
C50 Enumerative & Asymptotic Combinatorics

Notes 10 Spring 2003

A number of non-trivial analytic results have been proved for the purpose of ob-
taining asymptotic formulae for combinatorially defined numbers. These include theo-
rems of Hayman, Meir and Moon, and Bender. I will not give proofs of these theorems,
but treat them as black boxes and give examples to illustrate their use.

Hayman’s Theorem

Hayman’s Theorem is an important result on the asymptotic behaviour of the coeffi-
cients of certainentire functions (i.e., functions which are analytic in the entire com-
plex plane).

The theorem applies only to a special class of such functions, the so-calledH-
admissibleor Hayman-admissiblefunctions. Rather than attempt to give a general
definition of this class, I will state a theorem of Hayman showing that it is closed
under certain operations, which suffice to show that any function in which we are
interested is H-admissible. See Hayman’s paper in the bibliography, or Odlyzko’s
survey.

Theorem 1 (a) If f is H-admissible and p is a polynomial with real coefficients, then
f + p is H-admissible.

(b) If p is a non-constant polynomial with real coefficients such thatexp(p(x)) =
∑qnxn with qn > 0 for n≥ n0, thenexp(p(x)) is H-admissible.

(c) If p is a non-constant real polynomial with leading term positive, and f is H-
admissible, then p( f (x)) is H-admissible.

(d) If f and g are H-admissible, thenexp( f (x) and f(x)g(x) are H-admissible.

Corollary 2 The exponential function is H-admissible.

Now Hayman’s Theoremis the following.

1



Theorem 3 Let f(x) = ∑n≥0 fnxn be H-admissible. Let a(x) = x f ′(x)/ f (x) and b(x) =
xa′(x), and let rn be the smallest positive root of the equation a(x) = n. Then

fn∼
1√

2πbn
f (rn)r−n

n .

Example: Stirling’s formula Take f (x) = exp(x) (we have noted that this function
is admissible), so thatfn = 1/n!. Now a(x) = x = b(x), andrn = n. Thus

1
n!

=
1√
2πn

enn−n,

which is just Stirling’s formula the other way up!

Example: Bell numbers Let f (x) = exp(exp(x)−1), so thatfn = B(n)/n!, where
B(n) is the number of partitions of ann-set. This function is H-admissible. Now
a(x) = xex andb(x) = (x+x2)ex.

The numberrn is the smallest positive solution ofxex = n. In terms of this, we
have

B(n)
n!
∼ 1√

2πn(1+ rn)
en/rn−1r−n

n ,

and so by Stirling’s formula,

B(n)∼ 1√
1+ rn

(
n

ern

)n

en/rn−1.

Of course, this is not much use without a good estimate forrn. However, for
n = 100, the right-hand side is within 0.4% ofB(100).

In fact, it can be shown that

rn = logn− log logn+O

(
log logn

logn

)
,

from which it can be deduced that

logB(n)∼ nlogn−nlog logn−n.

The theorem of Meir and Moon

The theorem of Meir and Moon (which has been generalised by Bender) gives the
asymptotics of the coefficients of a power series defined by Lagrange inversion (com-
pare Notes 8). Typically we have to find the inverse function off . Settingφ(x) =
x/ f (x), the inverse functiong is given by the functional equationg(y) = yφ(g(y)).
Replacingy by x andg by f , the theorem is as follows.
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Theorem 4 Let y= f (x) = ∑ fnxn satisfy the equation

y = xΦ(y),

whereΦ is analytic in some neighbourhood of the origin, withΦ(x) = ∑anxn. Suppose
that the following conditions hold:

(a) a0 = 1 and an≥ 0 for n≥ 0.

(b) gcd{n : an > 0}= 1.

(c) There is a positive real numberα, inside the circle of convergence ofΦ, satisfying

αΦ′(α) = Φ(α).

Then
fn∼Cn−3/2βn,

where C=
√

Φ(α)/2πΦ′′(α) andβ = Φ(α)/α = Φ′(α).

Example: Rooted trees The generating functiony = T∗(x) for labelled rooted trees
satisfies

y = xexp(y).

The exponential function converges everywhere, and the solution ofαexp(α) = exp(α)
is clearlyα = 1, so thatβ = e andC=

√
1/2π. Hence the numberT∗n of labelled rooted

trees onn vertices satisfies
T∗n
n!

=
1√
2π

n−3/2en.

SinceT∗n = nn−1 by Cayley’s Theorem, we obtain

n! ∼
√

2π
nn+1/2

en ,

in other words, Stirling’s formula.

Bender’s Theorem

Bender’s Theorem generalises the theorem of Meir and Moon by treating a very much
more general class of implicitly defined functions. Thus,y will be defined as a function
of x by the equationF(x,y) = 0. In the case of Meir and Moon, we haveF(x,y) =
y−xΦ(y).
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Theorem 5 Suppose that y= f (x) is defined implicitly by the equation F(x,y) = 0,
and let f(x) = ∑n≥0 fnxn. Suppose that there exist real numbersξ andη such that

(a) F is analytic in a neighbourhood of(ξ,η);

(b) F(ξ,η) = 0and Fy(ξ,η) = 0, but Fx(ξ,η) 6= 0and Fyy(ξ,η) 6= 0 (subscripts denote
partial derivatives);

(c) the only solution of F(x,y) = Fy(x,y) = 0 with |x| ≤ ξ and|y| ≤η is (x,y) = (ξ,η).

Then
fn∼Cn−3/2ξ−n,

where

C =

√
ξFx(ξ,η)

2πFyy(ξ,η)
.

Note that the conditionFy(x,y) 6= 0 is required for the Implicit Function Theorem.
So we expect that(ξ,η) will be the nearest point to the origin at which the function
f (x) defined in this way has a singularity, so that its radius of convergence isξ. Ben-
der’s theorem is a precise statement about its asymptotics which is much stronger than
merely saying that limn→∞( fn)1/n = ξ−1.

Example: Wedderburn–Etherington numbers Recall from Chapter 3 that the
generating function for these numbers satisfies

f (x) = x+
1
2

( f (x)2 + f (x2)).

Here we haveF(x,y) = y− x− (y2 + g(x))/2, whereg(x) = f (x2), which we regard
as a “known” function (using a truncation of its Taylor series to approximate it).

The equationFy(ξ,η) = 0 gives us thatη = 1; the the equationF(ξ,η) = 0 then
gives g(ξ) = 1− 2ξ. This equation can be solved numerically (it is the same one
we solved in Chapter 3 to find the radius of convergence off (x)). The remaining
conditions of the theorem can then be verified.

We obtainξ−1 = 2.483. . ., and hence

fn∼Cn−3/2ξ−n,

whereC can also be found numerically if desired.
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