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A number of non-trivial analytic results have been proved for the purpose of ob-
taining asymptotic formulae for combinatorially defined numbers. These include theo-
rems of Hayman, Meir and Moon, and Bender. | will not give proofs of these theorems,
but treat them as black boxes and give examples to illustrate their use.

Hayman’s Theorem

Hayman’s Theorem is an important result on the asymptotic behaviour of the coeffi-
cients of certairentire functions (i.e., functions which are analytic in the entire com-
plex plane).

The theorem applies only to a special class of such functions, the so-e&lled
admissibleor Hayman-admissibléunctions. Rather than attempt to give a general
definition of this class, | will state a theorem of Hayman showing that it is closed
under certain operations, which suffice to show that any function in which we are
interested is H-admissible. See Hayman’'s paper in the bibliography, or Odlyzko’s
survey.

Theorem 1 (a)If f is H-admissible and p is a polynomial with real coefficients, then
f + p is H-admissible.

(b) If p is a non-constant polynomial with real coefficients such thad p(x)) =
S gnX" with g, > 0 for n > ng, thenexp(p(x)) is H-admissible.

(c) If p is a non-constant real polynomial with leading term positive, and f is H-
admissible, then (f (x)) is H-admissible.

(d) If f and g are H-admissible, thezxp( f (x) and f(x)g(x) are H-admissible.
Corollary 2 The exponential function is H-admissible.

Now Hayman'’s Theorens the following.
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Theorem 3 Let f(x) = 31> faX" be H-admissible. Let@) =xf'(x)/f(x) and h(x) =
xd(x), and let i, be the smallest positive root of the equatid®)a= n. Then

1
fo~ ——Tf(ry)rs ™.
n 2T[bn (n)n

Example: Stirling’s formula  Take f (x) = exp(x) (we have noted that this function
is admissible), so that, = 1/nl. Now a(x) = x = b(x), andr, = n. Thus

i _ 1 en"
nl  /2m ’

which is just Stirling’s formula the other way up!

Example: Bell numbers Let f(x) = exp(exp(x) — 1), so thatf, = B(n)/n!, where
B(n) is the number of partitions of anset. This function is H-admissible. Now
a(x) = xe‘ andb(x) = (x+ x?)€~.
The numberr, is the smallest positive solution @& = n. In terms of this, we
have
B(”) ~ 1 en/rn—lr—n
n »
n! 2m(1+rp)
and so by Stirling’s formula,

1 n " /rn—1
B(n) ~ — e,
V1+ry \ €
Of course, this is not much use without a good estimater forHowever, for
n = 100, the right-hand side is within4% of B(100).
In fact, it can be shown that

rn =logn—loglogn+ O (Iog Iogn) ,

logn
from which it can be deduced that

logB(n) ~ nlogn—nloglogn—n.

The theorem of Meir and Moon

The theorem of Meir and Moon (which has been generalised by Bender) gives the
asymptotics of the coefficients of a power series defined by Lagrange inversion (com-
pare Notes 8). Typically we have to find the inverse functiorf ofSetting@(x) =
x/f(x), the inverse functiory is given by the functional equatiog(y) = yp(g(y)).
Replacingy by x andg by f, the theorem is as follows.
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Theorem 4 Lety= f(x) = 3 fx" satisfy the equation

y = Xx®(y),

where® is analytic in some neighbourhood of the origin, witfx) = ¥ a,x". Suppose
that the following conditions hold:

(@a=1landg >0forn>0.
(b) gcd{n:a, >0} =1,
(c) There is a positive real numbar inside the circle of convergence®f satisfying
ad’(a) = d(a).
Then
fn ~ Cn~3/2p",
where C= /®(a)/2m®” (a) andB = ®(a)/a = ' (a).

Example: Rooted trees The generating functiop= T*(x) for labelled rooted trees
satisfies

y = xexp(y).
The exponential function converges everywhere, and the solutmexgia) = exp(a)
is clearlya = 1, so thap = e andC = /1/21t. Hence the numbé; of labelled rooted
trees om vertices satisfies - 1
== 32,
n V2n

SinceT; = n"~1 by Cayley’s Theorem, we obtain

nn—i—1/2
e'] )

n! ~ /211

in other words, Stirling’s formula.

Bender’'s Theorem

Bender's Theorem generalises the theorem of Meir and Moon by treating a very much
more general class of implicitly defined functions. Thysill be defined as a function
of x by the equatior(x,y) = 0. In the case of Meir and Moon, we hakéx,y) =

y—X®(y).



Theorem 5 Suppose that ¥ f(x) is defined implicitly by the equation(ky) = O,
and let f(x) = 3 >0 faX". Suppose that there exist real numb&endn such that

(a) F is analytic in a neighbourhood @&, n);

(b) F(§,n) =0and K(&,n) =0, but K(&,n) # 0and FKy(&,n) # 0 (subscripts denote
partial derivatives);

(c) the only solution of Fx,y) = Fy(x,y) =0with [x| <& and|y| <nis(x,y) = (§,n).

Then
fr ~ Cn—?:/ZE—n7

B &Rx(&,n)
= || 2ryy (&)

Note that the conditiofyy(X,y) # O is required for the Implicit Function Theorem.
So we expect thatg,n) will be the nearest point to the origin at which the function
f(x) defined in this way has a singularity, so that its radius of convergeréceBen-
der's theorem is a precise statement about its asymptotics which is much stronger than
merely saying that lig,. ()" = &1,

where

Example: Wedderburn—Etherington numbers Recall from Chapter 3 that the
generating function for these numbers satisfies

f(x) = x+%(f(x)2+ f(x%)).
Here we haver (x,y) =y —x— (y?+g(x))/2, whereg(x) = f(x?), which we regard
as a “known” function (using a truncation of its Taylor series to approximate it).

The equatiorfFy(&,n) = 0 gives us that) = 1; the the equatiof (§,n) = 0 then
givesg(§) = 1—2&. This equation can be solved numerically (it is the same one
we solved in Chapter 3 to find the radius of convergencé (af). The remaining
conditions of the theorem can then be verified.

We obtain§ 1 = 2.483.. ., and hence

fn -~ Cn—3/2£—ﬂ7

whereC can also be found numerically if desired.



