University of London

C50
 Enumerative \& Asymptotic Combinatorics

Exercises 8

1 Let k be fixed and $n \rightarrow \infty$. Prove that

$$
S(n, k) \sim k^{n} / k!\quad \text { and } \quad S(n, n-k) \sim n^{2 k} / 2^{k} k!.
$$

Find similar asymptotic estimates for $s(n, k)$ and $s(n, n-k)$.
2 Prove that the denominator of the nth Bernoulli number B_{n} divides $(n+1)$!. (In other words, prove that $(n+1)!B_{n}$ is an integer.)

3 Prove that, for $k>0$,

$$
\sum_{i=1}^{n} i^{k}=\frac{1}{k+1}\left(B_{k+1}(n+1)-B_{k+1}(0)\right),
$$

where $B_{k+1}(t)$ is the Bernoulli polynomial of degree $k+1$. Hence derive Faulhaber's formula.

4 Apply the Euler-Maclaurin sum formula to the function $f(x)=1 / x$ to show

$$
\sum_{i=1}^{n} \frac{1}{i} \sim \log n+\gamma-\sum \frac{B_{k}}{k n^{k}} .
$$

where γ is Euler's constant. (Its value is approximately $0.5772157 \ldots$. .)
5 Let s_{n} be the number of permutations of $\{1, \ldots, n\}$ which are equal to their inverses. Prove that

$$
\sum_{n \geq 0} \frac{s_{n} x^{n}}{n!}=\exp \left(x+\frac{x^{2}}{2}\right)
$$

and use Hayman's Theorem to show that

$$
s_{n} \sim \frac{1}{\sqrt{2}}\left(\frac{n}{\mathrm{e}}\right)^{n / 2} \mathrm{e}^{\sqrt{n}-1 / 4} .
$$

