
C50 Enumerative & Asymptotic Combinatorics

Solutions to Sample Exam Spring 2003

1 (a) The definition is [
n
k

]
q

=
(qn−1)(qn−1−1) · · ·(qn−k+1−1)

(qk−1)(qk−1−1) · · ·(q−1)
.

The fact that it is a polynomial is most easily seen by induction onn using the recurrence
relation [

n
0

]
q

=
[
n
n

]
q

= 1,

[
n
k

]
q

=
[
n−1
k−1

]
q
+qk

[
n−1

k

]
q

for 0< k< n.

The degree of the polynomial is most easily seen from the original definition: the highest
power ofq has coefficient 1 and exponent

(n+(n−1)+ · · ·(n−k+1))− (k+(k−1)+ · · ·+1 = k(n−k).

(b) By l’Hôpital’s rule,

lim
q→1

qa−1
qb−1

= lim
q→1

aqa−1

bqb−1 =
a
b
.

So

lim
q→1

[
n
k

]
q

=
n(n−1) · · ·(n−k+1)

k(k−1) · · ·1
=
(

n
k

)
.

(c) Theq-binomial theorem states

n

∏
i=1

(1+qi−1z) =
n

∑
k=0

qk(k−1)/2zk
[
n
k

]
q
.

The proof is by induction using the recurrence relation.

(d) If q is a prime power, then
[n

k

]
q is the number ofk-dimensional subspaces of ann-

dimensional vector space over GF(q). More generally, ifq is an integer greater than 1, andQ
a set with distinguished elements 0 and 1, then

[n
k

]
q is the number ofk×n matrices in reduced

echelon form with entries inQ and no zero rows.
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2 (a) The values(p(0), . . . , p(4)) are(1,1,2,3,5): the partitions are/0; (1); (2) and(1,1); (3),
(2,1) and(1,1,1); and(4), (3,1), (2,2), (2,1,1) and(1,1,1,1).

We have

∏
i≥1

(1−xi)−1 = ∏
i≥1

(1+xi +x2i + · · ·).

Terms inxn come from expressionsn= a1+2a2+ · · ·, each such expression contributing 1. But
expressions of this form correspond bijectively to partitions ofn, the partition corresponding to
the above expression havinga1 parts equal to 1,a2 parts equal to 2, and so on. So the identity
is proved.

Let ∏i≥1(1−xi) = ∑n≥ 0q(n)xn. An argument like the above shows thatqn is equal to the
number of partitions ofn into an even number of distinct parts minus the number of partitions
into an odd number of distinct parts. Euler’s Pentagonal Numbers Theorem then asserts that

q(n) =
{

(−1)k if n = k(3k±1) for some integerk,
0 otherwise.

Now we have (
∑
n≥0

p(n)xn

)(
∑
n≥0

q(n)xn

)
= 1,

so

p(n) =−
n

∑
i=1

q(i)p(n− i) = p(n−1)+ p(n−2)− p(n−5)− p(n−7)+ p(n−12)+ · · ·

(b) Each partition of{1, . . . ,n} gives rise to a partition ofn consisting of the cardinalities
of the parts. So we have to find how many times each part occurs. Forn = 4, the partitions
(4), (3,1), (2,2), (2,1,1) and(1,1,1,1) give rise to respectively 1, 4, 3, 6 and 1 partitions of
the set, soB(4) = 15. Similarly the values ofB(0), . . . ,B(3) are 1, 1, 2, 5.

We have the recurrence relation

B(n) =
n

∑
k=1

(
n−1
k−1

)
B(n−k)

since a partition of{1, . . . ,n} is obtained by choosing a set containingn (if this set has car-
dinality k, this can be done in

(n−1
k−1

)
ways) and then a partition of the remaining points (in

B(n−k) ways).
Let F(x) be the e.g.f. of(B(n)). Multiplying the recurrence byxn−1/(n−1)! and summing

overn, we obtain

F ′(x) =

(
∑
k

xk

k!

)(
∑
m

B(m)xm

m!

)
= exp(x)F(x).
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Solving this differential equation with initial conditionF(0) = 1 we obtain

F(x) = exp(exp(x)−1).

An object of the required species is a finite set with a partition.

3 The binomial theorem for arbitrary exponentn states that

(1+x)n = ∑
k≥0

(
n
k

)
xk,

where (
n
k

)
=

n(n−1) · · ·(n−k+1)
k!

.

This is an identity of formal power series, or of analytic functions for|X|< 1.
By the Binomial Theorem,

(1−4x)−1/2 = ∑
k≥0

(
−1/2

k

)
(−4x)k.

The coefficient ofxk is

−1
2
−3
2
· · · −(2k−1)

2
· (−4)k

k!

=
(2k)!
22kk!

22k

k!

=
(

2k
k

)
as required.

We have
(1−4x)−1/2(1−4x)−1/2 = (1−4x)−1 = ∑

n≥0

4nxn.

The term inxn on the left is
n

∑
k=0

(
2k
k

)(
2(n−k)

n−k

)
so the identity holds.

4 Let |X|= n. Take indeeterminatess1, . . . ,sn and put

z(g) =
n

∏
i=1

sci(g)
i ,
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whereci(g) is the number ofi-cycles in the cycle decomposition of the permutationg. Then
the cycle index of the groupG is

Z(G) =
1
|G| ∑g∈G

z(g).

The Orbit-Counting Lemma states that the number of orbits ofG onX is equal to

1
|G| ∑g∈G

c1(g),

wherec1(g) is the number of fixed points ofg.
Take a set of figures with non-negative integer weights, with figure-counting seriesA(x) =

∑anxn, wherean is the number of figures of weightn (assumed finite). Let the number of
orbits ofG on the set of functions fromX to the set of figures having total weightn bebn, and
define the function-counting seriesB(x) = ∑bnxn. Then the Cycle Index Theorem states that

B(x) = Z(G;si ← A(xi) for i = 1, . . . ,n).

The group of rotations of the octahedron has order 24. It contains

• the identity, fixing all eight faces;

• three rotations of order 2 about diagonals, each with four 2-cycles;

• six rotations of order 4 about diagonals, each with two 4-cycles;

• eight rotations of order 3 about lines joining mod-points of the triangular faces, each
with two fixed faces and two 3-cycles;

• six rotations of order 2 about lines joining mid-points of edges, each with four 2-cycles.

So the cycle index is

Z(G) =
1
24

(s8
1 +9s4

2 +6s2
4 +8s2

1s2
3.

Let the figure ‘red’ have weight 0 and the figure ‘blue’ have weight 1. Then the figure-
counting series is 1+ x, so by the Cycle Index Theorem, the required generating function is
Z(G;si ← 1+xi), which is

1
24

((1+x)8 +9(1+x2)4 +6(1+x4)2 +8(1+x)2(1+x3)2.

5 A partially ordered setis a setX with a relation≤ saatisfying

• x≤ y andy≤ x if and only if x = y;

• x≤ y andy≤ z imply x≤ z.
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Its zeta-functionis the function onX×X satisfyingζ(x,y) = 1 if x≤ y, ζ(x,y) = 0 otherwise;
its Möbius functionis the inverse of the zeta-function under the multiplication

( f g)(x,y) = ∑
x≤z≤y

f (x,z)g(z,y).

Thus the M̈obius function satisfies the recurrence

µ(x,x) = 1, µ(x,z) =− ∑
x≤y<z

µ(x,y),

and we only have to prove the same recurrence for the function

λ(x,y) = ∑
n≥0

(−1)nCn(x,y).

Now any chain(x0, . . . ,xn) with x0 = x andxn = y contributes(−1)n to λ(x,y), but also con-
tributes(−1)n−1 to ∑x≤z<y λ(x,z) (takingz= xn−1); so the expressions are equal. The induc-
tion begins becauseλ(x,x) = 1 from the trivial chain.

If the three intermediate points arex,y,z, the chains from 0 to 1 are(0,1), (0,x,1), (0,y,1),
(0,z,1); so we have

µ(0,1) = (−1)+1+1+1 = 2.

6 The only permutation of{1, . . . ,n} with n cycles is the identity, sos(n,n) = 1. Now consider
a permutation withk cycles. There are two possibilities:

• n is a fixed point. Then the permutation corresponds to a permutation of{1, . . . ,n−1}
with k−1 cycles.

• n is not fixed, sayi → n→ j. Then there is a unique permutation. . . i → j . . . of
{1, . . . ,n− 1} with k cycles. However, any such permutation gives rise ton− 1 per-
mutations of{1, . . . ,n}, since the pointn could be inserted in any ofn−1 positions.

So
s(n,k) = s(n−1,k−1)− (n01)s(n−1,k)

(the minus sign because the sign is changed in the second case).
The value ofs(n,1) is easily found from the recurrence relation. Alternatively, there are

(n−1)! permutations with a single cycle: we can start the cycle with 1 and insert the remaining
points in then−1 remaining positions in(n−1)! ways, Sos(n,1) = (−1)n−1(n−1)!.

For n = 1 the identity is clear, so we use induction.

n

∑
k=1

s(n,k)xk =
n

∑
k=2

s(n−1,k−1)xk− (n−1)
n−1

∑
k=1

s(n−1,k)xk

= x ·x(x−1) · · ·(x−n+2)− (n−1) ·x(x−1) · · ·(x−n+2)
= x(x−1) · · ·(x−n+2)(x−n+1),
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as required.

The inverse of this matrix is the matrix whose(n,k) entry is the Stirling numberS(n,k) of
the second kind (the number of partitions of ann-set intok parts) for 1≤ k≤ n and zero for
k> n.

7 Hayman’s Theorem states:

Let f (x) = ∑n≥0 fnxn be H-admissible. Leta(x) = x f ′(x)/ f (x) andb(x) = xa′(x),
and letrn be the smallest positive root of the equationa(x) = n. Then

fn∼
1√

2πbn
f (rn)r−n

n .

This depends on the definition of H-admissible function, which is not given explicitly but
we note that many functions (including the exponential function) can be shown to be H-
admissible.

This is Cayley’s Theorem; several proofs appear in the notes.

Let f (x) = ∑n≥0Tnxn/n! be the e.g.f. for labelled rooted trees. From Cayley’s Theorem
we know thatTn = n·nn−2 = nn−1. Now the speciesT of rooted trees satisfies

T ∼ E ×S [T ],

since a rooted tree can be regarded as a root joined to a set of rooted trees (hereS is the species
of sets). Since the e.g.f. for labelled structures inS is ∑xn/n! = exp(x), we have

f (x) = xexp( f (x)).

This shouldn’t say ‘hence’ – sorry. Stirling’s formula is most easily found by apply-
ing Hayman’s theorem directly to the exponential function: we havef (x) = exp(x), a(x) =
x f ′(x)/ f (x) = x, b(x) = xa′(x) = x, rn = n (the solution ofx = a(x) = n). So

1
n!
∼ 1√

2πn
enn−n,

which is just Stirling’s formula the other way up.
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