University of London

C50 Enumerative \& Asymptotic Combinatorics

Exercises 3

1 Some questions on Fibonacci numbers.
(a) Show that the number of expressions for n as an ordered sum of ones and twos is F_{n}.
(b) Verify the following formula for the sloping diagonals of Pascal's triangle:

$$
\sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n-i}{i}=F_{n} .
$$

(c) Let n be a positive integer. Write down all expressions for n as an ordered sum of positive integers. For each such expression, multiply the summands together; then add the resulting products. Prove that the answer is $F_{2 n-1}$.
(d) In (c), if instead of multiplying the summands, we multiply 2^{d-2} for each summand $d>2$, then the answer is $F_{2 n-2}$.
(e) Prove that, for $n \geq 0$,

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n+2}=\left(\begin{array}{cc}
F_{n} & F_{n+1} \\
F_{n+1} & F_{n+2}
\end{array}\right) .
$$

(f) Use (e) to show that F_{n} can be computed with $O(\log n)$ arithmetic operations on integers.

2 Let A be a finite set of positive integers. Suppose that the currency of a certain country has A as the set of denominations. Prove that the number $f(n)$ of ways of paying a bill of n units, where coins are paid in order, has generating function $1 /(1-$ $\left.\sum_{a \in A} x^{a}\right)$.

Suppose that $A=\{1,2,5,10\}$. Prove that $f(n) \sim c \alpha^{n}$ for some constants c and α, and estimate α.

3 Let a be a binary string of length k with correlation polynomial $C_{a}(x)$. A random binary sequence is obtained by tossing a fair coin, recording 1 for heads and 0 for tails. Let E_{a} be the expected number of coin tosses until the first occurrence of a as a consecutive substring. Prove that E_{a} is the sum, over n, of the probability that a doesn't occur in the first n terms of the sequence. Deduce that $E_{a}=2^{k} C_{a}(1 / 2)$.

4 This exercise is due to Wilf, and illustrates his "snake oil" method.
(a) Prove that

$$
\sum_{n \geq 0}\binom{n+k}{2 k} x^{n+k}=\frac{x^{2 k}}{(1-x)^{2 k+1}}
$$

(b) Let

$$
a_{n}=\sum_{k=0}^{n}\binom{n+k}{2 k} 2^{n-k}
$$

for $n \geq 0$. Prove that the ordinary generating function for $\left(a_{n}\right)$ is

$$
\sum_{n \geq 0} a_{n} x^{n}=\frac{1-2 x}{(1-x)(1-4 x)},
$$

and deduce that $a_{n}=\left(2^{2 n+1}+1\right) / 3$ for $n \geq 0$.
(c) Write down a linear recurrence relation with constant coefficients satisfied by the numbers a_{n}.

5 Let s_{n} be the number of partitions of an n-set into parts of size 1 or 2 (equivalently, the number of permutations of an n-set whose square is the identity). Show that

$$
s_{n}=s_{n-1}+(n-1) s_{n-2} \text { for } n \geq 2,
$$

and hence find the exponential generating function for $\left(s_{n}\right)$ in closed form.
6 Let a_{n} be the number of strings that can be formed from n distinct letters (using each letter at most once, and including the empty string). Prove that

$$
a_{0}=1, \quad a_{n}=n a_{n-1}+1 \text { for } n \geq 1,
$$

and deduce that $a_{n}=\lfloor\mathrm{e} n!\rfloor$. What is the exponential generating function for this sequence?

