
MTH6140 Linear Algebra II

Notes 4 1st November 2010

4 Determinants
The determinant is a function defined on square matrices; its value is a scalar. It has
some very important properties: perhaps most important is the fact that a matrix is
invertible if and only if its determinant is not equal to zero.

We denote the determinant function by det, so that det(A) is the determinant of A.
For a matrix written out as an array, the determinant is denoted by replacing the square
brackets by vertical bars:

det
[

1 2
3 4

]
=
∣∣∣∣1 2
3 4

∣∣∣∣ .
4.1 Definition of determinant
You have met determinants in earlier courses, and you know the formula for the deter-
minant of a 2×2 or 3×3 matrix:∣∣∣∣a b

c d

∣∣∣∣= ad−bc,

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣= aei+b f g+ cdh−a f h−bdi− ceg.

Our first job is to define the determinant for square matrices of any size. We do this in
an “axiomatic” manner:

Definition 4.1 A function D defined on n× n matrices is a determinant if it satisfies
the following three conditions:

(D1) For each 1 ≤ i ≤ n, the function D is a linear function of the ith column: this
means that, if A and A′ are two matrices which agree everywhere except the ith
column, and if A′′ is the matrix whose ith column is c times the ith column of A
plus c′ times the ith column of A′, but agreeing with A and A′ everywhere else,
then

D(A′′) = cD(A)+ c′D(A′).
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(D2) If A has two equal columns, then D(A) = 0.

(D3) D(In) = 1, where In is the n×n identity matrix.

We show the following result:

Theorem 4.1 There is a unique determinant function on n×n matrices, for any n.

Proof First, we show that applying elementary column operations to A has a well-
defined effect on D(A).

(a) If B is obtained from A by adding c times the jth column to the ith, then D(B) =
D(A).

(b) If B is obtained from A by multiplying the ith column by a non-zero scalar c,
then D(B) = cD(A).

(c) If B is obtained from A by interchanging two columns, then D(B) =−D(A).

For (a), let A′ be the matrix which agrees with A in all columns except the ith,
which is equal to the jth column of A. By rule (D2), D(A′) = 0. By rule (D1),

D(B) = D(A)+ cD(A′) = D(A).

Part (b) follows immediately from rule (D1).
To prove part (c), we observe that we can interchange the ith and jth columns by

the following sequence of operations:

• add the ith column to the jth;

• multiply the ith column by −1;

• add the jth column to the ith;

• subtract the ith column from the jth.

In symbols,

(ci,c j) 7→ (ci,c j + ci) 7→ (−ci,c j + ci) 7→ (c j,c j + ci) 7→ (c j,ci).

The first, third and fourth steps don’t change the value of D, while the second multi-
plies it by −1.

Now we take the matrix A and apply elementary column operations to it, keeping
track of the factors by which D gets multiplied according to rules (a)–(c). The overall
effect is to multiply D(A) by a certain non-zero scalar c, depending on the operations.

2



• If A is invertible, then we can reduce A to the identity (see Corollary 2.8), so
that cD(A) = D(I) = 1 (by (D3)), whence D(A) = c−1.

• If A is not invertible, then its column rank is less than n. So the columns of A
are linearly dependent, and one column can be written as a linear combination
of the others. Applying axiom (D1), we see that D(A) is a linear combination of
values D(A′), where A′ are matrices with two equal columns; so D(A′) = 0 for
all such A′, whence D(A) = 0.

This proves that the determinant function, if it exists, is unique. We show its
existence in the next section, by giving a couple of formulae for it.

Given the uniqueness of the determinant function, we now denote it by det(A)
instead of D(A). The proof of the theorem shows an important corollary:

Corollary 4.2 A square matrix is invertible if and only if det(A) 6= 0.

Proof See the case division at the end of the proof of the theorem.

One of the most important properties of the determinant is the following.

Theorem 4.3 If A and B are n×n matrices over K, then det(AB) = det(A)det(B).

Proof Suppose first that B is not invertible. Then det(B) = 0. Also, AB is not invert-
ible. (For, suppose that (AB)−1 = X , so that XAB = I. Then XA is the inverse of B.)
So det(AB) = 0, and the theorem is true.

In the other case, B is invertible, so we can apply a sequence of elementary column
operations to B to get to the identity (by Corollary 2.8). The effect of these operations
is to multiply the determinant by a non-zero factor c (depending on the operations), so
that cdet(B) = det(I) = 1, or c = (det(B))−1. Now these operations are represented
by elementary matrices; so we see that BQ = I, where Q is a product of elementary
matrices (see Lemma 2.2).

If we apply the same sequence of elementary operations to AB, we end up with
the matrix (AB)Q = A(BQ) = AI = A. The determinant is multiplied by the same
factor, so we find that cdet(AB) = det(A). Since c = (det(B))−1, this implies that
det(AB) = det(A)det(B), as required.

Finally, we have defined determinants using columns, but we could have used rows
instead:

Proposition 4.4 The determinant is the unique function D of n× n matrices which
satisfies the conditions

3



(D1′) for each 1≤ i≤ n, the function D is a linear function of the ith row;

(D2′) if two rows of A are equal , then D(A) = 0;

(D3′) D(In) = 1.

The proof of uniqueness is almost identical to that for columns. To see that D(A) =
det(A): if A is not invertible, then D(A) = det(A) = 0; but if A is invertible, then it is a
product of elementary matrices (which can represent either row or column operations),
and the determinant is the product of the factors associated with these operations.

Corollary 4.5 If A> denotes the transpose of A, then det(A>) = det(A).

For, if D denotes the “determinant” computed by row operations, then det(A) =
D(A) = det(A>), since row operations on A correspond to column operations on A>.

4.2 Calculating determinants
We now give a couple of formulae for the determinant. This finishes the job we left
open in the proof of the last theorem, namely, showing that a determinant function
actually exists!

The first formula involves some background notation (see also the additional sheet
Permutations, available from the module website).

Definition 4.2 A permutation of {1, . . . ,n} is a bijection from the set {1, . . . ,n} to
itself. The symmetric group Sn consists of all permutations of the set {1, . . . ,n}.
(There are n! such permutations.) For any permutation π ∈ Sn, there is a number
sign(π) = ±1, computed as follows: write π as a product of disjoint cycles; if there
are k cycles (including cycles of length 1), then sign(π) = (−1)n−k. A transposition is
a permutation which interchanges two symbols and leaves all the others fixed. Thus,
if τ is a transposition, then sign(τ) =−1.

The last fact holds because a transposition has one cycle of size 2 and n−2 cycles
of size 1, so n−1 altogether; so sign(τ) = (−1)n−(n−1) =−1.

We need one more fact about signs: if π is any permutation and τ is a transposition,
then sign(πτ) =−sign(π), where πτ denotes the composition of π and τ (apply first
τ , then π).

Definition 4.3 Let A be an n× n matrix over K. The determinant of A is defined by
the formula

det(A) = ∑
π∈Sn

sign(π)A1π(1)A2π(2) · · ·Anπ(n).
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Proof In order to show that this is a good definition, we need to verify that it satisfies
our three rules (D1)–(D3).

(D1) According to the definition, det(A) is a sum of n! terms. Each term, apart from a
sign, is the product of n elements, one from each row and column. If we look at
a particular column, say the ith, it is clear that each product is a linear function
of that column; so the same is true for the determinant.

(D2) Suppose that the ith and jth columns of A are equal. Let τ be the transposition
which interchanges i and j and leaves the other symbols fixed. Then π(τ(i)) =
π( j) and π(τ( j)) = π(i), whereas π(τ(k)) = π(k) for k 6= i, j. Because the
elements in the ith and jth columns of A are the same, we see that the products
A1π(1)A2π(2) · · ·Anπ(n) and A1πτ(1)A2πτ(2) · · ·Anπτ(n) are equal. But sign(πτ) =
−sign(π). So the corresponding terms in the formula for the determinant cancel
one another. The elements of Sn can be divided up into n!/2 pairs of the form
{π,πτ}. As we have seen, each pair of terms in the formula cancel out. We
conclude that det(A) = 0. Thus (D2) holds.

(D3) If A = In, then the only permutation π which contributes to the sum is the identity
permutation ι : for any other permutation π satisfies π(i) 6= i for some i, so that
Aiπ(i) = 0. The sign of ι is +1, and all the terms Aiι(i) = Aii are equal to 1; so
det(A) = 1, as required.

This gives us a nice mathematical formula for the determinant of a matrix. Un-
fortunately, it is a terrible formula in practice, since it involves working out n! terms,
each a product of matrix entries, and adding them up with + and − signs. For n of
moderate size, this will take a very long time! (For example, 10! = 3628800.)

Here is a second formula, which is also theoretically important but very inefficient
in practice.

Definition 4.4 Let A be an n×n matrix. For 1≤ i, j ≤ n, we define the (i, j) minor of
A to be the (n−1)× (n−1) matrix obtained by deleting the ith row and jth column of
A. Now we define the (i, j) cofactor of A to be (−1)i+ j times the determinant of the
(i, j) minor. (These signs have a chessboard pattern, starting with sign + in the top
left corner.) We denote the (i, j) cofactor of A by Ki j(A). Finally, the adjugate of A is
the n×n matrix Adj(A) whose (i, j) entry is the ( j, i) cofactor K ji(A) of A. (Note the
transposition!)

Theorem 4.6 (a) For 1≤ j ≤ n, we have

det(A) =
n

∑
i=1

Ai jKi j(A).
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(b) For 1≤ i≤ n, we have

det(A) =
n

∑
j=1

Ai jKi j(A).

This theorem says that, if we take any column or row of A, multiply each element
by the corresponding cofactor, and add the results, we get the determinant of A.

Example 4.1 Using a cofactor expansion along the first column, we see that∣∣∣∣∣∣
1 2 3
4 5 6
7 8 10

∣∣∣∣∣∣ =
∣∣∣∣5 6
8 10

∣∣∣∣−4
∣∣∣∣2 3
8 10

∣∣∣∣+7
∣∣∣∣2 3
5 6

∣∣∣∣
= (5 ·10−6 ·8)−4(2 ·10−3 ·8)+7(2 ·6−3 ·5)
= 2+16−21
= −3

using the standard formula for a 2×2 determinant.

Proof We prove (a); the proof for (b) is a simple modification, using rows instead of
columns. Let D(A) be the function defined by the right-hand side of (a) in the theorem,
using the jth column of A. We verify rules (D1)–(D3).

(D1) It is clear that D(A) is a linear function of the jth column. For k 6= j, the cofac-
tors are linear functions of the kth column (since they are determinants), and so
D(A) is linear.

(D2) If the kth and lth columns of A are equal (where k and l are different from j),
then each cofactor is the determinant of a matrix with two equal columns, and
so is zero. The harder case is when the jth column is equal to another, say the
kth. Using induction, each cofactor can be expressed as a sum of elements of
the kth column times (n− 2)× (n− 2) determinants. In the resulting sum, it
is easy to see that each such determinant occurs twice with opposite signs and
multiplied by the same factor. So the terms all cancel.

(D3) Suppose that A = I. The only non-zero cofactor in the jth column is K j j(I),
which is equal to (−1) j+ j det(In−1) = 1. So D(I) = 1.

By the main theorem, the expression D(A) is equal to det(A).

At first sight, this looks like a simple formula for the determinant, since it is just
the sum of n terms, rather than n! as in the first case. But each term is an (n−1)×(n−
1) determinant. Working down the chain we find that this method is just as labour-
intensive as the other one.

But the cofactor expansion has further nice properties:
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Theorem 4.7 For any n×n matrix A, we have

A ·Adj(A) = Adj(A) ·A = det(A) · I.

Proof We calculate the matrix product. Recall that the (i, j) entry of Adj(A) is K ji(A).
Now the (i, i) entry of the product A ·Adj(A) is

n

∑
k=1

Aik(Adj(A))ki =
n

∑
k=1

AikKik(A) = det(A),

by the cofactor expansion. On the other hand, if i 6= j, then the (i, j) entry of the
product is

n

∑
k=1

Aik(Adj(A))k j =
n

∑
k=1

AikK jk(A).

This last expression is the cofactor expansion of the matrix A′ which is the same of
A except for the jth row, which has been replaced by the ith row of A. (Note that
changing the jth row of a matrix has no effect on the cofactors of elements in this
row.) So the sum is det(A′). But A′ has two equal rows, so its determinant is zero.

Thus A ·Adj(A) has entries det(A) on the diagonal and 0 everywhere else; so it is
equal to det(A) · I.

The proof for the product the other way around is the same, using columns instead
of rows.

Corollary 4.8 If the n×n matrix A is invertible, then its inverse is equal to

(det(A))−1 Adj(A).

So how can you work out a determinant efficiently? The best method in practice
is to use elementary operations.

Apply elementary operations to the matrix, keeping track of the factor by which
the determinant is multiplied by each operation. If you want, you can reduce all the
way to the identity, and then use the fact that det(I) = 1. Often it is simpler to stop
at an earlier stage when you can recognise what the determinant is. For example, if
the matrix A has diagonal entries a1, . . . ,an, and all off-diagonal entries are zero, then
det(A) is just the product a1 · · ·an.

Example 4.2 Let

A =

1 2 3
4 5 6
7 8 10

 .
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Subtracting twice the first column from the second, and three times the second column
from the third (these operations don’t change the determinant) gives1 0 0

4 −3 −6
7 −6 −11

 .

Now the cofactor expansion along the first row gives

det(A) =
∣∣∣∣−3 −6
−6 −11

∣∣∣∣= 33−36 =−3.

(At the last step, it is easiest to use the formula for the determinant of a 2× 2 matrix
rather than do any further reduction.)

4.3 The Cayley–Hamilton Theorem
Since we can add and multiply matrices, we can substitute them into a polynomial.
For example, if

A =
[

0 1
−2 3

]
,

then the result of substituting A into the polynomial x2−3x+2 is

A2−3A+2I =
[
−2 3
−6 7

]
+
[

0 −3
6 −9

]
+
[

2 0
0 2

]
=
[

0 0
0 0

]
.

We say that the matrix A satisfies the equation x2− 3x + 2 = 0. (Notice that for the
constant term 2 we substituted 2I.)

It turns out that, for every n×n matrix A, we can calculate a polynomial equation
of degree n satisfied by A.

Definition 4.5 Let A be a n× n matrix. The characteristic polynomial of A is the
polynomial

cA(x) = det(xI−A).

This is a polynomial in x of degree n.

For example, if

A =
[

0 1
−2 3

]
,

then

cA(x) =
∣∣∣∣ x −1
2 x−3

∣∣∣∣= x(x−3)+2 = x2−3x+2.

Indeed, it turns out that this is the polynomial we want in general:
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Theorem 4.9 (Cayley–Hamilton Theorem) Let A be an n×n matrix with character-
istic polynomial cA(x). Then cA(A) = O.

Example 4.3 Let us just check the theorem for 2×2 matrices. If

A =
[

a b
c d

]
,

then

cA(x) =
∣∣∣∣x−a −b
−c x−d

∣∣∣∣= x2− (a+d)x+(ad−bc),

and so

cA(A) =
[

a2 +bc ab+bd
ac+ cd bc+d2

]
− (a+d)

[
a b
c d

]
+(ad−bc)

[
1 0
0 1

]
= O,

after a small amount of calculation.

Proof We use the theorem

A ·Adj(A) = det(A) · I.

In place of A, we put the matrix xI−A into this formula:

(xI−A)Adj(xI−A) = det(xI−A)I = cA(x)I.

Now it is very tempting just to substitute x = A into this formula: on the right we
have cA(A)I = cA(A), while on the left there is a factor AI−A = O. Unfortunately
this is not valid; it is important to see why. The matrix Adj(xI−A) is an n×n matrix
whose entries are determinants of (n−1)× (n−1) matrices with entries involving x.
So the entries of Adj(xI−A) are polynomials in x, and if we try to substitute A for x
the size of the matrix will be changed!

Instead, we argue as follows. As we have said, Adj(xI−A) is a matrix whose
entries are polynomials, so we can write it as a sum of powers of x times matrices, that
is, as a polynomial whose coefficients are matrices. For example,[

x2 +1 2x
3x−4 x+2

]
= x2

[
1 0
0 0

]
+ x
[

0 2
3 1

]
+
[

1 0
−4 2

]
.

The entries in Adj(xI−A) are (n−1)×(n−1) determinants, so the highest power
of x that can arise is xn−1. So we can write

Adj(xI−A) = xn−1Bn−1 + xn−2Bn−2 + · · ·+ xB1 +B0,
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for suitable n×n matrices B0, . . . ,Bn−1. Hence

cA(x)I = (xI−A)Adj(xI−A)
= (xI−A)(xn−1Bn−1 + xn−2Bn−2 + · · ·+ xB1 +B0)
= xnBn−1 + xn−1(−ABn−1 +Bn−2)+ · · ·+ x(−AB1 +B0)−AB0.

So, if we let
cA(x) = xn + cn−1xn−1 + · · ·+ c1x+ c0,

then we read off that
Bn−1 = I,

−ABn−1 + Bn−2 = cn−1I,
· · ·

−AB1 + B0 = c1I,
−AB0 = c0I.

We take this system of equations, and multiply the first by An, the second by An−1,
. . . , and the last by A0 = I. What happens? On the left, all the terms cancel in pairs:
we have

AnBn−1 +An−1(−ABn−1 +Bn−2)+ · · ·+A(−AB1 +B0)+ I(−AB0) = O.

On the right, we have

An + cn−1An−1 + · · ·+ c1A+ c0I = cA(A).

So cA(A) = O, as claimed.
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