University of London

C50 Enumerative \& Asymptotic Combinatorics

Solutions to Sample Exam

1 (a) The definition is

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots\left(q^{-} 1\right)}
$$

The fact that it is a polynomial is most easily seen by induction on n using the recurrence relation

$$
\left[\begin{array}{l}
n \\
0
\end{array}\right]_{q}=\left[\begin{array}{l}
n \\
n
\end{array}\right]_{q}=1, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}+q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q} \text { for } 0<k<n .
$$

The degree of the polynomial is most easily seen from the original definition: the highest power of q has coefficient 1 and exponent

$$
(n+(n-1)+\cdots(n-k+1))-(k+(k-1)+\cdots+1=k(n-k)
$$

(b) By l'Hôpital's rule,

$$
\lim _{q \rightarrow 1} \frac{q^{a}-1}{q^{b}-1}=\lim _{q \rightarrow 1} \frac{a q^{a-1}}{b q^{b-1}}=\frac{a}{b}
$$

So

$$
\lim _{q \rightarrow 1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{n(n-1) \cdots(n-k+1)}{k(k-1) \cdots 1}=\binom{n}{k} .
$$

(c) The q-binomial theorem states

$$
\prod_{i=1}^{n}\left(1+q^{i-1} z\right)=\sum_{k=0}^{n} q^{k(k-1) / 2} z^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

The proof is by induction using the recurrence relation.
(d) If q is a prime power, then $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the number of k-dimensional subspaces of an n dimensional vector space over $\operatorname{GF}(q)$. More generally, if q is an integer greater than 1 , and Q a set with distinguished elements 0 and 1 , then $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the number of $k \times n$ matrices in reduced echelon form with entries in Q and no zero rows.

2 (a) The values $(p(0), \ldots, p(4))$ are $(1,1,2,3,5)$: the partitions are $\emptyset ;(1) ;(2)$ and $(1,1) ;(3)$, $(2,1)$ and $(1,1,1)$; and $(4),(3,1),(2,2),(2,1,1)$ and $(1,1,1,1)$.

We have

$$
\prod_{i \geq 1}\left(1-x^{i}\right)^{-1}=\prod_{i \geq 1}\left(1+x^{i}+x^{2 i}+\cdots\right)
$$

Terms in x^{n} come from expressions $n=a_{1}+2 a_{2}+\cdots$, each such expression contributing 1 . But expressions of this form correspond bijectively to partitions of n, the partition corresponding to the above expression having a_{1} parts equal to $1, a_{2}$ parts equal to 2 , and so on. So the identity is proved.

Let $\prod_{i \geq 1}\left(1-x^{i}\right)=\sum_{n} \geq 0 q(n) x^{n}$. An argument like the above shows that q_{n} is equal to the number of partitions of n into an even number of distinct parts minus the number of partitions into an odd number of distinct parts. Euler's Pentagonal Numbers Theorem then asserts that

$$
q(n)= \begin{cases}(-1)^{k} & \text { if } n=k(3 k \pm 1) \text { for some integer } k \\ 0 & \text { otherwise }\end{cases}
$$

Now we have

$$
\left(\sum_{n \geq 0} p(n) x^{n}\right)\left(\sum_{n \geq 0} q(n) x^{n}\right)=1
$$

so

$$
p(n)=-\sum_{i=1}^{n} q(i) p(n-i)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+p(n-12)+\cdots
$$

(b) Each partition of $\{1, \ldots, n\}$ gives rise to a partition of n consisting of the cardinalities of the parts. So we have to find how many times each part occurs. For $n=4$, the partitions (4), $(3,1),(2,2),(2,1,1)$ and $(1,1,1,1)$ give rise to respectively $1,4,3,6$ and 1 partitions of the set, so $B(4)=15$. Similarly the values of $B(0), \ldots, B(3)$ are $1,1,2,5$.

We have the recurrence relation

$$
B(n)=\sum_{k=1}^{n}\binom{n-1}{k-1} B(n-k)
$$

since a partition of $\{1, \ldots, n\}$ is obtained by choosing a set containing n (if this set has cardinality k, this can be done in $\binom{n-1}{k-1}$ ways) and then a partition of the remaining points (in $B(n-k)$ ways).

Let $F(x)$ be the e.g.f. of $(B(n))$. Multiplying the recurrence by $x^{n-1} /(n-1)$! and summing over n, we obtain

$$
\begin{aligned}
F^{\prime}(x) & =\left(\sum_{k} \frac{x^{k}}{k!}\right)\left(\sum_{m} \frac{B(m) x^{m}}{m!}\right) \\
& =\exp (x) F(x)
\end{aligned}
$$

Solving this differential equation with initial condition $F(0)=1$ we obtain

$$
F(x)=\exp (\exp (x)-1)
$$

An object of the required species is a finite set with a partition.

3 The binomial theorem for arbitrary exponent n states that

$$
(1+x)^{n}=\sum_{k \geq 0}\binom{n}{k} x^{k}
$$

where

$$
\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}
$$

This is an identity of formal power series, or of analytic functions for $|X|<1$.
By the Binomial Theorem,

$$
(1-4 x)^{-1 / 2}=\sum_{k \geq 0}\binom{-1 / 2}{k}(-4 x)^{k}
$$

The coefficient of x^{k} is

$$
\begin{aligned}
& \frac{-1}{2} \frac{-3}{2} \cdots \frac{-(2 k-1)}{2} \cdot \frac{(-4)^{k}}{k!} \\
= & \frac{(2 k)!2^{2 k}}{2^{2 k} k!} k! \\
= & \binom{2 k}{k}
\end{aligned}
$$

as required.
We have

$$
(1-4 x)^{-1 / 2}(1-4 x)^{-1 / 2}=(1-4 x)^{-1}=\sum_{n \geq 0} 4^{n} x^{n}
$$

The term in x^{n} on the left is

$$
\sum_{k=0}^{n}\binom{2 k}{k}\binom{2(n-k)}{n-k}
$$

so the identity holds.
4 Let $|X|=n$. Take indeeterminates s_{1}, \ldots, s_{n} and put

$$
z(g)=\prod_{i=1}^{n} s_{i}^{c_{i}(g)}
$$

where $c_{i}(g)$ is the number of i-cycles in the cycle decomposition of the permutation g. Then the cycle index of the group G is

$$
Z(G)=\frac{1}{|G|} \sum_{g \in G} z(g)
$$

The Orbit-Counting Lemma states that the number of orbits of G on X is equal to

$$
\frac{1}{|G|} \sum_{g \in G} c_{1}(g)
$$

where $c_{1}(g)$ is the number of fixed points of g.
Take a set of figures with non-negative integer weights, with figure-counting series $A(x)=$ $\sum a_{n} x^{n}$, where a_{n} is the number of figures of weight n (assumed finite). Let the number of orbits of G on the set of functions from X to the set of figures having total weight n be b_{n}, and define the function-counting series $B(x)=\sum b_{n} x^{n}$. Then the Cycle Index Theorem states that

$$
B(x)=Z\left(G ; s_{i} \leftarrow A\left(x^{i}\right) \text { for } i=1, \ldots, n\right)
$$

The group of rotations of the octahedron has order 24. It contains

- the identity, fixing all eight faces;
- three rotations of order 2 about diagonals, each with four 2-cycles;
- six rotations of order 4 about diagonals, each with two 4-cycles;
- eight rotations of order 3 about lines joining mod-points of the triangular faces, each with two fixed faces and two 3-cycles;
- six rotations of order 2 about lines joining mid-points of edges, each with four 2-cycles.

So the cycle index is

$$
Z(G)=\frac{1}{24}\left(s_{1}^{8}+9 s_{2}^{4}+6 s_{4}^{2}+8 s_{1}^{2} s_{3}^{2}\right.
$$

Let the figure 'red' have weight 0 and the figure 'blue' have weight 1 . Then the figurecounting series is $1+x$, so by the Cycle Index Theorem, the required generating function is $Z\left(G ; s_{i} \leftarrow 1+x^{i}\right)$, which is

$$
\frac{1}{24}\left((1+x)^{8}+9\left(1+x^{2}\right)^{4}+6\left(1+x^{4}\right)^{2}+8(1+x)^{2}\left(1+x^{3}\right)^{2}\right.
$$

5 A partially ordered set is a set X with a relation \leq saatisfying

- $x \leq y$ and $y \leq x$ if and only if $x=y$;
- $x \leq y$ and $y \leq z$ imply $x \leq z$.

Its zeta-function is the function on $X \times X$ satisfying $\zeta(x, y)=1$ if $x \leq y, \zeta(x, y)=0$ otherwise; its Möbius function is the inverse of the zeta-function under the multiplication

$$
(f g)(x, y)=\sum_{x \leq z \leq y} f(x, z) g(z, y)
$$

Thus the Möbius function satisfies the recurrence

$$
\mu(x, x)=1, \quad \mu(x, z)=-\sum_{x \leq y<z} \mu(x, y)
$$

and we only have to prove the same recurrence for the function

$$
\lambda(x, y)=\sum_{n \geq 0}(-1)^{n} C_{n}(x, y)
$$

Now any chain $\left(x_{0}, \ldots, x_{n}\right)$ with $x_{0}=x$ and $x_{n}=y$ contributes $(-1)^{n}$ to $\lambda(x, y)$, but also contributes $(-1)^{n-1}$ to $\sum_{x \leq z<y} \lambda(x, z)$ (taking $z=x_{n-1}$); so the expressions are equal. The induction begins because $\lambda(x, x)=1$ from the trivial chain.

If the three intermediate points are x, y, z, the chains from 0 to 1 are $(0,1),(0, x, 1),(0, y, 1)$, $(0, z, 1)$; so we have

$$
\mu(0,1)=(-1)+1+1+1=2
$$

6 The only permutation of $\{1, \ldots, n\}$ with n cycles is the identity, so $s(n, n)=1$. Now consider a permutation with k cycles. There are two possibilities:

- n is a fixed point. Then the permutation corresponds to a permutation of $\{1, \ldots, n-1\}$ with $k-1$ cycles.
- n is not fixed, say $i \rightarrow n \rightarrow j$. Then there is a unique permutation $\ldots i \rightarrow j \ldots$ of $\{1, \ldots, n-1\}$ with k cycles. However, any such permutation gives rise to $n-1$ permutations of $\{1, \ldots, n\}$, since the point n could be inserted in any of $n-1$ positions.

So

$$
s(n, k)=s(n-1, k-1)-(n 01) s(n-1, k)
$$

(the minus sign because the sign is changed in the second case).
The value of $s(n, 1)$ is easily found from the recurrence relation. Alternatively, there are $(n-1)$! permutations with a single cycle: we can start the cycle with 1 and insert the remaining points in the $n-1$ remaining positions in $(n-1)$! ways, So $s(n, 1)=(-1)^{n-1}(n-1)$!.

For $n=1$ the identity is clear, so we use induction.

$$
\begin{aligned}
\sum_{k=1}^{n} s(n, k) x^{k} & =\sum_{k=2}^{n} s(n-1, k-1) x^{k}-(n-1) \sum_{k=1}^{n-1} s(n-1, k) x^{k} \\
& =x \cdot x(x-1) \cdots(x-n+2)-(n-1) \cdot x(x-1) \cdots(x-n+2) \\
& =x(x-1) \cdots(x-n+2)(x-n+1)
\end{aligned}
$$

as required.
The inverse of this matrix is the matrix whose (n, k) entry is the Stirling number $S(n, k)$ of the second kind (the number of partitions of an n-set into k parts) for $1 \leq k \leq n$ and zero for $k>n$.

7 Hayman's Theorem states:
Let $f(x)=\sum_{n \geq 0} f_{n} x^{n}$ be H-admissible. Let $a(x)=x f^{\prime}(x) / f(x)$ and $b(x)=x a^{\prime}(x)$, and let r_{n} be the smallest positive root of the equation $a(x)=n$. Then

$$
f_{n} \sim \frac{1}{\sqrt{2 \pi b_{n}}} f\left(r_{n}\right) r_{n}^{-n} .
$$

This depends on the definition of H -admissible function, which is not given explicitly but we note that many functions (including the exponential function) can be shown to be H admissible.

This is Cayley's Theorem; several proofs appear in the notes.
Let $f(x)=\sum_{n \geq 0} T_{n} x^{n} / n$! be the e.g.f. for labelled rooted trees. From Cayley's Theorem we know that $T_{n}=n \cdot n^{n-2}=n^{n-1}$. Now the species \mathcal{T} of rooted trees satisfies

$$
\mathcal{T} \sim \mathcal{E} \times \mathcal{S}[\mathcal{T}]
$$

since a rooted tree can be regarded as a root joined to a set of rooted trees (here \mathcal{S} is the species of sets). Since the e.g.f. for labelled structures in S is $\sum x^{n} / n!=\exp (x)$, we have

$$
f(x)=x \exp (f(x))
$$

This shouldn't say 'hence' - sorry. Stirling's formula is most easily found by applying Hayman's theorem directly to the exponential function: we have $f(x)=\exp (x), a(x)=$ $x f^{\prime}(x) / f(x)=x, b(x)=x a^{\prime}(x)=x, r_{n}=n$ (the solution of $\left.x=a(x)=n\right)$. So

$$
\frac{1}{n!} \sim \frac{1}{\sqrt{2 \pi n}} \mathrm{e}^{n} n^{-n}
$$

which is just Stirling's formula the other way up.

