
MTH6140 Linear Algebra II

Assignment 5 Solutions

1 (a) (40%) The given quadratic form can be written as the diagonal form

(x+ s6y+ z)2− (y− s7z)2 +(s8− s9)z2

(though any other diagonal form with the correct signature (see (b) for the signature of
Q), together with correct working, gets full marks).

To get the above diagonal form, note that an intermediate expression for Q is

Q(x,y,z) = (x+ s6y+ z)2− y2 +(s8− s9− s2
7)z

2 +2s7yz .

(b) (20%) From the above diagonal form we see that the coefficient of the (x+s6y+
z)2 term is positive, the coefficient of the (y− s7z)2 term is negative, and the coefficient
of the z2 term is s8− s9. Therefore:
The signature of Q is 2−1 = 1 if s8 > s9.
The signature of Q is 1−1 = 0 if s8 = s9.
The signature of Q is 1−2 =−1 if s8 < s9.

(c) (40%) There are 2 general methods for solving this, as described in lectures (see
also question 3 below). Probably the quickest method is:
The transition matrix P from the vs to the ws is

P =

 1 0 0
s3 2 0
0 s4 s2

 ,

and by Proposition 6.5 the transition matrix between the dual bases is

(P−1)> =
1

2s2

2s2 −s3s2 s3s4
0 s2 −s4
0 0 2

=

1 −s3/2 s3s4/(2s2)
0 1/2 −s4/(2s2)
0 0 1/s2

 .

The coordinates of the gs in the basis of f s are the columns of this matrix. In other
words:

g1 = f1 ,

1



g2 =
−s3

2
f1 +

1
2

f2 ,

g3 =
s3s4

2s2
f1 −

s4

2s2
f2 +

1
s2

f3 .

2 (a) Q is represented by  3 6 −3
6 10 −2
−3 −2 −5

 .

(b) A diagonal form for Q is

3(x+2y− z)2−2y2 +8yz−8z2 = 3(x+2y− z)2 − 2(y−2z)2 .

(c) Two symmetric matrices A and A′ are congruent if there exists an invertible
matrix P such that A′ = P>AP.

(d) A diagonal matrix is 3 0 0
0 −2 0
0 0 0

 ,

though in fact a 0 0
0 −b 0
0 0 0


also works, for any a,b > 0 (as does any diagonal matrix obtained from the one above
by permuting the entries a, −b and 0 on the leading diagonal).

3 The first dual basis vector g1 satisfies g1(w1) = 1, g1(w2) = g1(w3) = 0. If g1 =
a1 f1 +a2 f2 +a3 f3, we find

a1 +a2 +a3 = 1,

2a1 +a2 +a3 = 0,

2a2 +a3 = 0,

giving a1 =−1, a2 =−2, a3 = 4. So

g1 =− f1−2 f2 +4 f3 .

Solving two similar sets of equations gives

g2 = f1 + f2−2 f3

and
g3 = f2− f3 .
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Alternatively, the transition matrix P from the vs to the ws is

P =

1 2 0
1 1 2
1 1 1

 ,

and we showed in lectures (see Proposition 6.6) that the transition matrix between the
dual bases is

(P−1)> =

−1 1 0
−2 1 1
4 −2 −1

 .

The coordinates of the gs in the basis of f s are the columns of this matrix.

4 (a) True.
You all have s2≥ 4, so 3s2≥ 12, whereas s8 +2≤ 11 < 12≤ 3s2. If we choose any basis
v1,v2, . . . ,v3s2 for V , then U = 〈v1, . . . ,vs8+2〉 (i.e. the span of the first s8 + 2 vectors in
the basis) is a (s8 +2)-dimensional subspace of V .

(b) False.
Every linear map has the property that T (0) = 0, so 0 ∈ ker(T ), so ker(T ) can never be
the empty set.

(c) False.
For example if v1,v2,v3,v4 are linearly independent then 〈v1,v2,v3,v4〉 is 4-dimensional,
whereas 〈v1 + v2,v3 + v4〉 is only 2-dimensional, so these subspaces cannot be equal.

5 (a) If your s9 > 0 then: the single value α = 0.

If your s9 = 0 then: all α > 0.
To see this, note that the matrix A represents the quadratic form

Q(x,y) = αx2 +2α
2xy+(α3 + s9)y2 = α(x+αy)2 + s9y2 .

(b) If your s9 > 0 then: all α < 0.
If your s9 = 0 then: no values of α .
To see this we use the above representation of Q together with the observation (see also

the lecture notes) that
[

0 1
1 0

]
is congruent to

[
1 0
0 −1

]
, because 2xy = 1

2((x + y)2−

(x− y)2) = u2− v2 where u = (x+ y)/
√

2 and v = (x− y)/
√

2.

6 Obviously there are many possible answers to this question. Mine would have been
something like:

(a) The space R32940534 equipped with the standard inner product.
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(b) The map which is represented, with respect to the standard basis, by the symmetric
matrix −0.92 3.18 103

3.18 5.4 −6.3
103 −6.3 −2

 .

Or, perhaps more simply, I could have chosen the map represented by a diagonal matrix
such as −0.92 0 0

0 5.4 0
0 0 −2

 .

(c) The map T : R4→R4 defined by T




t
x
y
z


=


t3 + z
|y|

sin(t + x2)
3txyz

 is certainly not linear.

7 (a) (i) s3.

(ii) s2s4.

(iii) −s2s9.
This is because (s8 f1− s2 f2 + s1 f3− s4 f4)(s4v1 + s9v2 + s7v3 + s8v4) = s8 f1(s4v1)−
s2 f2(s9v2) + s1 f3(s7v3)− s4(s8v4) = s8s4− s2s9 + s1s7− s4s8 = −s2s9 (since you all
have s1 = 0).

(b) First note that everyone has s1 = 0 and s2 6= 0.

If you have s3 = s4 = 0 then the subspace in question is


 x

0
0

 : x ∈ R

, and an

orthonormal basis consists of the single vector

1
0
0

 (or alternatively the single vector−1
0
0

).

If at least one of s3 and s4 is non-zero (this is true for most of you) then the sub-

space in question is


 x

y
0

 : x,y ∈ R

. In this case one possible orthonormal basis is1
0
0

,

0
1
0

. However there are lots of other possible answers: for example

1/
√

2
1/
√

2
0

, 1/
√

2
−1/
√

2
0

 is also an orthonormal basis.
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8 There are several ways of solving this problem, and there is no unique solution. One
can find the eigenvalues by writing down the characteristic polynomial of A, which is∣∣∣∣∣∣

x−1 −2 −2
−2 x−4 −4
−2 −4 x−4

∣∣∣∣∣∣= x2(x−9),

so the eigenvalues are 0 and 9. An eigenvector with eigenvalue 9 is found by solving
the equations 1 2 2

2 4 4
2 4 4

x
y
z

=

9x
9y
9z

 .

We find that [1 2 2 ]> is a solution. Normalising, we find that v1 = [1/3 2/3 2/3 ]>

is a unit eigenvector.
Similarly the eigenvectors with eigenvalue 0 are solutions of1 2 2

2 4 4
2 4 4

x
y
z

=

0
0
0

 ,

which gives us the equation x + 2y + 2z = 0. This has two linearly independent solu-
tions, both orthogonal to v1. We have to choose two orthonormal vectors satisfying this
equation. This can be done, for example, by choosing a basis for the space of vectors

satisfying x + 2y + 2z = 0, say

 0
1
−1

 and

 2
0
−1

, and applying the Gram–Schmidt

process to give 1√
2

 0
1
−1

 and 1
3
√

2

−4
1
1

.

Alternatively one can find the eigenvector

1
2
2

 by inspection, and then note that

(since eigenvectors of a symmetric matrix with distinct eigenvalues are orthogonal, see

Corollary 8.6) the remaining eigenvectors

x
y
z

 satisfy

x
y
z

 ·
1

2
2

 = x + 2y + 2z = 0,

and proceed as before.
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