

M. Sc. Examination 2003

MTHM C50 Enumerative and Asymptotic Combinatorics

Duration: 3 hours

Date and time:

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best FOUR questions answered will be counted.

Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Question 1 (a) Define the *Gaussian coefficient* $\begin{bmatrix} n \\ k \end{bmatrix}_q$, for integers n, k with $0 \le k \le n$. Prove that $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is a polynomial in q and find its degree.

(b) Show that

$$\lim_{q \to 1} \begin{bmatrix} n \\ k \end{bmatrix}_q = \binom{n}{k}.$$

- (c) State and prove the *q*-Binomial Theorem.
- (d) Give a counting interpretation of $\begin{bmatrix} n \\ k \end{bmatrix}_q$ in the case when q is a prime power.

Question 2 (a) The *partition number* p(n) is the number of partitions of the non-negative integer *n*. Calculate p(n) for $0 \le n \le 4$.

Prove that

$$\sum_{n \ge 0} p(n) x^n = \prod_{i \ge 1} (1 - x^i)^{-1}.$$

Hence find a recurrence relation for the numbers p(n). (You may use Euler's Pentagonal Numbers Theorem without proof provided you state it clearly.)

(b) The *Bell number* B(n) is the number of partitions of the set {1,...,n}. Calculate B(n) for 0 ≤ n ≤ 4.

Prove that

$$\sum_{n\geq 0} \frac{B(n)x^n}{n!} = \exp(\exp(x) - 1).$$

(c) Describe a species for which p(n) and B(n) respectively enumerate the unlabelled and labelled objects on a set of n points.

Question 3 (a) State without proof the Binomial Theorem for arbitrary exponent.

(b) Prove that the generating function for the central binomial coefficients is

$$\sum_{n \ge 0} \binom{2n}{n} x^n = (1 - 4x)^{-1/2},$$

and deduce that

$$\sum_{k=1}^{n} \binom{2k}{k} \binom{2(n-k)}{n-k} = 4^{n}.$$

Question 4 Let G be a finite group of permutations of a finite set X. Define the cycle index polynomial of G, and state the Orbit-Counting Lemma and the Cycle Index Theorem.

Let G be the group of rotations of a regular octahedron, regarded as a permutation group on the set of eight faces of the octahedron. Calculate the cycle index of G. Hence find a generating function $\sum a_i x^i$ for the number a_i of colourings of the faces with two colours, say red and blue, having exactly *i* blue faces. **Question 5** What is a *partially ordered set*? What is its *Möbius function*?

A *chain* of length *n* in a partially ordered set *X* is a sequence $(x_0, x_1, ..., x_n)$ with $x_0 < x_1 < \cdots < x_n$. Let $C_n(x, y)$ denote the number of chains of length *n* with $x_0 = x$ and $x_n = y$. Prove that

$$\mu(x,y) = \sum_{n \ge 0} (-1)^n C_n(x,y)$$

Hence find $\mu(0,1)$ in the poset *P* shown in the diagram.

Question 6 Let s(n,k) be the Stirling number of the first kind (so that $(-1)^{n-k}s(n,k)$ is the number of permutations of $\{1, ..., n\}$ with exactly k cycles, for $1 \le k \le n$). Prove that s(n,n) = 1 and

$$s(n,k) = s(n-1,k-1) - (n-1)s(n-1,k)$$
 for $1 < k < n$.

Hence or otherwise prove that $s(n, 1) = (-1)^{n-1}(n-1)!$. Show that

$$x(x-1)(x-2)\cdots(x-n+1) = \sum_{k=1}^{n} s(n,k)x^{k}.$$

State without proof the inverse of the infinite triangular matrix whose (n,k) entry is s(n,k) for $1 \le k \le n$ and is 0 for k > n.

Question 7 State Hayman's Theorem.

Prove that the number of rooted trees on the set $\{1, ..., n\}$ is n^{n-1} .

Show that the exponential generating function f(x) for labelled rooted trees satisfies $f(x) = x \exp(f(x))$. Hence deduce *Stirling's asymptotic formula* for n!.