University of London

C50 Enumerative \& Asymptotic Combinatorics

Exercises 6

1 Let A_{1}, \ldots, A_{n} be subsets of X. For $J \subseteq N=\{1, \ldots, n\}$, let A_{J} consist of the points of X lying in A_{i} for all $i \in J$, and B_{J} the points lying in A_{i} if $i \in J$ and not if $i \notin J$. Show that

$$
\left|B_{J}\right|=\sum_{J \subseteq K \subseteq N}(-1)^{|K \backslash J|}\left|A_{K}\right| .
$$

2 Let real numbers a_{J} and b_{J} be given for each subset J of $N=\{1, \ldots, n\}$. Prove that the following conditions are equivalent:
(a) $a_{J}=\sum_{I \subset J} b_{I}$ for all $J \subseteq N$;
(b) $b_{J}=\sum_{I \subseteq J}(-1)^{|J \backslash I|} a_{I}$ for all $J \subseteq N$.

3 By taking the numbers a_{J} and b_{J} of the preceding exercise to depend only on the cardinality j of J, show that the following statements are equivalent for two sequences $\left(x_{i}\right)$ and $\left(y_{i}\right)$:
(a) $x_{j}=\sum_{i=0}^{j} y_{i}$;
(b) $y_{j}=\sum_{i=0}^{j}(-1)^{j-i} y_{i}$.

4 Prove that

$$
S(n, k)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(k-j)^{n} .
$$

5 Let x and y be elements of a poset X, with $x \leq y$. A chain from x to y is a sequence $x=x_{0}, x_{1}, \ldots, x_{l}=y$ with $x_{i-1}<x_{i}$ for $i=1, \ldots, l ;$ its length is l. Show that

$$
\mu(x, y)=\sum_{c \in C}(-1)^{l(c)}
$$

where C is the set of all chains from x to y, and $l(c)$ is the length of c.
6 Let $d(n)$ be the number of divisors of the positive integer n. Prove that

$$
\sum_{m \mid n} d(m) \mu(n / m)=1
$$

for $n>1$.
7 Let $\mathcal{P}(X)$ denote the poset whose elements are the partitions of the set X, with $P \leq Q$ if P refines Q (that is, every part of P is contained in a part of Q). Let E be the partition into sets of size 1 . Suppose that $|X|=n$.
(a) Show that, if the parts of P have sizes a_{1}, \ldots, a_{r}, then

$$
\mu(E, P)=(-1)^{n-r}\left(a_{1}-1\right)!\cdots\left(a_{r}-1\right)!.
$$

(b) Show that any interval $[P, Q]$ is isomorphic to a product of posets of the form $\mathcal{P}\left(X_{j}\right)$, and hence calculate $\mu(P, Q)$.

8 Let G be the cyclic group consisting of all powers of the permutation

$$
g: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1
$$

Show that the cycle index of G is

$$
Z(G)=\frac{1}{n} \sum_{m \mid n} \phi(n / m) s_{n / m}^{m},
$$

where ϕ is Euler's function.
9 A necklace is made of n beads of q different colours. Necklaces which differ only by a rotation are regarded as the same. Show that the number of different necklaces is

$$
\frac{1}{n} \sum_{m \mid n} q^{m} \phi(n / m)
$$

while the number which have no rotational symmetry is

$$
\frac{1}{n} \sum_{m \mid n} q^{m} \mu(n / m)
$$

(Notice that, if q is a prime power, the second expression is equal to the number of monic irreducible polynomials of degree n over $\operatorname{GF}(q)$. Finding a bijective proof of this fact is much harder!)

10 A function F on the natural numbers is said to be multiplicative if

$$
\operatorname{gcd}(m, n)=1 \Rightarrow F(m n)=F(m) F(n) .
$$

(a) Suppose that F and G are multiplicative. Show that the function H defined by

$$
H(n)=\sum_{k \mid n} F(k) G(n / k)
$$

is multiplicative.
(b) Show that the Möbius and Euler functions are multiplicative.
(c) Let $d(n)$ be the number of divisors of n, and $\sigma(n)$ the sum of the divisors of n. Show that d and σ are multiplicative.

11 Prove the following "approximate version" of PIE:
Let $A_{1}, \ldots, A_{n}, A_{1}^{\prime}, \ldots, A_{n}^{\prime}$ be subsets of a set X. For $I \subseteq N=\{1, \ldots, n\}$, let

$$
a_{I}=\left|\bigcap_{i \in I} A_{i}\right|, \quad a_{I}^{\prime}=\left|\bigcap_{i \in I} A_{i}^{\prime}\right| .
$$

If $a_{I}=a_{I}^{\prime}$ for all proper subsets I of N, then $\left|a_{N}-a_{N}^{\prime}\right| \leq|X| / 2^{n-1}$.

