
MTH6140 Linear Algebra II

Notes 1 September 2010

1 Vector spaces
This course is about linear maps and bilinear forms on vector spaces, how we represent
them by matrices, how we manipulate them, and what we use this for.

1.1 Definitions
Definition 1.1 A field is an algebraic system consisting of a non-empty set K equipped
with two binary operations + (addition) and · (multiplication) satisfying the condi-
tions:

(A) (K,+) is an abelian group with identity element 0 (called zero);

(M) (K \{0}, ·) is an abelian group with identity element 1;

(D) the distributive law
a(b+ c) = ab+ac

holds for all a,b,c ∈ K.

If you don’t know what an abelian group is, then

• you can find it spelled out in detail on the course information sheet Fields and
vector spaces on the course web page;

• the only fields that we will use in this course are

– Q, the field of rational numbers;

– R, the field of real numbers;

– C, the field of complex numbers;

– Fp, the field of integers mod p, where p is a prime number.
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You will not be expected to prove that these structures are fields. You may have
seen Fp referred to as Zp in some courses.

Definition 1.2 A vector space V over a field K is an algebraic system consisting of a
non-empty set V equipped with a binary operation + (vector addition), and an opera-
tion of scalar multiplication

(a,v) ∈ K×V 7→ av ∈V

such that the following rules hold:

(VA) (V,+) is an abelian group, with identity element 0 (the zero vector).

(VM) Rules for scalar multiplication:

(VM0) For any a ∈ K, v ∈V , there is a unique element av ∈V .

(VM1) For any a ∈ K, u,v ∈V , we have a(u+ v) = au+av.

(VM2) For any a,b ∈ K, v ∈V , we have (a+b)v = av+bv.

(VM3) For any a,b ∈ K, v ∈V , we have (ab)v = a(bv).

(VM4) For any v ∈V , we have 1v = v (where 1 is the identity element of K).

Since we have two kinds of elements, namely elements of K and elements of V , we
distinguish them by calling the elements of K scalars and the elements of V vectors.

A vector space over the field R is often called a real vector space, and one over C
is a complex vector space.

Example 1.1 The first example of a vector space that we meet is the Euclidean plane
R2. This is a real vector space. This means that we can add two vectors, and multiply a
vector by a scalar (a real number). There are two ways we can make these definitions.

• The geometric definition. Think of a vector as an arrow starting at the origin
and ending at a point of the plane. Then addition of two vectors is done by the
parallelogram law (see Figure 1). The scalar multiple av is the vector whose
length is |a| times the length of v, in the same direction if a > 0 and in the
opposite direction if a < 0.

• The algebraic definition. We represent the points of the plane by Cartesian
coordinates (x,y). Thus, a vector v is just a pair (x,y) of real numbers. Now we
define addition and scalar multiplication by

(x1,y1)+(x2,y2) = (x1 + x2,y1 + y2),
a(x,y) = (ax,ay).
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Figure 1: The parallelogram law

Not only is this definition much simpler, but it is much easier to check that the
rules for a vector space are really satisfied! For example, we check the law
a(v+w) = av+aw. Let v = (x1,y1) and w = (x2,y2). Then we have

a(v+w) = a((x1,y1)+(x2,y2)
= a(x1 + x2,y1 + y2)
= (ax1 +ax2,ay1 +ay2)
= (ax1,ay1)+(ax2,ay2)
= av+aw.

In the algebraic definition, we say that the operations of addition and scalar mul-
tiplication are coordinatewise: this means that we add two vectors coordinate by co-
ordinate, and similarly for scalar multiplication.

Using coordinates, this example can be generalised.

Example 1.2 Let n be any positive integer and K any field. Let V = Kn, the set of all
n-tuples of elements of K. Then V is a vector space over K, where the operations are
defined coordinatewise:

(a1,a2, . . . ,an)+(b1,b2, . . . ,bn) = (a1 +b1,a2 +b2, . . . ,an +bn),
c(a1,a2, . . . ,an) = (ca1,ca2, . . . ,can).

1.2 Bases
This example is much more general than it appears: Every finite-dimensional vector
space looks like Example 1.2. Here’s why.
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Definition 1.3 Let V be a vector space over the field K, and let v1, . . . ,vn be vectors
in V .

(a) The vectors v1,v2, . . . ,vn are linearly independent if, whenever we have scalars
c1,c2, . . . ,cn satisfying

c1v1 + c2v2 + · · ·+ cnvn = 0,

then necessarily c1 = c2 = · · ·= 0.

(b) The vectors v1,v2, . . . ,vn are spanning if, for every vector v ∈ V , we can find
scalars c1,c2, . . . ,cn ∈ K such that

v = c1v1 + c2v2 + · · ·+ cnvn.

In this case, we write V = 〈v1,v2, . . . ,vn〉.

(c) The vectors v1,v2, . . . ,vn form a basis for V if they are linearly independent and
spanning.

Remark Linear independence is a property of a list of vectors. A list containing the
zero vector is never linearly independent. Also, a list in which the same vector occurs
more than once is never linearly independent.

I will say “Let B = (v1, . . . ,vn) be a basis for V ” to mean that the list of vectors
v1, . . . ,vn is a basis, and to refer to this list as B.

Definition 1.4 Let V be a vector space over the field K. We say that V is finite-
dimensional if we can find vectors v1,v2, . . . ,vn ∈V which form a basis for V .

Remark In this course we are only concerned with finite-dimensional vector spaces.
If you study Functional Analysis, you will meet vector spaces which are not finite
dimensional.

Proposition 1.1 The following three conditions are equivalent for the vectors v1, . . . ,vn
of the vector space V over K:

(a) v1, . . . ,vn is a basis;

(b) v1, . . . ,vn is a maximal linearly independent set (that is, if we add any vector to
the list, then the result is no longer linearly independent);

(c) v1, . . . ,vn is a minimal spanning set (that is, if we remove any vector from the
list, then the result is no longer spanning).
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The next theorem helps us to understand the properties of linear independence.

Theorem 1.2 (The Exchange Lemma) Let V be a vector space over K. Suppose
that the vectors v1, . . . ,vn are linearly independent, and that the vectors w1, . . . ,wm are
linearly independent, where m > n. Then we can find a number i with 1≤ i≤ m such
that the vectors v1, . . . ,vn,wi are linearly independent.

Proof See the course information sheet The Exchange Lemma for a proof.

Corollary 1.3 Let V be a finite-dimensional vector space over a field K. Then

(a) any two bases of V have the same number of elements;

(b) any linearly independent set can be extended to a basis.

The number of elements in a basis is called the dimension of the vector space V .
We will say “an n-dimensional vector space” instead of “a finite-dimensional vector
space whose dimension is n”. We denote the dimension of V by dim(V ).

Proof Let us see how the corollary follows from the Exchange Lemma.
(a) Let (v1, . . . ,vn) and (w1, . . . ,wm) be two bases for V . Suppose, for a contradic-

tion, that they have different numbers of elements; say that n < m, without loss of gen-
erality. Both lists of vectors are linearly independent; so, according to the Exchange
Lemma, we can add some vector wi to the first list to get a larger linearly independent
list. This means that v1, . . . ,vn was not a maximal linearly independent set, and so (by
Proposition 1.1) not a basis, contradicting our assumption. We conclude that m = n,
as required.

(b) Let (v1, . . . ,vn) be linearly independent and let (w1, . . . ,wm) be a basis. Neces-
sarily n≤m, since otherwise we could add one of the vs to (w1, . . . ,wm) to get a larger
linearly independent set, contradicting maximality. But now we can add some ws to
(v1, . . . ,vn) until we obtain a basis.

Remark We allow the possibility that a vector space has dimension zero. Such a
vector space contains just one vector, the zero vector 0; a basis for this vector space
consists of the empty set.

Now let V be an n-dimensional vector space over K. This means that there is a
basis v1,v2, . . . ,vn for V . Since this list of vectors is spanning, every vector v ∈V can
be expressed as

v = c1v1 + c2v2 + · · ·+ cnvn
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for some scalars c1,c2, . . . ,cn ∈K. The scalars c1, . . . ,cn are the coordinates of v (with
respect to the given basis), and the coordinate representation of v is the n-tuple

(c1,c2, . . . ,cn) ∈ Kn.

Now the coordinate representation is unique. For suppose that we also had

v = c′1v1 + c′2v2 + · · ·+ c′nvn

for scalars c′1,c
′
2 . . . ,c′n. Subtracting these two expressions, we obtain

0 = (c1− c′1)v1 +(c2− c′2)v2 + · · ·+(cn− c′n)vn.

Now the vectors v1,v2 . . . ,vn are linearly independent; so this equation implies that
c1− c′1 = 0, c2− c′2 = 0, . . . , cn− c′n = 0; that is,

c1 = c′1, c2 = c′2, . . . cn = c′n.

Now it is easy to check that, when we add two vectors in V , we add their coord-
inate representations in Kn (using coordinatewise addition); and when we multiply a
vector v ∈ V by a scalar c, we multiply its coordinate representation by c. In other
words, addition and scalar multiplication in V translate to the same operations on their
coordinate representations. This is why we only need to consider vector spaces of the
form Kn, as in Example 1.2.

Here is how the result would be stated in the language of abstract algebra:

Theorem 1.4 Any n-dimensional vector space over a field K is isomorphic to the
vector space Kn.

1.3 Row and column vectors
The elements of the vector space Kn are all the n-tuples of scalars from the field K.
There are two different ways that we can represent an n-tuple: as a row, or as a column.
Thus, the vector with components 1, 2 and −3 can be represented as a row vector

[1,2,−3]

or as a column vector  1
2
−3

 .

(Note that we use square brackets, rather than round brackets or parentheses. But you
will see the notation (1,2,−3) and the equivalent for columns.)
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Both systems are in common use, and you should be familiar with both. The
choice of row or column vectors makes some technical differences in the statements
of the theorems, so care is needed.

There are arguments for and against both systems. Those who prefer row vectors
would argue that we already use (x,y) or (x,y,z) for the coordinates of a point in
2- or 3-dimensional Euclidean space, so we should use the same for vectors. The
most powerful argument will appear when we consider representing linear maps by
matrices.

Those who prefer column vectors point to the convenience of representing, say,
the linear equations

2x+3y = 5,

4x+5y = 9

in matrix form [
2 3
4 5

][
x
y

]
=
[

5
9

]
.

Statisticians also prefer column vectors: to a statistician, a vector often represents data
from an experiment, and data are usually recorded in columns on a datasheet.

Following the terminology of Linear Algebra I, I will use column vectors in these
notes. So we make a formal definition:

Definition 1.5 Let V be a vector space with a basis B = (v1,v2, . . . ,vn). If v = c1v1 +
c2v2 + · · ·+ cnvn, then the coordinate representation of v relative to the basis B is

[v]B =


c1
c2
...

cn

 .

In order to save space on the paper, we often write this as

[v]B = [c1,c2, . . . ,cn]>.

The symbol > is read “transpose”.

1.4 Change of basis
The coordinate representation of a vector is always relative to a basis. We now have
to look at how the representation changes when we use a different basis.
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Definition 1.6 Let B =(v1, . . . ,vn) and B′=(v′1, . . . ,v
′
n) be bases for the n-dimensional

vector space V over the field K. The transition matrix P from B to B′ is the n×n matrix
whose jth column is the coordinate representation [v′j]B of the jth vector of B′ relative
to B. If we need to specify the bases, we write PB,B′ .

Proposition 1.5 Let B and B′ be bases for the n-dimensional vector space V over the
field K. Then, for any vector v ∈V , the coordinate representations of v with respect to
B and B′ are related by

[v]B = P [v]B′.

Proof Let pi j be the i, j entry of the matrix P. By definition, we have

v′j =
n

∑
i=1

pi jvi.

Take an arbitrary vector v ∈V , and let

[v]B = [c1, . . . ,cn]>, [v]B′ = [d1, . . . ,dn]>.

This means, by definition, that

v =
n

∑
i=1

civi =
n

∑
j=1

d jv′j.

Substituting the formula for v′j into the second equation, we have

v =
n

∑
j=1

d j

(
n

∑
i=1

pi jvi

)
.

Reversing the order of summation, we get

v =
n

∑
i=1

(
n

∑
j=1

pi jd j

)
vi.

Now we have two expressions for v as a linear combination of the vectors vi. By the
uniqueness of the coordinate representation, they are the same: that is,

ci =
n

∑
j=1

pi jd j.
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In matrix form, this says c1
...

cn

= P

d1
...

dn

 ,

or in other words
[v]B = P [v]B′,

as required.

In this course, we will see four ways in which matrices arise in linear algebra.
Here is the first occurrence: matrices arise as transition matrices between bases of
a vector space.

The next corollary summarises how transition matrices behave. Here I denotes
the identity matrix, the matrix having 1s on the main diagonal and 0s everywhere
else. Given a matrix P, we denote by P−1 the inverse of P, the matrix Q satisfying
PQ = QP = I. Not every matrix has an inverse: we say that P is invertible or non-
singular if it has an inverse.

Corollary 1.6 Let B,B′,B′′ be bases of the vector space V .

(a) PB,B = I.

(b) PB′,B = (PB,B′)−1.

(c) PB,B′′ = PB,B′PB′,B′′ .

This follows from the preceding Proposition. For example, for (b) we have

[v]B = PB,B′ [v]B′, [v]B′ = PB′,B [v]B,

so
[v]B = PB,B′PB′,B [v]B.

By the uniqueness of the coordinate representation, we have PB,B′PB′,B = I.

Corollary 1.7 The transition matrix between any two bases of a vector space is in-
vertible.

This follows immediately from (b) of the preceding Corollary.

Remark We see that, to express the coordinate representation w.r.t. the new basis in
terms of that w.r.t. the old one, we need the inverse of the transition matrix:

[v]B′ = P−1
B,B′[v]B.
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Example Consider the vector space R2, with the two bases

B =
([

1
0

]
,

[
0
1

])
, B′ =

([
1
1

]
,

[
2
3

])
.

The transition matrix is

PB,B′ =
[

1 2
1 3

]
,

whose inverse is calculated to be

PB′,B =
[

3 −2
−1 1

]
.

So the theorem tells us that, for any x,y ∈ R, we have[
x
y

]
= x
[

1
0

]
+ y
[

0
1

]
= (3x−2y)

[
1
1

]
+(−x+ y)

[
2
3

]
,

as is easily checked.

1.5 Subspaces and direct sums
Definition 1.7 A non-empty subset of a vector space is called a subspace if it contains
the sum of any two of its elements and any scalar multiple of any of its elements. We
write U ≤V to mean “U is a subspace of V ”.

A subspace of a vector space is a vector space in its own right.
Subspaces can be constructed in various ways:

(a) Let v1, . . . ,vn ∈V . The span of (v1, . . . ,vn) is the set

{c1v1 + c2v2 + · · ·+ cnvn : c1, . . . ,cn ∈ K}.

This is a subspace of V . Moreover, (v1, . . . ,vn) is a spanning set in this subspace.
We denote the span of v1, . . . ,vn by 〈v1, . . . ,vn〉.

(b) Let U1 and U2 be subspaces of V . Then

– the intersection U1∩U2 is the set of all vectors belonging to both U1 and
U2;

– the sum U1 +U2 is the set {u1 +u2 : u1 ∈U1,u2 ∈U2} of all sums of vectors
from the two subspaces.
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Both U1∩U2 and U1 +U2 are subspaces of V .

The next result summarises some properties of these subspaces.

Proposition 1.8 Let V be a vector space over K.

(a) For any v1, . . . ,vn ∈ V , the dimension of 〈v1, . . . ,vn〉 is at most n, with equality
if and only if v1, . . . ,vn are linearly independent.

(b) For any two subspaces U1 and U2 of V , we have

dim(U1∩U2)+dim(U1 +U2) = dim(U1)+dim(U2).

An important special case occurs when U1∩U2 is the zero subspace {0}. In this
case, the sum U1+U2 has the property that each of its elements has a unique expression
in the form u1 + u2, for u1 ∈U1 and u2 ∈U2. For suppose that we had two different
expressions for a vector v, say

v = u1 +u2 = u′1 +u′2, u1,u′1 ∈U1,u2,u′2 ∈U2.

Then
u1−u′1 = u′2−u2.

But u1−u′1 ∈U1, and u′2−u2 ∈U2; so this vector is in U1∩U2, and by hypothesis it
is equal to 0, so that u1 = u′1 and u2 = u′2; that is, the two expressions are not different
after all! In this case we say that U1 +U2 is the direct sum of the subspaces U1 and U2,
and write it as U1⊕U2. Note that

dim(U1⊕U2) = dim(U1)+dim(U2).

The notion of direct sum extends to more than two summands, but is a little com-
plicated to describe. We state a form which is sufficient for our purposes.

Definition 1.8 Let U1, . . . ,Ur be subspaces of the vector space V . We say that V is the
direct sum of U1, . . . ,Ur, and write

V = U1⊕ . . .⊕Ur,

if every vector v ∈V can be written uniquely in the form v = u1 + · · ·+ur with ui ∈Ui
for i = 1, . . . ,r.

Proposition 1.9 If V = U1⊕·· ·⊕Ur, then

(a) dim(V ) = dim(U1)+ · · ·+dim(Ur);

(b) if Bi is a basis for Ui for i = 1, . . . ,r, then B1∪·· ·∪Br is a basis for V .
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