

MTH6140

Linear Algebra II

Assignment 5 For handing in on Monday 13th December 2010

Question 1 only will be marked for credit. Write your name and student number at the top of your solution before handing it in. Post the solution in the **YELLOW** post-box in the **BASEMENT** of the Maths building before 15:00 on Monday.

Let $s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 s_9$ denote your student number (i.e. the digits of your student number are, in order, s_1 , s_2 , s_3 , s_4 , s_5 , s_6 , s_7 , s_8 , s_9).

1 (a) Suppose the real quadratic form $Q: \mathbb{R}^3 \to \mathbb{R}$ is defined by

$$Q(x, y, z) = x^{2} + (s_{6}^{2} - 1)y^{2} + (1 - s_{7}^{2} + s_{8} - s_{9})z^{2} + 2s_{6}xy + 2xz + 2(s_{6} + s_{7})yz$$

Reduce Q to diagonal form (in the sense of Theorem 6.3 in the notes), being careful to show your working.

- (b) What is the signature of Q?
- (c) Suppose that the vectors v_1, v_2, v_3 form a basis for $V = \mathbb{R}^3$, and that the dual basis of V^* is denoted by f_1, f_2, f_3 . If a second basis w_1, w_2, w_3 for V is given by

$$w_1 = v_1 + s_3 v_2$$
, $w_2 = s_1 v_1 + 2v_2 + s_4 v_3$, $w_3 = s_1 v_1 + s_1 v_2 + s_2 v_3$

then what is the basis of V^* which is dual to w_1, w_2, w_3 ?

2 The real quadratic form Q is defined by

$$Q(x, y, z) = 3x^{2} + 12xy + 10y^{2} - 6xz - 4yz - 5z^{2}.$$

- (a) Which symmetric matrix A represents Q?
- (b) Reduce Q to diagonal form (in the sense of Theorem 6.3 in the notes).

- (c) What does it mean for two symmetric matrices to be congruent?
- (d) Find a diagonal matrix which is congruent to the matrix A from part (a).

3 Suppose that the vectors v_1, v_2, v_3 form a basis for $V = \mathbb{R}^3$, and that the dual basis of V^* is denoted by f_1, f_2, f_3 . If a second basis w_1, w_2, w_3 for V is given by

 $w_1 = v_1 + v_2 + v_3$, $w_2 = 2v_1 + v_2 + v_3$, $w_3 = 2v_2 + v_3$

then what is the basis of V^* which is dual to w_1, w_2, w_3 ?

- 4 State whether the following are True or False, taking care to justify your answer:
 - (a) Every $3s_2$ -dimensional vector space V contains a (s_8+2) -dimensional subspace U.
 - (b) There exists a linear map $T : \mathbb{R}^{s_4+1} \to \mathbb{R}^{s_5+2}$ whose kernel is the empty set.
 - (c) For all vectors $v_1, v_2, v_3, v_4 \in \mathbb{R}^{s_2+s_3}$, we have the equality $\langle v_1 + v_2, v_3 + v_4 \rangle = \langle v_1, v_2, v_3, v_4 \rangle$.

5 For what real values α is the symmetric real matrix $A = \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 + s_9 \end{bmatrix}$ congruent to

(a) the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$? (b) the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$?

6 Give an example of

- (a) an inner product space, and
- (b) a self-adjoint linear map on \mathbb{R}^3 , and
- (c) a map $T : \mathbb{R}^4 \to \mathbb{R}^4$ which is *not* linear,

but choosing all examples in such a way that no other student has used the same examples as their answer for this question.

7 (a) Suppose that the vectors v_1, v_2, v_3, v_4 form a basis for $V = \mathbb{R}^4$, and that the dual basis of V^* is denoted by f_1, f_2, f_3, f_4 .

Evaluate the following:

(i) $f_3(s_2v_2 + s_3v_3)$

- (ii) $(f_1 + s_2 f_4)(s_3 v_3 + s_4 v_4)$
- (iii) $(s_8f_1 s_2f_2 + s_1f_3 s_4f_4)(s_4v_1 + s_9v_2 + s_7v_3 + s_8v_4)$

(b) Suppose that \mathbb{R}^3 is equipped with the standard inner product. Give an orthonormal basis for the subspace of \mathbb{R}^3 spanned by the vectors $\begin{bmatrix} s_1 \\ s_3 \\ 0 \end{bmatrix}, \begin{bmatrix} s_2 \\ s_4 \\ 0 \end{bmatrix}$.

8 Find an orthonormal basis of \mathbb{R}^3 consisting of eigenvectors of the matrix

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{bmatrix}.$$