

C50 Enumerative & Asymptotic Combinatorics

Exercises 7 Spring 2003

- 1 Count the labelled trees in which the vertex i has valency a_i for $1 \le i \le n$, where a_1, \ldots, a_n are positive integers with sum 2n 2.
- 2 Show that the cycle index for the species C of circular structures is

$$\mathcal{Z}(C) = 1 - \sum_{m \ge 1} \frac{\phi(m)}{m} \log(1 - s_m).$$

Use the fact that

$$\mathcal{P} \sim \mathcal{S}[\mathcal{C}]$$

to show that

$$\mathcal{Z}(\mathcal{P}) = \prod_{n \ge 1} (1 - s_n)^{-1}.$$

Can you give a direct proof of this?

3 Use the result of the preceding exercise, and the fact that $c_n = 1$ for all n (where c_n is the number of unlabelled n-element structures in C) to prove the identity

$$\prod_{m>1} (1-x^m)^{-\phi(m)/m} = \exp(x/(1-x)).$$

4 Suppose that g_n is the number of unlabelled *n*-element objects in the species \mathcal{G} . Show that the generating function for unlabelled structures in $\mathcal{S}[\mathcal{G}]$ is

$$\prod_{n\geq 1} (1-x^n)^{-g_n}.$$

Verify this combinatorially in the case G = S. How would you describe the objects of S[S]?

5 Let \mathcal{G} be a species. The *Stirling numbers* of \mathcal{G} are the numbers $S(\mathcal{G})(n,k)$, defined to be the number of partitions of an *n*-set into *k* parts with a \mathcal{G} -object on each part.

- (a) Prove that, for G = S, C and L respectively, the Stirling numbers are respectively the Stirling numbers S(n,k) of the second kind, the unsigned Stirling numbers |s(n,k)| of the first kind, and the Lah numbers L(n,k) respectively.
- (b) Let S(G) be the lower triangular matrix of Stirling numbers of G. Prove that

$$S(G)S(\mathcal{H}) = S(\mathcal{H}[G]).$$

- (c) Let (a_n) and (b_n) be sequences of positive integers with exponential generating functions A(x) and B(x) respectively. Prove that the following two conditions are equivalent:
 - $a_0 = b_0$ and $b_n = \sum_{k=1}^n S(\mathcal{G})(n,k)a_k$ for $n \ge 1$;
 - B(x) = A(G(x) 1).
- 6 A *forest* is a graph whose connected components are trees. Show that there is a bijection between labelled forests of rooted trees on n vertices, and labelled rooted trees on n+1 vertices with root n+1.

Hence show that, if a forest of rooted trees on n vertices is chosen at random, then the probability that it is connected tends to the limit 1/e as $n \to \infty$.

Remark It is true but harder to prove that the analogous limit for unrooted trees is $1/\sqrt{e}$.

7 Let \mathcal{U} be the *subset* species: a \mathcal{U} -object consists of a distinguished subset of its ground set. Calculate the cycle index of \mathcal{U} . Hence or otherwise prove that the enumeration functions of \mathcal{U} are

$$U(x) = \exp(2x),$$

 $u(x) = (1-x)^{-2}.$