University of London

M. Sc. Examination 2003

MTHM C50 Enumerative and Asymptotic Combinatorics

Duration: 3 hours

Date and time:

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best FOUR questions answered will be counted.

Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Question 1 (a) Define the Gaussian coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$, for integers n, k with $0 \leq$ $k \leq n$. Prove that $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is a polynomial in q and find its degree.
(b) Show that

$$
\lim _{q \rightarrow 1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\binom{n}{k} .
$$

(c) State and prove the q-Binomial Theorem.
(d) Give a counting interpretation of $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ in the case when q is a prime power.

Question 2 (a) The partition number $p(n)$ is the number of partitions of the nonnegative integer n. Calculate $p(n)$ for $0 \leq n \leq 4$.

Prove that

$$
\sum_{n \geq 0} p(n) x^{n}=\prod_{i \geq 1}\left(1-x^{i}\right)^{-1}
$$

Hence find a recurrence relation for the numbers $p(n)$. (You may use Euler's Pentagonal Numbers Theorem without proof provided you state it clearly.)
(b) The Bell number $B(n)$ is the number of partitions of the set $\{1, \ldots, n\}$. Calculate $B(n)$ for $0 \leq n \leq 4$.
Prove that

$$
\sum_{n \geq 0} \frac{B(n) x^{n}}{n!}=\exp (\exp (x)-1)
$$

(c) Describe a species for which $p(n)$ and $B(n)$ respectively enumerate the unlabelled and labelled objects on a set of n points.

Question 3 (a) State without proof the Binomial Theorem for arbitrary exponent.
(b) Prove that the generating function for the central binomial coefficients is

$$
\sum_{n \geq 0}\binom{2 n}{n} x^{n}=(1-4 x)^{-1 / 2}
$$

and deduce that

$$
\sum_{k=1}^{n}\binom{2 k}{k}\binom{2(n-k)}{n-k}=4^{n}
$$

Question 4 Let G be a finite group of permutations of a finite set X. Define the cycle index polynomial of G, and state the Orbit-Counting Lemma and the Cycle Index Theorem.

Let G be the group of rotations of a regular octahedron, regarded as a permutation group on the set of eight faces of the octahedron. Calculate the cycle index of G. Hence find a generating function $\sum a_{i} x^{i}$ for the number a_{i} of colourings of the faces with two colours, say red and blue, having exactly i blue faces.

Question 5 What is a partially ordered set? What is its Möbius function?
A chain of length n in a partially ordered set X is a sequence ($x_{0}, x_{1}, \ldots, x_{n}$) with $x_{0}<x_{1}<\cdots<x_{n}$. Let $C_{n}(x, y)$ denote the number of chains of length n with $x_{0}=x$ and $x_{n}=y$. Prove that

$$
\mu(x, y)=\sum_{n \geq 0}(-1)^{n} C_{n}(x, y) .
$$

Hence find $\mu(0,1)$ in the poset P shown in the diagram.

Question 6 Let $s(n, k)$ be the Stirling number of the first kind (so that $(-1)^{n-k} s(n, k)$ is the number of permutations of $\{1, \ldots, n\}$ with exactly k cycles, for $1 \leq k \leq n)$. Prove that $s(n, n)=1$ and

$$
s(n, k)=s(n-1, k-1)-(n-1) s(n-1, k) \text { for } 1<k<n .
$$

Hence or otherwise prove that $s(n, 1)=(-1)^{n-1}(n-1)!$.
Show that

$$
x(x-1)(x-2) \cdots(x-n+1)=\sum_{k=1}^{n} s(n, k) x^{k} .
$$

State without proof the inverse of the infinite triangular matrix whose (n, k) entry is $s(n, k)$ for $1 \leq k \leq n$ and is 0 for $k>n$.

Question 7 State Hayman's Theorem.

Prove that the number of rooted trees on the set $\{1, \ldots, n\}$ is n^{n-1}.
Show that the exponential generating function $f(x)$ for labelled rooted trees satisfies $f(x)=x \exp (f(x))$. Hence deduce Stirling's asymptotic formula for $n!$.

