
MTH6140 Linear Algebra II

Assignment 4 Solutions

1 (a) The characteristic polynomial is cA(x) = det(xI−A) = (x− s7)(x− s8)(x− s9)
and (hence) the eigenvalues are s7, s8, and s9 (some of which might be equal).

(b) One method is to evaluate the three matrices A− s7I, A− s8I, and A− s9I, then
multiply them together and find that their product cA(A) equals the zero matrix.

The other method is to compute the powers A2 and A3, then substitute them into
the characteristic polynomial

cA(x) = x3− (s7 + s8 + s9)x2 +(s7s8 + s7s9 + s8s9)x− s7s8s9 ,

and find that A3− (s7 + s8 + s9)A2 +(s7s8 + s7s9 + s8s9)A− s7s8s9I = 0.

(c) Probably the best way to answer this question is to choose A′ to be any matrix
whose rank is the same as rank(A) (hence A′ is equivalent to A) but whose set
of eigenvalues is not the same as for A (hence A′ cannot be similar to A, because
similar matrices represent the same linear map (see Section 5.2 in the Notes) and
their eigenvalues are precisely the eigenvalues of this map).

How to find such an A′?

Most of you will have a matrix A whose rank equals 3 (this is the case provided
detA 6= 0, i.e. provided all of s7, s8 and s9 are non-zero). A good choice (but by
no means the only choice) of A′ is then

A′ = 10 I3 =

10 0 0
0 10 0
0 0 10

 ,

(i.e. ten times the rank-3 canonical form for equivalence); note that its only eigen-
value is 10 (a triple root of cA′(x)), so its eigenvalue set does not agree with that
for your matrix A.

Some of you have a matrix A whose rank equals 2, in which case you could
choose A′ to be ten times the rank-2 canonical form for equivalence, namely

A′ =

10 0 0
0 10 0
0 0 0

 ,
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since its eigenvalues are 0 and 10, which differs from the eigenvalues for your
matrix A

[Note: The choice of multiplying by 10 in the above is simply because all the
eigenvalues of your A are in the range from 0 to 9. In fact there are many possible
choices of A′!]

I think none of you have a matrix A of rank 1.

(d) For most of you the answer is no, but for a few of you the answer is yes.

More precisely, if your s6 = 0 and your s9 equals either s7 or s8, then the answer
is yes; otherwise the answer is no.

Justification in the case that the answer is yes:

Sub-case (i): If your characteristic polynomial has roots λ = s9 and λ ′ 6= λ , then
you can check that the quadratic polynomial f (x) = (x−λ )(x−λ ′) is such that
f (A) = 0. [This f is precisely the minimal polynomial mA].

Sub-case (ii): If you have s7 = s8 = s9 = λ then you can check that the quadratic
polynomial f (x) = (x−λ )2 is such that f (A) = 0. [This f is precisely the mini-
mal polynomial mA].

Justification in the case that the answer is no: First observe that the answer is
no if and only if the minimal polynomial mA of A is equal to its characteristic
polynomial cA.

Sub-case (i): If your s7, s8 and s9 are distinct then you can deduce immediately
that mA = cA, since on the one hand mA must be a factor of cA, but on the other
hand every eigenvalue of A must be a root of mA (see Theorem 5.7).

Sub-case (ii): If you have s7 = s8, but s9 6= s8, then you should rule out, by direct
calculation, the possibility that your mA(x) = (x− s8)(x− s9); i.e. compute the
product

(A− s8I)(A− s9I) =

0 s8− s9 0
0 0 0
0 s6 0

 6=
0 0 0

0 0 0
0 0 0

 .

(e) If s7 6= s8 then A is diagonalisable. Otherwise, i.e. if s7 = s8, then A is not diago-
nalisable.

Justification: By Theorem 5.9 in the Notes we know that a matrix A is diagonal-
isable if and only if its minimal polynomial mA is the product of distinct linear
factors, i.e. if all its roots have multiplicity 1. The work in part (d) of this question
shows that mA does have this property, except when s7 = s8, in which case mA(x)
equals either (x− s7)3 (if s7 = s8 = s9) or (x− s7)2(x− s9) (if s9 6= s7).
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Alternative justification: You could compute directly the eigenvectors of A, and
check whether they form a basis for R3 (if they do then A is diagonalisable,
otherwise it is not; see Proposition 5.4).

2 (a) If v and w are any two linearly independent vectors in C3 then

U = {sv+ tw : s, t ∈ C}

is a 2-dimensional subspace of C3, and the vectors v,w form a basis for U (though this
is of course not the only choice of basis!).

It simply remains to choose v and w in such a way that no other student will have

chosen the same vectors. For example if I chose u =

−ππ

12
1− i

 and v =

−3+88i
1/7
100


then it is highly unlikely that anybody else would have made the same choices.

(b) Let v be any vector in V . We have to show that P(v) = v. Now Im(P) = V , so
there exists v′ ∈ V such that P(v′) = v. But P is a projection, i.e. P2 = P, so P(v) =
P(P(v′)) = P(v′) = v, as required.

(c) You should all have found that
〈[

s8
s7

]
,

[
s6
s5

]
,

[
s4
s3

]
,

[
s2
s1

]〉
= C2, i.e. that your

vectors
[

s8
s7

]
,

[
s6
s5

]
,

[
s4
s3

]
,

[
s2
s1

]
form a spanning set for C2. Now choosing V = C2

in (b) above we deduce that the only such P is the identity map on C2, defined by

P
([

x
y

])
=
[

x
y

]
for all

[
x
y

]
∈ C2.

(d) No if s8 6= s7, but Yes if s8 = s7.
The minimal polynomial must divide the characteristic polynomial (see Proposition
5.6), and this is clearly false if s8 6= s7.
If s8 = s7, however, then we may choose A to be the (s5 +2)× (s5 +2) diagonal matrix
whose diagonal entries are all equal to s8.

3 Let

A =


A11 A12 · · · A1n

0 A22 · · · A2n

· · · · · · · · · · · ·
0 0 · · · Ann


be an upper triangular matrix. We have to show that

det(A) = A11A22 · · ·Ann.

(a) Suppose that A11 = 0. Then A has a column of zeros, so that A is not invertible,
and det(A) = 0; and clearly the right-hand side is also zero.
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Now suppose that A11 6= 0. Multiply the first column by A−1
11 (this column operation

multiplies the determinant by A−1
11 ) to get a matrix with A11 = 1. Now applying Type 1

column operations (which don’t change the determinant) we can ensure that the rest of
the entries in the first row are zero.

Continuing this process we find that

(i) if some Aii = 0, then A is not invertible and det(A) = 0, so that the equation holds;

(ii) if not, then we can reduce A to I by a sequence of operations which multiply the
determinant by (A11A22 · · ·Ann)−1.

In case (ii), we have that

det(A)(A11A22 · · ·Ann)−1 = det(I) = 1,

so det(A) = A11A22 · · ·Ann, as required.

(b) Let us use the cofactor expansion along the first column. Also, we will use
induction on n, assuming the result true for upper triangular matrices of size (n−1)×
(n−1).

All entries in the first column of A are zero except possibly the first entry A11;
so there is only one term in the cofactor expansion, namely A11A11, where A11 is the
determinant obtained by deleting the first row and column. But this is an upper trian-
gular matrix with diagonal entries A22, . . . ,Ann. By induction, A11 = A22 · · ·Ann, so that
det(A) = A11 · · ·Ann, as required.

4 (a) True. The matrix A3 is square, and its entries lie in K. The determinant of a square
matrix with entries in K is itself an element of K.

(b) True. For example we could choose

A =


c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

(c) False when n > 1 (but True when n = 1). For example the equality fails when

A =
[

1 0
0 0

]
and B =

[
0 0
0 1

]
.

5 The answers to each part of this question will depend on your student number. Solu-
tions will be illustrated by using the fictitious student number 063827195.

(a) In this case

A =

8 6 0
1 2 3
5 9 7

 ,
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and the cofactors Ki j(A) are:

K11(A)= 2 ·7−3·9 =−13 , K12(A)=−(1·7−3 ·5)= 8 , K13(A)= 1 ·9−2 ·5 =−1 ,

K21(A)=−(6 ·7−9 ·0)=−42 , K22(A)= 8 ·7−5 ·0 = 56 , K23(A)=−(8 ·9−6·5)=−42 ,

K31(A)= 6 ·3−2 ·0 = 18 , K32(A)=−(8 ·3−1·0)=−24 , K33(A)= 8·2−1·6 = 10 .

The adjugate Adj(A) = (K ji(A)) is then:

Adj(A) =

−13 −42 18
8 56 −24
−1 −42 10


(b) The cofactor expansion along the first row gives

det(A) = 8(2 ·7−3 ·9)−6(1 ·7−3 ·5)+0(1 ·9−2 ·5) =−104+48 =−56 .

(c) det(A) is in this case non-zero, so A is invertible, with

A−1 =
1

det(A)
Adj(A) =

 13/56 42/56 −18/56
−8/56 −1 24/56
1/56 42/56 −10/56

=

13/56 3/4 −9/28
−1/7 −1 3/7
1/56 3/4 −5/28

 .

(d) The characteristic polynomial is

cA(x)= det(xI−A)=

∣∣∣∣∣∣
x−8 −6 0
−1 x−2 −3
−5 −9 x−7

∣∣∣∣∣∣=(x−8)((x−2)(x−7)−27)+6(−(x−7)−15) ,

which simplifies to cA(x) = x3−17x2 +53x+56.

(e)

A2 =

70 60 18
25 37 27
84 111 76

 , A3 =

 710 702 306
372 467 300
1163 1410 865

 ,

so

cA(A)=

 710 702 306
372 467 300

1163 1410 865

−17

70 60 18
25 37 27
84 111 76

+53

8 6 0
1 2 3
5 9 7

+

1 0 0
0 1 0
0 0 1

 ,

which is indeed the zero matrix

0 0 0
0 0 0
0 0 0

.
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6 (a) V is not finite dimensional. The reason (which was not asked for in the question)
is the following: If V were finite-dimensional, of dimension N, say, then we can find a
basis B, of cardinality N, for V . Now consider the subspace U of V defined by

U = {(x1,x2, . . . ,xN ,xN+1,0,0,0,0,0,0,0, . . .) : x1,x2, . . . ,xN ,xN+1 ∈ R} .

It is easily seen that U is finite-dimensional, of dimension N + 1. But B only contains
N vectors, therefore cannot span the (N + 1)-dimensional space U , hence cannot span
V , a contradiction.

(b) The only 1-dimensional subspace containing this sequence is the set

{(s1t,s2t,s3t,s4t,0,0,0, . . .) : t ∈ R} .

[For example it is {(0,6t,3t,8t,0,0,0,0, . . .) : t ∈R} if your student number is 063827195].

(c) There are many 2-dimensional subspaces of V . If we choose any two linearly in-
dependent sequences, for example v1 = (1,0,0,0,0, . . .) and v2 = (0,1,0,0,0, . . .), then
their span 〈v1,v2〉 is 2-dimensional. [For this choice of v1, v2 we can write their span as
〈v1,v2〉= {(s, t,0,0,0,0,0, . . .) : s, t ∈ R}].

(d) U is clearly a subset of V , so we only need show that U is a vector space in its
own right. For this suppose that u = (x1,x2,x3,x4, . . .) and u′ = (y1,y2,y3,y4, . . .) both
belong to U . This means that s2x2 + s3x3 = 0 and s2y2 + s3y3 = 0. Now

u+u′ = (x1 + y1,x2 + y2,x3 + y3,x4 + y4, . . .) ,

and since s2(x2 +y2)+s3(x3 +y3) = (s2x2 +s3x3)+(s2y2 +s3y3) = 0+0 = 0 we deduce
that u+u′ ∈U .

Also, if a ∈ R then au = (ax1,ax2,ax3,ax4, . . .), and s2(ax2)+ s3(ax3) = a(s2x2 +
s3x3) = a ·0 = 0, so au ∈U .

So U is a vector space in its own right, hence a subspace of U .

(e) This is a subspace of V if and only if your final student digit s9 is equal to 0.
If s9 = 0 then the proof that W is a subspace is very similar to the proof of (d) above.

If s9 6= 0 then note (for example) that the zero vector (0,0,0,0,0,0,0,0, . . .) does not
belong to W , hence W cannot be a subspace.

7 (a) The matrix is

A =


0 1 0 1
s2 0 s2 0
0 s3 0 s3
s4 0 s4 0

 .
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A vector


t
x
y
z

 belongs to the kernel of S if and only if S




t
x
y
z


=


0
0
0
0

, which holds

if and only if x + z = 0 and t + y = 0 (note that here we are using the fact that you all

have s2 6= 0). So the two vectors


0
1
0
−1

,


1
0
−1
0

 are a basis for ker(S).

(b) The matrix is

B =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

Its characteristic equation is cB(x) = det(xI−B) = x2(x2−4), so the eigenvalues of B,
and hence of T , are 0, 2, and −2.
(c) Reasoning as in (a) shows that the eigenvalue 0 has a 2-dimensional eigenspace,

spanned by


0
1
0
−1

 and


1
0
−1
0

.

The eigenvector for eigenvalue 2 is obtained by solving the linear equations

x+ z = 2t,

t + y = 2x,

x+ z = 2y,

t + y = 2z,

which has the solution


t
x
y
z

=


1
1
1
1

, unique up to scalar multiples.

The eigenvector for eigenvalue −2 is obtained by solving the linear equations

x+ z = −2t,

t + y = −2x,

x+ z = −2y,

t + y = −2z,
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which has the solution


t
x
y
z

=


1
−1
1
−1

, unique up to scalar multiples.

So 
0
1
0
−1

 ,


1
0
−1
0

 ,


1
1
1
1

 ,


1
−1
1
−1


is a basis for R4 consisting of eigenvectors of T .

Consequently BP = PD, and hence P−1BP = D, where

P =


0 1 1 1
1 0 1 −1
0 −1 1 1
−1 0 1 −1

 , D =


0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 −2

 .

8 (a) The characteristic polynomial of A is

cA(x) =

∣∣∣∣∣∣
x+3 −8 −2

2 x−5 −1
2 −2 x−4

∣∣∣∣∣∣= (x−1)(x−2)(x−3) .

(b) mA(x) = cA(x) = (x−1)(x−2)(x−3), since we know that the (monic) polynomial
mA(x) must divide cA(x), and the degree of mA(x) is not greater than the degree of cA(x).

(c) The eigenvalues of A are 1, 2 and 3, since these are the roots of the characteristic
equation.
Now the eigenvectors are obtained by solving linear equations. For eigenvalue 1, the
equations are

−3x1 +8x2 +2x3 = x1,

−2x1 +5x2 + x3 = x2,

−2x1 +2x2 +4x3 = x3,

which has the solution

x1
x2
x3

=

5
2
2

, unique up to scalar multiples.

Similarly, for the eigenvalue 2, we have

x1
x2
x3

=

2
1
1

, and for the eigenvalue 3, we

have

x1
x2
x3

=

2
1
2

.
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(d) Using (c) we have AQ = QD (and hence Q−1AQ = D), where

Q =

5 2 2
2 1 1
2 1 2

 , D =

1 0 0
0 2 0
0 0 3

 .

(e) The simplest way to find the projections is as follows: Let Ei be the matrix with 1 in
the ith diagonal position and 0 everywhere else, and Pi = QEiQ−1. Then

P2
i = (QEiQ−1)(QEiQ−1) = QE2

i Q−1 = QEiQ−1 = Pi,

P1 +P2 +P3 = Q(E1 +E2 +E3)Q−1 = QIQ−1 = I,

P1 +2P2 +3P3 = Q(E1 +2E2 +3E3)Q−1 = QDQ−1 = A,

so P1,P2,P3 are the required projections. Calculation gives

Q−1 =

 1 −2 0
−2 6 −1
0 −1 1

 ,

so

P1 =

5 −10 0
2 −4 0
2 −4 0

 , P2 =

−4 12 −2
−2 6 1
−2 6 1

 , P3 =

0 2 −2
0 1 −1
0 2 −2

 .

Alternatively you can find them like this. The matrix P1 has column space spanned
by [5 2 2 ]>, so we have

P1 =

5x 5y 5z
2x 2y 2z
2x 2y 2z


for some (as yet undetermined) x,y,z. Now use the fact that, if v1,v2,v3 denote the three
eigenvectors of A, then P1v1 = v1, P2v1 = 0, P3v1 = 0, to get three equations for x,y,z
and hence find P1. The other two are found similarly.

9 (a) You all have s1 = 0, so A =

0 −4 −2s2
1 4 s2
0 0 s3

 , with characteristic polynomial

cA(x) =

∣∣∣∣∣∣
x 4 2s2
−1 x−4 −s2
0 0 x− s3

∣∣∣∣∣∣= (x− s3)(x−2)2 .

For the minimal polynomial we consider separately the two cases s3 = 2 and s3 6= 2:

If s3 = 2 then mA(x) = (x−2)2, because (A−2I)2 = 0 (and A−2I 6= 0).
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If s3 6= 2 then mA(x) = cA(x) = (x− s3)(x−2)2, since (A− s3I)(A−2I) 6= 0.

(b) Its rank equals 1. One way of arguing this is to note that every column is the same
(and not full of zeros) so the column rank equals 1.

(c) Minimal polynomial equals (x−n)x if n > 1, and equals x−1 if n = 1.
The case n = 1 is obvious. To prove it for n > 1, note that both 0 and n are eigenvalues,
so (x−n)x must be a factor of the minimal polynomial. But A2 is the matrix with every
entry equal to n, so is equal to nA; therefore (A−nI)A = 0.

(d) Diagonalisable for all values of n, because the minimal polynomial is a product of
distinct linear factors (see Theorem 5.9 in the notes).
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