

MTH6140

Linear Algebra II

Permutations

In Chapter 3 on Determinants we use the following notions:

Definition 1 A *permutation* of $\{1, ..., n\}$ is a bijection from the set $\{1, ..., n\}$ to itself. The *symmetric group* S_n consists of all permutations of the set $\{1, ..., n\}$. (There are n! such permutations.)

Example 1 For n = 9, let $\pi : \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ be the permutation given by

 $\pi(1) = 5$, $\pi(2) = 3$, $\pi(3) = 1$, $\pi(4) = 8$, $\pi(5) = 2$,

 $\pi(6) = 6$, $\pi(7) = 9$, $\pi(8) = 4$, $\pi(9) = 7$.

The *disjoint cycle representation* of π is:

$$\pi = (1523)(48)(6)(79).$$

Here (1523) expresses the fact that π maps $1 \rightarrow 5$, then $5 \rightarrow 2$, then $2 \rightarrow 3$, and finally $3 \rightarrow 1$. The subset $\{1, 5, 2, 3\}$ is called a *cycle* of π .

Similarly, the notation (48) means that π maps 4 to 8, and then maps 8 to 4. So the subset {4,8} is also a cycle of π .

The number 6 is mapped to itself by π , so the singleton set {6} is itself a cycle of π , and we have the notation (6) in the above representation of π .

Finally, π maps 7 to 9, and 9 back to 7, so {7,9} is a cycle of π , denoted by (79) in the above representation of π .

Definition 2 For any permutation $\pi \in S_n$, there is a number sign $(\pi) = \pm 1$, computed as follows: write π as a product of disjoint cycles, then define sign $(\pi) = (-1)^{n-k}$, where *k* denotes the number of cycles (including cycles of length 1).

Example 2 In the example above π has k = 4 cycles (namely (1523), (48), (6), and (79)), so

$$sign(\pi) = (-1)^{9-4} = (-1)^5 = -1.$$