
C50 Enumerative & Asymptotic Combinatorics

Notes 1 Spring 2003

This course is about counting. Of course this doesn’t mean just counting a single
finite set. Usually, we have a family of finite sets indexed by a natural numbern, and
we want to findF(n), the cardinality of thenth set in the family.

What is counting?

There are several kinds of answer to this question:

• An explicit formula (which may be more or less complicated, and in particular
may involve a number of summations).

• A recurrence relation expressingF(n) in terms of values ofF(m) for m< n.

• A closed form for agenerating functionfor F . (The two types of generating
function most often used are theordinary generating function∑F(n)xn, and the
exponential generating function∑F(n)xn/n! .) These are elements of the ring
Q[[x]] of formal power series. They may or may not converge if a given non-
zero complex number is substituted forx. (Formal power series are discussed
further in the next section.)

If a generating function converges, it is possible to find the coefficients by ana-
lytic methods (differentiation or contour integration).

• An asymptotic estimate forF(n) is a functionG(n), typically expressed in terms
of the standard functions of analysis, such thatF(n)−G(n) is of smaller or-
der of magnitude thanG(n). (If G(n) does not vanish, we can write this as
F(n)/G(n)→ 1 asn→ ∞.) We writeF(n)∼G(n) if this holds. This might be
accompanied by an asymptotic estimate forF(n)−G(n), and so on; we obtain
an asymptotic seriesfor F . (The basics of asymptotic analysis are described
further in the third section of this chapter.)
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• Related to counting combinatorial objects is the question of generating them.
The first thing we might ask for is a system of sequential generation, where we
can produce an ordered list of the objects. Again there are two possibilities.

If the number of objects isF(n), we might ask for a construction which, giveni
with 0≤ i ≤ F(n)−1, produces theith object on the list directly.

Alternatively, we may simply require a method of moving from each object to
the next.

• We could also ask for a method for random generation of an object. If we have
a technique for generating theith object directly, we simply choose a random
number in the range{0, . . . ,F(n)−1} and generate the corresponding object. If
not, we have to rely on other methods such as Markov chains.

Here are a few examples. These will be considered in more detail later in the
course.

Example: subsets The number of subsets of{1, . . . ,n} is 2n. Not only is this a
simple formula to write down; it is easy to compute as well. At most 2 log2n integer
multiplications are required.

To see this, writen in base 2:n= 2a1 +2a2 + · · ·+2ar , wherea1> · · ·> ar . Now we

can compute 22
i
for 1≤ i ≤ a1 by a1 successive squarings (noting that 22i+1

=
(

22i
)2

);

then 2n = (22a1) · · ·(22ar ) requiresr−1 further multiplications.
There is a simple recurrence relation forF(n) = 2n, namely

F(0) = 1, F(n) = 2F(n−1) for n≥ 1.

Using this,F(n) can be found with justn−1 integer doublings.
The ordinary generating function of the sequence(2n) is 1/(1− 2x), while the

exponential generating function is exp(2x). (I will use exp(x) instead of ex in these
notes, except in some places involving calculus.)

No asymptotic estimate is needed, since we have a simple exact formula.
Choosing a random subset, or generating all subsets in order, are easily achieved

by the following method. For eachi ∈ {0, . . . ,2n−1}, write i in base 2, producing a
string of lengthn of zeros and ones. Nowj belongs to theith subset if and only if the
jth symbol in the string is 1.

Example: permutations The number of permutations of{1, . . . ,n} is n! , defined
as usual as the product of the natural numbers from 1 ton. This formula is not so
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satisfactory, involving ann-fold product. It can be expressed in other ways, as a sum:

n! =
n

∑
k=0

(−1)n−k
(

n
k

)
(n−k)n,

or as an integral:

n! =
∫ ∞

0
xne−x dx.

Neither of these is easier to evaluate than the original definition.
The recurrence relation forF(n) = n! is

F(0) = 1, F(n) = nF(n−1) for n≥ 1.

This leads to the same method of evaluation as we saw earlier.
The ordinary generating function forF(n) = n! fails to converge anywhere. The

exponential generating function is 1/(1−x), convergent for|x|< 1.
As an example to show that convergence is not necessary for a power series to be

useful, let (
1+ ∑

n≥1
n!xn

)−1

= 1−∑
n≥1

c(n)xn.

Thenc(n) is the number of connected permutations on{1, . . . ,n}. (A permutationπ
is connectedif there does not existk with 1≤ k≤ n−1 such thatπ maps{1, . . . ,k} to
itself.)

An asymptotic estimate forn! is given byStirling’s formula:

n! ∼
√

2πn
(n

e

)n
.

It is possible to generate permutations sequentially, or choose a random permuta-
tion, by a method similar to that for subsets.

Example: derangements A derangement is a permutation with no fixed points. Let
d(n) be the number ofderangementsof n.

There is a simple formula ford(n): it is the nearest integer ton!/e. This is also
satisfactory as an asymptotic expression ford(n); we can supplement it with the fact
that|d(n)−n!/e|< 1/(n+1) for n> 0.

This formula is not very good for calculation, since it requires accurate knowledge
of e and operations of real (rather than integer) arithmetic. There are, however, two
recurrence relations ford(n); the second, especially, leads to efficient calculation:

d(0) = 1, d(1) = 0, d(n) = (n−1)(d(n−1)+d(n−2)) for n≥ 2;

d(0) = 1, d(n) = nd(n−1)+(−1)n for n≥ 1.
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The ordinary generating function ford(n) fails to converge, but the exponential
generating function is equal to exp(−x)/(1−x).

Since the probability that a random permutation is a derangement is about 1/e, we
can choose a random derangement as follows: repeatedly choose a random permuta-
tion until a derangement is obtained. The expected number of choices necessary is
about e.

Example: partitions The partition number p(n) is the number of ways of non-
increasing sequences of positive integers with sumn. There is no simple formula for
p(n). However, quite a bit is known about it:

• The ordinary generating function is

∑
n≥0

p(n)xn = ∏
k≥1

(1−xk)−1.

• There is a recurrence relation:

p(n) = ∑(−1)k−1p(n−k(3k−1)/2),

where the sum is over all non-zero values ofk, positive and negative, for which
n−k(3k−1)/2≥ 0. Thus,

p(n) = p(n−1)+ p(n−2)− p(n−5)− p(n−7)+ p(n−12)+ · · · ,

where there are about
√

8n/3 terms in the sum.

• The asymptotics ofp(n) are rather complicated, and were worked out by Hardy,
Littlewood, and Rademacher.

Example: set partitions The Bell number B(n) is the number of partitions of the
set{1, . . . ,n}. Again, no simple formula is known, and the asymptotics are very com-
plicated. There is a recurrence relation,

B(n) =
n

∑
k=1

(
n−1
k−1

)
B(n−k),

and the exponential generating function is

∑ B(n)xn

n!
= exp(exp(x)−1).

Based on the recurrence one can derive a sequential generation algorithm.
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Formal power series

Let R be a commutative ring with identity. Aformal power seriesover R is just a
function from the natural numbers toR; that is, an infinite sequence

r0, r1, r2, . . . , rn, . . . (1)

of elements ofR. We define addition and multiplication of such infinite series to make
the set of formal power series into a ring. The definitions look more natural if we write
the sequence (1) as

r0 + r1x+ r2x2 + · · ·+ rnxn + · · · (2)

The symbolx in this expression is just a dummy with no meaning; the “power” of
x allows us to keep track of our place in the series. No infinite summation is actually
involved! We denote the set of all formal power series byR[[x]]. If we had used a
different symbol, sayy, in the expression (2), we would writeR[[y]] instead. We often
abbreviate (2) to

∑
n≥0

rnxn. (3)

A polynomialis simply a formal power series in which all but finitely many of the
terms are zero. Thedegreeof a polynomial is the index of the last non-zero term. The
set of polynomials is denoted byR[x].

We define addition and multiplication of formal power series by(
∑
n≥0

rnxn

)
+

(
∑
n≥0

snxn

)
= ∑

n≥0
(rn +sn)xn,(

∑
n≥0

rnxn

)
·

(
∑
n≥0

snxn

)
= ∑

n≥0
tnxn,

where

tn =
n

∑
k=0

rksn−k.

Note that these operations involve only finite additions and multiplications of ring
elements.

With these operations,R[[x]] is a ring, andR[x] a subring. We don’t stop to prove
this, as the verifications are routine.

Various other apparently “infinitary” operations can be defined which only involve
finite sums and products. For example,
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• Suppose thatf0, f1, . . . ∈ R[[x]] have the property that the index of the smallest
non-zero term infn tends to infinity withn. Then

∑
n≥0

fn

is defined. In particular, iffn = rnxn, the condition is satisfied, and this definition
of the infinite sum agrees with our notation for the formal power series∑ rnxn.

• With the same conditions,

∏
n≥0

(1+ fn)

is defined: it is the sum of terms, each of which is the product of finitely manyfn
(taking 1 from the remaining factors in the infinite product); and by assumption
only finitely many such products contribute to the coefficient ofxn for anyn.

• Let f andg be formal power series in which the constant term ofg is zero. Then
the result of substitutingg into f is defined: if f (x) = ∑ rnxn, then f (g(x)) =
∑ rngn.

A result which is important for enumeration is the following, though we are more
concerned with the method of proof than the statement.

Proposition 1 A formal power series is invertible if and only if its constant term is
invertible.

Proof Suppose thatf = ∑ rnxn andg = ∑snxn satisfy f g = 1. Considering the term
of degree zero, we see thatr0s0 = 1, so thatr0 is invertible.

Conversely, suppose thatr0s0 = 1, wheref = ∑ rnxn. The inverseg = ∑snxn must
satisfy

n

∑
k=0

rksn−k = 0

for n> 0; so

sn =−s0

n

∑
k=1

rksn−k.

Thus the coefficients ofg satisfy a linear recurrence relation, and can be determined
recursively.

In general, knowledge of the inverse of a formal power series is equivalent to
knowledge of a linear recurrence relation for its coefficients.

6



Example: Fibonacci numbers Let f (x) = 1− x− x2. Then the coefficients of the
inverse(1−x−x2)−1 = ∑snxn satisfy the recurrence

s0 = s1 = 1, sn = sn−1 +sn−2 for n≥ 2;

in other words, they are the Fibonacci numbers.

For the purposes of enumeration, the coefficients of formal power series are usually
integers or rational numbers. Often it is convenient to consider them as real numbers,
and apply to them the processes of analysis.

For example, considering the Fibonacci numbers above, letα andβ be the roots
of the quadratic equationz2−z−1 = 0: thus,α = (

√
5+1)/2 andβ = (−

√
5+1)/2.

Then

1
1−x−x2 =

1
α−β

(
α

1−αx
− β

1−βx

)
=

1√
5

(
∑
n≥0

αn+1xn−∑
n≥0

βn+1xn

)
;

so thenth Fibonacci number is

Fn =
1√
5

(αn+1−βn+1).

Since|β|< 1, we see thatFn is the nearest integer toαn+1/
√

5.

Particular formal power series of great importance include

exp(x) = ∑
n≥0

xn

n!
,

log(1+x) = ∑
n≥1

(−1)n−1xn

n
.

Asymptotics

We introduce the notation for describing the asymptotic behaviour of functions here,
though we will not do any serious asymptotic estimation for a while.

Let F andG be functions of the natural numbern. For convenience we assume
thatG does not vanish. We write

• F = O(G) if F(n)/G(n) is bounded above asn→ ∞;
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Figure 1: Stirling’s formula

• F = Ω(G) if F(n)/G(n) is bounded below asn→ ∞;

• F = o(G) if F(n)/G(n)→ 0 asn→ ∞;

• F ∼G if F/G→ 1 asn→ ∞.

Typically, F is a combinatorial enumeration function, andG a combination of
standard functions of analysis. For example, Stirling’s formula gives the asymptotics
of the number of permutations of{1, . . . ,n}. We give the proof as an illustration.

Theorem 2

n! ∼
√

2πn
(n

e

)n

Proof We outline a proof, apart from identifying the constant
√

2π. Consider the
graph of the functiony = logx betweenx = 1 andx = n, together with the piecewise
linear functions shown in Figure 1.

Let f (x) = logx, let g(x) be the function whose value is logm for m≤ x<m+ 1,
and leth(x) be the function defined by the polygon with vertices(m, logm), for 1≤
m≤ n. Clearly ∫ n

1
g(x) dx = log2+ · · ·+ logn = logn! .

The difference between the integrals ofg andh is the sum of the areas of triangles
with base 1 and total height logn; that is,1

2 logn.
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Some calculus shows that the difference between the integrals off andg tends to
a finite limit c asn→ ∞. (Show that| f (x)−g(x)|= O(1/m2) for m≤ x<m+1.)

Finally, a simple integration shows that∫ n

1
f (x) dx = nlogn−n+1.

We conclude that

logn! = nlogn−n+ 1
2 logn+(1−c)+o(1),

from which the result follows.

The seriesG0(n)+G1(n)+G2(n)+ · · · is anasymptotic seriesfor F(n) if

F(n)−
i−1

∑
j=0

G j(n)∼Gi(n)

for i ≥ 0. (So in particularF(n)∼G0(n), F(n)−G0(n)∼G1(n), and so on. Note that
Gi(n) = o(Gi−1(n)) for all i.)

Warnings:

• an asymptotic series is not necessarily convergent;

• it is not necessarily the case that taking more terms in the series gives a better
approximation toF(n) for a fixedn.

For example, Stirling’s formula can be extended to an asymptotic series forn!, namely

√
2πn

(n
e

)n
(

1+
1

12n
+

1
288n2 + · · ·

)
.

Regarding a generating function for a sequence as a function of a real or complex
variable is a powerful method for studying the asymptotic behaviour of the sequence.
We will see examples of this later; here is a simple observation.

Suppose thatA(z) = ∑anzn defines a function which is analytic in some neigh-
bourhood of the origin in the complex plane. Suppose that the smallest modulus of a

singularity ofA(z) is R. Then limsupa1/n
n = 1/R, soan is bounded by(c+ε)n but not

by (c− ε)n for largen, wherec = 1/R.
For example, we saw that the generating function of the Fibonacci numbers is

1/(1− z− z2). So these numbers grow roughly likeαn, whereα is the reciprocal of
the smaller root of 1−z−z2 = 0, namelyα = (1+

√
5)/2.
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On the other hand, ifA(z) is analytic everywhere, thenan ≤ εn for n> n0(ε), for
any positiveε. Indeed,an = o(εn) for any positiveε.

For example, ifB(n) is thenth Bell number, then

∑
n≥0

B(n)zn

n!
= eez−1,

which is analytic everywhere. SoB(n) = o(εnn!), for any positiveε.

Complexity

A formula like 2n (the number of subsets of ann-set) can be evaluated quickly for
a given value ofn. A more complicated formula with multiple sums and products
will take longer to calculate. We could regard a formula which takes more time to
evaluate than it would take to generate all the objects and count them as being useless
in practice, even if it has theoretical value.

Traditional computational complexity theory refers to decision problems, where
the answer is just “yes” or “no” (for example, “Does this graph have a Hamiltonian
circuit?”). The size of an instance of a problem is measured by the number of bits of
data required to specify the problem (for example,n(n−1)/2 bits to specify a graph
onn vertices). Then the time complexity of a problem is the functionf , wheref (n) is
the maximum number of steps required by a Turing machine to compute the answer
for an instance of sizen. To allow for variations in the format of the input data and
in the exact specification of a Turing machine, complexity classes are defined with a
broad brush: for example,P (or “polynomial-time”) consists of all problems whose
time complexity is at mostnc for some constantc. (For more details, see Garey and
Johnson,Computers and Intractability.)

For counting problems, the answer is a number rather than a single Boolean value
(for example, “How many Hamiltonian circuits does this graph have?”). Complexity
theorists have defined the complexity class#P (“number-P”) for this purpose.

Even this class is not really appropriate for counting problems of the type we
mostly consider. Consider, for example, the question “How many partitions does an
n-set have?” The input data is the integern, which (if written in base 2) requires only
m = d1+ log2ne bits to specify. The question asks us to calculate the Bell number
B(n), which is greater than 2n−1 for n > 2, and so it takes time exponential inm
simply to write down the answer! To get round this difficulty, it is usual to pretend
that the size of the input data is actuallyn rather than logn. (We can imagine thatn is
given by writingn consecutive 1s on the input tape of the Turing machine, that is, by
writing n as a tally rather than in base 2.)
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We have seen that computing 2n (the number of subsets of ann-set) requires only
O(logn) integer multiplications. But the integers may have as many asndigits, so each
multiplication takesO(n) Turing machine steps. Similarly, the solution to a recurrence
relation can be computed in time polynomial inn, provided that each individual com-
putation can be.

On the other hand, a method which involves generating and testing every subset
or permutation will take exponentially long, even if the generation and testing can be
done efficiently.

A notion of complexity relevant to this situation is the polynomial delay model,
which asks that the time required to generate each object should be at mostnc for some
fixedc, even if the number of objects to be generated is greater than polynomial.

Of course, it is easy to produce combinatorial problems whose solution grows
faster than, say, the exponential of a polynomial. For example, how many intersecting
families of subsets of ann-set are there? The total number, forn odd, lies between
22n−1

and 22
n
, so that even writing down the answer takes time exponential inn.

We will not consider complexity questions further in this course.
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