
MTH6140 Linear Algebra II

Notes 5 18th November 2010

5 Linear maps on a vector space
In this chapter we consider a linear map T from a vector space V to itself. If dim(V ) =
n then, as in the last chapter, we can represent T by an n× n matrix relative to any
basis for V . However, this time we have less freedom: instead of having two bases to
choose, there is only one. This makes the theory much more interesting!

5.1 Projections and direct sums
We begin by looking at a particular type of linear map whose importance will be clear
later on.

Definition 5.1 The linear map P : V → V is a projection if P2 = P (where, as usual,
P2 is defined by P2(v) = P(P(v))).

Proposition 5.1 If P : V →V is a projection, then V = Im(P)⊕Ker(P).

Proof We have two things to do:

Im(P)+ Ker(P) = V : Take any vector v ∈ V , and let w = P(v) ∈ Im(P). We claim
that v−w ∈ Ker(P). This holds because

P(v−w) = P(v)−P(w) = P(v)−P(P(v)) = P(v)−P2(v) = 0,

since P2 = P. Now v = w +(v−w) is the sum of a vector in Im(P) and one in
Ker(P).

Im(P)∩Ker(P) = {0}: Take v ∈ Im(P)∩Ker(P). Then v = P(w) for some vector w;
and

0 = P(v) = P(P(w)) = P2(w) = P(w) = v,

as required (the first equality holding because v ∈ Ker(P)).
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It goes the other way too: if V = U ⊕W , then there is a projection P : V → V
with Im(P) = U and Ker(P) = W . For every vector v ∈ V can be uniquely written as
v = u + w, where u ∈U and w ∈W ; we define P by the rule that P(v) = u. This is a
well-defined map, and is easily checked to be linear. Now the assertions are clear.

The diagram in Figure 1 shows geometrically what a projection is. It moves any
vector v in a direction parallel to Ker(P) to a vector lying in Im(P).
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Figure 1: A projection

We can extend this to direct sums with more than two terms. First, notice that if P
is a projection and P′ = I−P (where I is the identity map), then P′ is also a projection,
since

(P′)2 = (I−P)2 = I−2P+P2 = I−2P+P = I−P = P′;

and P + P′ = I; also PP′ = P(I−P) = P−P2 = O. Finally, we see that Ker(P) =
Im(P′); so V = Im(P)⊕ Im(P′). In this form the result extends:

Proposition 5.2 Suppose that P1,P2, . . . ,Pr are projections on V satisfying

(a) P1 +P2 + · · ·+Pr = I, where I is the identity transformation;

(b) PiPj = O for i 6= j.

Then V = U1⊕U2⊕·· ·⊕Ur, where Ui = Im(Pi).

Proof We have to show that any vector v can be uniquely written in the form v =
u1 +u2 + · · ·+ur, where ui ∈Ui for i = 1, . . . ,r. We have

v = I(v) = P1(v)+P2(v)+ · · ·+Pr(v) = u1 +u2 + · · ·+ur,
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where ui = Pi(v) ∈ Im(Pi) for i = 1, . . . ,r. So any vector can be written in this form.
Now suppose (in order to obtain a contradiction) that we have any expression

v = u′1 +u′2 + · · ·+u′r,

with u′i ∈Ui for i = 1, . . . ,r. Since u′i ∈Ui = Im(Pi), we have u′i = Pi(vi) for some vi;
then

Pi(u′i) = P2
i (vi) = Pi(vi) = u′i.

On the other hand, for j 6= i, we have

Pi(u′j) = PiPj(v j) = 0,

since PiPj = O. So applying Pi to the expression for v, we obtain

Pi(v) = Pi(u′1)+Pi(u′2)+ · · ·+Pi(u′r) = Pi(u′i) = u′i,

since all terms in the sum except the ith are zero. So the only possible expression is
given by ui = Pi(v), and the proof is complete.

Conversely, if V = U1⊕U2⊕ ·· ·⊕Ur, then we can find projections Pi,P2, . . . ,Pr
satisfying the conditions of the above Proposition. For any vector v ∈V has a unique
expression as

v = u1 +u2 + · · ·+ur

with ui ∈Ui for i = 1, . . . ,r; then we define Pi(v) = ui.
The point of this is that projections give us another way to recognise and describe

direct sums.

5.2 Linear maps and matrices
Let T : V → V be a linear map. If we choose a basis v1, . . . ,vn for V , then V can be
written in coordinates as Kn, and T is represented by a matrix A, say, where

T (vi) =
n

∑
j=1

A jiv j

for each i ∈ {1, . . . ,n}. Then just as in the last section, the action of T on V is repre-
sented by the action of A on Kn: T (v) is represented by the product Av. Also, as in
the last chapter, sums and products (and hence arbitrary polynomials) of linear maps
are represented by sums and products of the representing matrices: that is, for any
polynomial f (x), the map f (T ) is represented by the matrix f (A).

What happens if we change the basis? This also follows from the formula we
worked out in the last chapter. However, there is only one basis to change.
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Proposition 5.3 Let T be a linear map on V which is represented by the matrix A
relative to a basis B, and by the matrix A′ relative to a basis B′. Let P = PB,B′ be the
transition matrix between the two bases. Then

A′ = P−1AP.

Proof This is just Proposition 3.6, since P and Q are the same here.

Definition 5.2 Two n× n matrices A and A′ are said to be similar if A′ = P−1AP for
some invertible matrix P.

Thus similarity is an equivalence relation, and two matrices are similar if and only
if they represent the same linear map with respect to different bases.

The crucial difference from Chapter 3 is the following. In the present Chapter 5
we have less freedom: we only allow ourselves one basis. Recall that in Chapter
3 we had two bases: one for the vector space V , and one for the vector space W
(we allowed the possibility that W = V , but in that case we still allowed ourselves
to use two bases for V ).
Consequently the theory of similarity of square matrices is very different from the
theory of equivalence. Roughly speaking it is ‘easy’ for two square matrices to be
equivalent (since for this they only have to have the same rank), but ‘difficult’ for
them to be similar.
In particular, if two matrices are similar then they are certainly equivalent.

There is no simple canonical form for similarity like the one for equivalence that
we met earlier. For the rest of this section we look at a special class of matrices or
linear maps, the “diagonalisable” ones, where we do have a nice simple representative
of the similarity class.

5.3 Eigenvalues and eigenvectors
Definition 5.3 Let T be a linear map on V . A vector v ∈ V is said to be an eigen-
vector of T , with eigenvalue λ ∈ K, if v 6= 0 and T (v) = λv. The set {v : T (v) = λv}
consisting of the zero vector and the eigenvectors with eigenvalue λ is called the
λ -eigenspace of T . A subspace U of V is called an eigenspace for T if it is the λ -
eigenspace of T for some λ ∈ K.

Note that we require that v 6= 0; otherwise the zero vector would be an eigenvector
for any value of λ . With this requirement, each eigenvector has a unique eigenvalue:
for if T (v) = λv = µv, then (λ −µ)v = 0, and so (since v 6= 0) we have λ = µ .
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The name eigenvalue is a mixture of German and English; it means “characteristic
value” or “proper value” (here “proper” is used in the sense of “property”). Another
term used in older books is “latent root”. Here “latent” means “hidden”: the idea is
that the eigenvalue is somehow hidden in a matrix representing T , and we have to
extract it by some procedure. We’ll see how to do this soon.

Example 5.1 Let

A =
[
−6 6
−12 11

]
.

The vector v =
[

3
4

]
satisfies

[
−6 6
−12 11

][
3
4

]
= 2

[
3
4

]
,

so is an eigenvector with eigenvalue 2. Similarly, the vector w =
[

2
3

]
is an eigenvector

with eigenvalue 3.
If we knew that, for example, 2 is an eigenvalue of A, then we could find a corre-

sponding eigenvector
[

x
y

]
by solving the linear equations

[
−6 6
−12 11

][
x
y

]
= 2

[
x
y

]
.

In the next-but-one section, we will see how to find the eigenvalues, and the fact that
there cannot be more than n of them for an n×n matrix.

5.4 Diagonalisability
A square matrix A is said to be diagonal if Ai j = 0 whenever i 6= j (i.e. its only non-
zero entries appear on the diagonal). Some linear maps have a particularly simple
representation by matrices:

Definition 5.4 The linear map T on V is diagonalisable if there is a basis of V relative
to which the matrix representing T is a diagonal matrix.

We have the analogous definition for matrices:

Definition 5.5 A square matrix is called diagonalisable if it is similar to a diagonal
matrix (i.e. there is an invertible matrix P such that P−1AP is a diagonal matrix).
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Proposition 5.4 The linear map T on V is diagonalisable if and only if there is a basis
of V consisting of eigenvectors of T .

Proof Suppose that v1, . . . ,vn is such a basis showing that T is diagonalisable. Then
T (vi) = Aiivi for i = 1, . . . ,n, where Aii is the ith diagonal entry of the diagonal
matrix A. Thus, the basis vectors are eigenvectors. Conversely, if we have a basis
v1, . . . ,vn of eigenvectors, with corresponding eigenvalues λ1, . . . ,λn, then the matrix
representing T (with respect to that basis) is diagonal (i.e. it is the diagonal matrix
with entries λ1, . . . ,λn along the diagonal).

Example 5.2 The matrix
[

1 2
0 1

]
is not diagonalisable. It is easy to see that its only

eigenvalue is 1 (see the Remark after Theorem 5.7), and the only eigenvectors are

scalar multiples of
[

1
0

]
. So we cannot find a basis of eigenvectors.

Theorem 5.5 Let T : V →V be a linear map. Then the following are equivalent:

(a) T is diagonalisable;

(b) V is the direct sum of the eigenspaces of T ;

(c) T = λ1P1 + · · ·+ λrPr, where λ1, . . . ,λr are the distinct eigenvalues of T , and
P1, . . . ,Pr are projections satisfying P1 + · · ·+Pr = I and PiPj = 0 for i 6= j.

Proof Let λ1, . . . ,λr be the distinct eigenvalues of T , and let vi1, . . . ,vimi be a basis
for the λi-eigenspace of T . Then T is diagonalisable if and only if the union of these
bases is a basis for V . So (a) and (b) are equivalent.

Now suppose that (b) holds. The converse to Proposition 5.2 shows that there are
projections P1, . . . ,Pr satisfying the conditions of (c) where Im(Pi) is the λi-eigenspace.
Now in this case it is easily checked that T and ∑λiPi agree on every vector in V , so
they are equal. So (b) implies (c).

Finally, if T = ∑λiPi, where the Pi satisfy the conditions of (c), then V is the direct
sum of the spaces Im(Pi), and Im(Pi) is the λi-eigenspace. So (c) implies (b), and we
are done.

Example 5.3 The matrix A =
[
−6 6
−12 11

]
from Example 5.1 is diagonalisable, since

the eigenvectors
[

3
4

]
and

[
2
3

]
are linearly independent, and so form a basis for R2.

Indeed, we see that [
−6 6
−12 11

][
3 2
4 3

]
=

[
3 2
4 3

][
2 0
0 3

]
,
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so that P−1AP is diagonal, where P is the matrix whose columns are the eigenvectors
of A.

Furthermore, one can find two projection matrices whose column spaces are the
eigenspaces, namely

P1 =
[

9 −6
12 −8

]
, P2 =

[
−8 6
−12 9

]
.

Check directly that P2
1 = P1, P2

2 = P2, P1P2 = P2P1 = 0, P1 +P2 = I, and 2P1 +3P2 = A.

5.5 Characteristic and minimal polynomials
We defined the determinant of a square matrix A. Now we want to define the deter-
minant of a linear map T . The obvious way to do this is to take the determinant of
any matrix representing T . For this to be a good definition, we need to show that it
doesn’t matter which matrix we take; in other words, that det(A′) = det(A) if A and A′

are similar. But, if A′ = P−1AP, then

det(P−1AP) = det(P−1)det(A)det(P) = det(A),

since det(P−1)det(P) = (det(P))−1 det(P) = 1. So our plan will succeed:

Definition 5.6 (a) The determinant det(T ) of a linear map T : V →V is the deter-
minant of any matrix representing T .

(b) The characteristic polynomial cT (x) of a linear map T : V →V is the character-
istic polynomial of any matrix representing T .

(c) The minimal polynomial mT (x) of a linear map T : V →V is the monic polyno-
mial of smallest degree which is satisfied by T .

(d) Similarly, the minimal polynomial mA(x) of a square matrix A is the monic poly-
nomial of smallest degree which is satisfied by A.

The second part of the definition is OK, by the same reasoning as the first (since
cA(x) is just a determinant). But the third part also creates a bit of a problem: how do
we know that T satisfies any polynomial? Well, the Cayley–Hamilton Theorem tells
us that cA(A) = O for any matrix A representing T . Now cA(A) represents cT (T ), and
cA = cT by definition; so cT (T ) = O. Indeed, the Cayley–Hamilton Theorem can be
stated in the following form:
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Proposition 5.6 For any linear map T on V , mT (x) divides cT (x) (as polynomials)
[i.e. cT (x)/mT (x) is itself a polynomial].
The analogous fact holds for matrices: if A is a square matrix then mA(x) divides cA(x).

Proof Suppose not; then we can divide cT (x) by mT (x), getting a quotient q(x) and
non-zero remainder r(x); that is,

cT (x) = mT (x)q(x)+ r(x).

Substituting T for x, using the fact that cT (T ) = mT (T ) = O, we find that r(T ) = 0.
But r is the remainder, so its degree is less than the degree of mT ; this contradicts the
definition of mT as the polynomial of least degree satisfied by T .

Theorem 5.7 Let T be a linear map on V . Then the following conditions are equiva-
lent for an element λ of K:

(a) λ is an eigenvalue of T ;

(b) λ is a root of the characteristic polynomial of T ;

(c) λ is a root of the minimal polynomial of T .

In other words,

mT (λ ) = 0 ⇐⇒ cT (λ ) = 0 ⇐⇒ T (v) = λv , v 6= 0 ,

and of course the analogous fact holds for square matrices A:

mA(λ ) = 0 ⇐⇒ cA(λ ) = 0 ⇐⇒ Av = λv , v 6= 0 ,

Remark: Hence to find the eigenvalues of T : take a matrix A representing T ; write
down its characteristic polynomial cA(x) = det(xI−A); and find the roots of this poly-
nomial. In our earlier example,∣∣∣∣x+6 −6

12 x−11

∣∣∣∣ = (x+6)(x−11)+72 = x2−5x+6 = (x−2)(x−3),

so the eigenvalues are 2 and 3, as we found.

Proof (b) implies (a): Suppose that cT (λ ) = 0, that is, det(λ I−T ) = 0. Then λ I−T
is not invertible, so its kernel is non-zero. Pick a non-zero vector v in Ker(λ I−T ).
Then (λ I−T )v = 0, so that T (v) = λv; that is, λ is an eigenvalue of T .
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(c) implies (b): Suppose that λ is a root of mT (x). Then (x−λ ) divides mT (x).
But mT (x) divides cT (x), by the Cayley–Hamilton Theorem (i.e. Proposition 5.6): so
(x−λ ) divides cT (x), whence λ is a root of cT (x).

(a) implies (c): Let λ be an eigenvalue of A with eigenvector v. We have T (v) =
λv. By induction, T k(v) = λ kv for any k, and so f (T )(v) = f (λ )v for any polynomial
f . Choosing f = mT , we have mT (T ) = 0 by definition, so mT (λ )v = 0; since v 6= 0,
we have mT (λ ) = 0, as required.

Using this result, we can give a necessary and sufficient condition for T to be
diagonalisable. First, a lemma.

Lemma 5.8 Let v1, . . . ,vr be eigenvectors of T with distinct eigenvalues λ1, . . . ,λr.
Then v1, . . . ,vr are linearly independent.

Proof Suppose (in order to obtain a contradiction) that v1, . . . ,vr are linearly depen-
dent, so that there exists a linear relation

c1v1 + · · ·+ crvr = 0,

with coefficients ci not all zero. Some of these coefficients may be zero; choose a
relation with the smallest possible number of non-zero coefficients. Without loss of
generality, suppose that c1 6= 0 (if c1 = 0 just re-label the coefficients). Now acting on
the given relation with T , using the fact that T (vi) = λivi, we get

c1λ1v1 + · · ·+ crλrvr = T (0) = 0.

Subtracting λ1 times the first equation from the second, we get

c2(λ2−λ1)v2 + · · ·+ cr(λr−λ1)vr = 0.

Now this equation has fewer non-zero coefficients than the one we started with (since
λi−λ1 6= 0 for all 2≤ i≤ r, by hypothesis), which was assumed to have the smallest
possible number. So the coefficients in this equation must all be zero. That is, ci(λi−
λ1) = 0, so ci = 0 (since λi 6= λ1), for i = 2, . . . ,r. This doesn’t leave much of the
original equation, only c1v1 = 0, from which we conclude that c1 = 0, contrary to our
assumption. So the vectors must have been linearly independent.

Theorem 5.9 The linear map T on V is diagonalisable if and only if its minimal poly-
nomial is the product of distinct linear factors, that is, its roots all have multiplicity 1.
(The analogous fact is true for matrices: a square matrix A is diagonalisable if and
only if its minimal polynomial is the product of distinct linear factors, that is, its roots
all have multiplicity 1).
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Proof Suppose first that T is diagonalisable, with eigenvalues λ1, . . . ,λr. Then (see
Proposition 5.4) there is a basis such that T is represented by a diagonal matrix D
whose diagonal entries are the eigenvalues. Now for any polynomial f , f (T ) is rep-
resented by f (D), a diagonal matrix whose diagonal entries are f (λi) for i = 1, . . . ,r.
Choose

f (x) = (x−λ1) · · ·(x−λr).

Then all the diagonal entries of f (D) are zero; so f (D) = 0. We claim that f is the
minimal polynomial of T ; clearly it has no repeated roots, so we will be done. We
know that each λi is a root of mT (x), so that f (x) divides mT (x); and we also know
that f (T ) = 0, so that the degree of f cannot be smaller than that of mT . So the claim
follows.

Conversely, we have to show that if mT is a product of distinct linear factors then T
is diagonalisable. This is a little argument with polynomials. Let f (x) = ∏(x−λi) be
the minimal polynomial of T , with the roots λi all distinct. Let hi(x) = f (x)/(x−λi).
Then the polynomials h1, . . . ,hr have no common factor except 1; for the only possible
factors are (x−λi), but this fails to divide hi. Now the Euclidean algorithm shows that
we can write the h.c.f. as a linear combination:

1 =
r

∑
i=1

hi(x)ki(x).

Let Ui = Im(hi(T )). The vectors in Ui are eigenvectors of T with eigenvalue λi; for if
u ∈Ui, say u = hi(T )v, then

(T −λiI)ui = (T −λiI)hi(T )(v) = f (T )v = 0,

so that T (v) = λi(v). Moreover every vector can be written as a sum of vectors from
the subspaces Ui. For, given v ∈V , we have

v = Iv =
r

∑
i=1

hi(T )(ki(T )v),

with hi(T )(ki(T )v) ∈ Im(hi(T ). The fact that the expression is unique follows from
the lemma, since the eigenvectors are linearly independent.

So how, in practice, do we “diagonalise” a matrix A, that is, find an invertible
matrix P such that P−1AP = D is diagonal? We saw an example of this earlier (see
Example 5.3). The matrix equation can be rewritten as AP = PD, from which we
see that the columns of P are the eigenvectors of A. So the procedure is: Find the
eigenvalues of A, and find a basis of eigenvectors; then let P be the matrix which
has the eigenvectors as columns, and D the diagonal matrix whose diagonal entries
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are the eigenvalues. Then P−1AP = D. It is worth remembering that the matrix P is
not unique: we have the freedom to interchange its columns, and also multiply any
column by a non-zero scalar (because the resulting column is still an eigenvector for
the same eigenvalue).

How do we find the minimal polynomial of a matrix? We know that it divides the
characteristic polynomial, and that every root of the characteristic polynomial is a root
of the minimal polynomial; after that it’s trial and error.

For example, if the characteristic polynomial is (x−1)2(x−2)3, then the minimal
polynomial must be one of (x−1)(x−2) (this would correspond to the matrix being
diagonalisable), (x− 1)2(x− 2), (x− 1)(x− 2)2, (x− 1)2(x− 2)2, (x− 1)(x− 2)3 or
(x−1)2(x−2)3. If we try them in this order, the first one to be satisfied by the matrix
is the minimal polynomial.

For example, the characteristic polynomial of A =
[

1 2
0 1

]
is (x− 1)2; its min-

imal polynomial is not (x− 1) (since A 6= I); so it is (x− 1)2. The fact that it has
repeated roots confirms our earlier finding (see Example 5.2) that this matrix is not
diagonalisable.
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