
=

Proof The resultis clear fon = 1, Suppose that it holds for= m— 1.

m

g s(mk)x* = g s(m—1,k—1)x*— Z (m—1)s(m—1,k)x*
K=1 K=1 k=1

= (X—m+1)(X)m-1

= (Xm.

Note that substituting = 1 into this equation shows th&j s(n,k) = 0 forn > 2.

Corollary 13 The triangular matrices Sand $ whose entries are the Stirling num-
bers of the first and second kinds are inverses of each other.

Proof Propositions 7 and 12 show thatandS, are the transition matrices between
the base$x" : n> 1) and((x), n > 1) of the space of real polynomials with constant
term zero.

Proposition 14 Let (ap,a,...) and (bg,bs,...) be two sequences of numbers, with
exponential generating functiong» and B(x) respectively. Then the following two
conditions are equivalent:

(@) bp=apand by = y_; s(n,k)ay for n > 1;
(b) B(x) = A(log(1+Xx)).
Proof This is the “inverse” of Proposition 9.
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We have counted permutations by number of cycles. A more refined count is by
the list of cycle lengths.
Let ck(1) be the number df-cycles in the cycle decomposition Tf

Proposition 15 The size of the conjugacy classroh S, is

n!
Mick& Moy (!

Proof Write out the pattern for the cycle structure of a permutation witt) cycles

of lengthk for all k, leaving blank the entries in the cycles. There argvays of
entering the numbers 1., n in the pattern. However, each cycle of lenggthan be
written in k different ways, since the cycle can start at any point; and the cycles of
lengthk can be written in any of the(m)! possible orders. So the number of ways of
entering the numbers 1 .,n giving rise to each permutation in the conjugacy class is
[Tk*My (! .

Thecycle indexof the symmetric groufs, is the generating function for the num-
berscy(m), fork=1,...,n. By convention it is normalised by dividing by. Thus,

n
2s)= 3 T
MeS k=1

Because of the normalisation, this can be thought of as the probability generating
function for the cycle structure of a random permutation: that is, the coefficient of the
monomial[T] s{i‘k (wherey koq = n) is the probability that a random permutatimas
c(m =afork=1,...,n—thisis

1
Mk kaay!
One result which we will meet later is the following. We adopt the convention that

Z(S) = 1.

Proposition 16 Z 2(S) = exp( Z %) :

n>0 k>1

Proof The left-hand side is equal to
ax

;;) ji r1 wi;k! - a;z, Rgg%i

>0y a=nk>1
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as required. (The sum on the right-hand side of the first line is over all infinite se-
qguences of natural numbeia , ap, . . .) with only finitely many entries non-zero.)

We will see much more about cycle index in the chapter on orbit counting.

13



