University of London

C50 Enumerative \& Asymptotic Combinatorics

Exercises 4

1 Prove that, for $0 \leq k \leq n$,

$$
\left[\begin{array}{l}
2 n \\
2 k
\end{array}\right]_{-1}=\left[\begin{array}{c}
2 n+1 \\
2 k
\end{array}\right]_{-1}=\left[\begin{array}{l}
2 n+1 \\
2 k+1
\end{array}\right]_{-1}=\binom{n}{k},
$$

and

$$
\left[\begin{array}{l}
2 n+2 \\
2 k+1
\end{array}\right]_{-1}=0 .
$$

(I am grateful to Aidan Bruen for this exercise.)
2 (a) Prove that, for $0<k<n$,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}+\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+\left(q^{n-1}-1\right)\left[\begin{array}{l}
n-2 \\
k-1
\end{array}\right]_{q} .
$$

(b) Let

$$
F_{q}(n)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q},
$$

so that, if q is a prime power, then $F_{q}(n)$ is the total number of subspaces of an n-dimensional vector space over $\operatorname{GF}(q)$. Prove that

$$
F_{q}(0)=1, F_{q}(1)=2, \quad F_{q}(n)=2 F_{q}(n-1)+\left(q^{n-1}-1\right) F_{q}(n-2) \text { for } n \geq 2 .
$$

(c) Deduce that, if $q>1$, then $F_{q}(n) \geq c q^{n^{2} / 4}$ for some constant c (depending on q).

3 This exercise shows that the Gaussian coefficients have a counting interpretation for all positive integer values of q (not just prime powers).

Suppose that q is an integer greater than 1 . Let Q be a finite set of cardinality q containing two distinguished elements 0 and 1 . We say that a $k \times n$ matrix with entries from Q is in reduced echelon form if the following conditions hold:

- If a row has any non-zero entries, then the first such entry is 1 (such entries are called "leading 1 ");
- if $i<j$ and row j is non-zero, then row i is also non-zero, and its leading 1 occurs to the left of the leading 1 in row j;
- if a column contains the leading 1 of some row, then all other entries in that column are 0 .

Prove that $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the number of $k \times n$ matrices in reduced echelon form with no rows of zeros.

4 A matrix is said to be in echelon form if it satisfies the first two conditions in the definition of reduced echelon form. Show that, if q is an integer greater than 2, the right-hand side of the q-binomial theorem with $x=1$ counts the number of $n \times n$ matrices in echelon form.

How many $n \times n$ matrices in reduced echelon form are there?
5 Let $h_{k}\left(x_{1}, \ldots, x_{n}\right)$ be the complete symmetric function of degree k in the indeterminates x_{1}, \ldots, x_{n} (the sum of all monomials of degree k that can be formed using these indeterminates). For example,

$$
h_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}
$$

Prove that
(a) $h_{k}(1,1, \ldots, 1)=\binom{n+k-1}{k}$;
(b) $h_{k}\left(1, q, \ldots, q^{n-1}\right)=\left[\begin{array}{c}n+k-1 \\ k\end{array}\right]_{q}$ for $q \neq 1$.

6 The second proof in the notes of the formula for the number of monic irreducible polynomials over $\mathrm{GF}(q)$ shows that the number is exactly what is required if every element of $\operatorname{GF}\left(q^{n}\right)$ is the root of a unique monic irreducible polynomial of degree dividing n over $\operatorname{GF}(q)$. Turn the argument around to gove a counting proof of the existence and uniqueness of $\operatorname{GF}\left(q^{n}\right)$, given that of $\mathrm{GF}(q)$. Deduce the existence and uniqueness of $\mathrm{GF}(q)$ for all prime powers q.

