
MTH6140 Linear Algebra II

Assignment 3 Solutions

1 (a) [20%] If w∈ Im(T ) then w = T (v) for some v∈V , so T (w) = T (T (v)) = T 2(v) =
0, so w ∈ ker(T ). So we have shown that Im(T )⊂ ker(T ).

(b) [20%] Yes, this is obvious: Im(T ) and ker(T ) are known to be subspaces of V
(see Proposition 3.1 in the lecture notes), so in particular they are vector spaces in their
own right. From part (a) we know that Im(T ) is a subset of ker(T ). So Im(T ) is a subset
of ker(T ), and is a vector space in its own right; therefore it is a subspace of ker(T ).

An alternative proof is to note, by (a), that Im(T ) is a subset of ker(T ), and then
check directly that Im(T ) satisfies the subspace rules (the proof of this is almost identi-
cal to the proof in Proposition 3.1 in the notes).

(c) [20%] From (b) we know that the dimension of Im(T ) is no greater than the
dimension of ker(T ); in other words, rank(T ) ≤ nul(T ). Combining this inequality
with the Rank-Nullity Theorem gives

2rank(T )≤ rank(T )+nul(T ) = dim(V ) = s2 + s3 ,

so rank(T )≤ (s2 + s3)/2, as required.

2 [40%] To prove that v and w are linearly independent we must show that if c1v+c2w =
0 then necessarily c1 = c2 = 0.

If c1v + c2w = 0 then applying T to both sides, and using linearity of T , we get
c1T (v)+ c2T (w) = T (0) = 0, and therefore

c1(s2 + s9)v− c2(s2 + s9)w = 0 .

But multiplying the equation c1v+ c2w = 0 by s2 + s9 gives

c1(s2 + s9)v+ c2(s2 + s9)w = 0 .

Adding together the above two equations gives

2c1(s2 + s9)v = 0 ,

but v is a non-zero vector, and your s2 + s9 6= 0, therefore c1 = 0.
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Plugging c1 = 0 back into one of the previous equations gives

c2(s2 + s9)w = 0 ,

but since w 6= 0 and s2 + s9 6= 0 we get c2 = 0.
So we have proved that c1 = 0 = c2, hence v and w are linearly independent, as required.

3 (a) The map T is linear. To prove this, first note that if


x1
x2
x3
x4

 and


y1
y2
y3
y4

 belong to R4,

then

T




x1
x2
x3
x4

+


y1
y2
y3
y4


= T




x1 + y1
x2 + y2
x3 + x3
x4 + y4


= s1(x1 +y1)+

√
s2(x2 +y2)−s5(x3 +y3)+s2

7(x4 +y4) .

But rearranging the righthand side of this equation gives:(
s1x1 +

√
s2x2− s5x3 + s2

7x4
)
+
(
s1y1 +

√
s2y2− s5y3 + s2

7y4
)
,

and this is equal to

T




x1
x2
x3
x4


+T




y1
y2
y3
y4


 .

So we have proved that

T




x1
x2
x3
x4

+


y1
y2
y3
y4


= T




x1
x2
x3
x4


+T




y1
y2
y3
y4


 ,

which is one half of the definition of linearity of T . To check the other half of the
definition of linearity, suppose that α ∈ R. Then

T

α


x1
x2
x3
x4


= T




αx1
αx2
αx3
αx4


= s1(αx1)+

√
s2(αx2)− s5(αx3)+ s2

7(αx4) .

But this righthand side simplifies to the expression

α(s1x1 +
√

s2x2− s5x3 + s2
7x4) = αT




x1
x2
x3
x4


 .
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So we have proved that

T

α


x1
x2
x3
x4


= αT




x1
x2
x3
x4


 .

This completes the proof that T is linear.

(b) No. If such a map T existed then rank(T )+nul(T ) = dim(R2s9+3) = 2s9 +3 by
Theorem 3.2, so if rank(T ) = nul(T ) we obtain 2rank(T ) = 2s9 +3. But this equation
is impossible, because rank(T ) is an integer and 2s9 +3 is odd.

(c) Yes if s2 = 7 or 4, but otherwise No.
If your s2 does not equal 7 or 4 then the condition 2rank(T ) = nul(T ), together

with the identity rank(T ) + nul(T ) = dim(Rs2−1) = s2− 1 from Theorem 3.2, gives
3rank(T ) = s2−1, which is impossible because rank(T ) is an integer.

If your s2 = 7 then you simply have to give an example of such a T . For example
the map T : R6→ R2 defined by

T





x1
x2
x3
x4
x5
x6



=
[

x1
x2

]

(represented by the matrix
[

1 0 0 0 0 0
0 1 0 0 0 0

]
) has rank 2 and nullity 4. However

there are many other valid examples!
If your s2 = 4 then again you simply have to give an example of such a T . For

example the map T : R3→ R2 defined by T

x1
x2
x3

 =
[

x1
0

]
has rank 1 and nullity

2. Again, there are many other valid examples!

(d) Obviously there are many possible answers to this question. The best idea is
probably to choose three real numbers a, b, c ‘at random’ (so that it’s very unlikely

anyone else will have selected them), then define U to be the span of the vector

a
b
c

.

For example I might choose a =−2745603, b = π2/77, and c = 13/4, then define

U =

〈−2745603
π2/77
13/4

〉 =

t

−2745603
π2/77
13/4

 : t ∈ R

 .
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(Recall that, geometrically, every 1-dimensional subspace is a line through the ori-

gin. More precisely, the span of the vector

a
b
c

 is the line through the origin which

also passes through the point

a
b
c

).

4 (a) V is finite-dimensional. Its dimension is 14.

(b) 〈s1v1,s2v3,s3v4,s5v7〉 denotes the set of all linear combinations of the vectors s1v1,
s2v3, s3v4, and s5v7. In other words,

〈s1v1,s2v3,s3v4,s5v7〉= {a1s1v1 +a2s2v3 +a3s3v4 +a4s5v7 : a1,a2,a3,a4 ∈ R} .

(c) Yes, 〈s1v1,s2v3,s3v4,s5v7〉 is finite-dimensional.
Its dimension depends on your particular student digits s1, s2, s3, s5. For everyone s1 =
0, so s1v1 = 0, so 〈s1v1,s2v3,s3v4,s5v7〉= 〈s2v3,s3v4,s5v7〉, and therefore the dimension
is ≤ 3.

In general the dimension of 〈s1v1,s2v3,s3v4,s5v7〉 is equal to 3− r, where r denotes
the number of 0’s among the three digits s2, s3 and s5.

(d) Yes, 〈s2v3,s3v4,s5v7〉 is finite-dimensional.
In fact, as noted in (c) above, this subspace is equal to 〈s1v1,s2v3,s3v4,s5v7〉, be-

cause s1 = 0. Therefore, as before, its dimension equals 3− r, where r denotes the
number of 0’s among the three digits s2, s3 and s5.

(e) Yes, 〈s2v3 + s3v4 + s5v7〉 is finite-dimensional. It is the span of the single vector
s2v3 + s3v4 + s5v7, so its dimension is equal to either 0 or 1.

For most of you its dimension equals 1. However if s2 = s3 = s5 = 0 then s2v3 +
s3v4 + s5v7 is the zero vector, in which case 〈s2v3 + s3v4 + s5v7〉 has dimension 0.

5 (a) The answer is either 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, depending on your student
number.
For example if your number is 063827095 then s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9
is equal to

0+6+3+8+2+7+1+9+5 (mod 11) = 31 (mod 11) = 9+2 ·11 (mod 11) = 9 .

(b) Again the answer is either 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, depending on your student
number. In particular, the answer is 0 if any of your student digits, other than s1, are
zero.

For example if your number is 063827195 then s2 s3 s4 s5 s6 s7 s8 s9 is equal to

6 ·3 ·8 ·2 ·7 ·1 ·9 ·5 (mod 11) = 90720 (mod 11) = 3+8247 ·11 (mod 11) = 3 .
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(c) Fs2
11 has dimension equal to s2. For example if your number is 063827195 then Fs2

11
has dimension 6.

(d) There are 11s2 vectors in Fs2
11. So in your case the number of vectors in Fs2

11 will be
either 114 = 14641, or 115 = 161051, or 116 = 1771561, or 117 = 19487171, depending
on whether your second student digit is 4, 5, 6, or 7. For example if your number is
063827195 then there are 1771561 vectors in Fs2

11.

(e) There are many ways of choosing a 1-dimensional subspace of Fs2
11, and all of these

contain precisely 11 vectors.
Each 1-dimensional subspace U is of the form U = 〈v〉, where v is some non-zero

member of Fs2
11. For example if your number is 063827195 then you might choose

U =





0
0
0
0
0
0

 ,



1
0
0
0
0
0

 ,



2
0
0
0
0
0

 ,



3
0
0
0
0
0

 ,



4
0
0
0
0
0

 ,



5
0
0
0
0
0

 ,



6
0
0
0
0
0

 ,



7
0
0
0
0
0

 ,



8
0
0
0
0
0

 ,



9
0
0
0
0
0

 ,



10
0
0
0
0
0




,

or you might instead choose

U =





0
0
0
0
0
0

 ,



1
0
0
3
0
0

 ,



2
0
0
6
0
0

 ,



3
0
0
9
0
0

 ,



4
0
0
1
0
0

 ,



5
0
0
4
0
0

 ,



6
0
0
7
0
0

 ,



7
0
0
10
0
0

 ,



8
0
0
2
0
0

 ,



9
0
0
5
0
0

 ,



10
0
0
8
0
0




, etc.

6 (a) T

 2
−1

0.25

= 1
2

[
0
s9

]
. To see this we use linearity of T :

T

 2
−1

0.25

= T

2

1
0
0

−
0

1
0

+
1
4

0
0
1

= 2T

1
0
0

−T

0
1
0

+
1
4

T

0
0
1

=
[

0
s9/2

]
.

(b) The matrix representing T is[
s1 s8 4s8
s2 2s2 2s9

]
.

(c) Rank = 2 if s8 6= 0. If s8 = 0 then rank = 1. (Note that everyone’s student
number has s1 = 0 and s2 6= 0).

(d) S
([

s4
−s7

])
=

0
0
0

, since the map S is identically zero (i.e. S
([

x
y

])
=

0
0
0


for all

[
x
y

]
∈ R2).
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7 (a) rank(T ) = 2 or 3, depending on your student number. More precisely, rank(T ) = 2
if your s3 equals either 0 or s2− 3; otherwise rank(T ) = 3. [Note that this answer
exploits some features of your student numbers: in particular you all have that s1 = 0
and s2−3 6= s1].

(b) nul(T ) = 0 or 1. More precisely, nul(T ) = 1 if your s3 equals either 0 or s2−3;
otherwise nul(T ) = 0. This is because, by Theorem 3.2, nul(T ) = dim(R3)−rank(T ) =
3− rank(T ).

8 (a) Two matrices A and B, of the same size, are equivalent if there exist invertible
square matrices P and Q such that B = PAQ.

[Acceptable alternative definitions of A and B being equivalent are: (i) A and B
have the same rank, or (ii) A and B can be reduced, by a sequence of elementary row
and column operations, to the same canonical form for equivalence, or (iii) A can be
transformed into B via a sequence of elementary row and column operations].

(b) The size of the matrices depends on your student number. For example if your
number is 063827195 then the two matrices are both of size 10×6.

An easy example is to choose A with A11 = 1 = A12 and Ai j = 0 otherwise, and
B with B11 = 1 and Bi j = 0 otherwise. These matrices are equivalent because if we
replace the 2nd column of A by the difference of its first and second columns, then we
obtain B.

Alternatively, you might choose A and B = PAQ as in (d) below (assuming your
working there is correct)!

(c) The answer here depends on whether your s4 = 0 or not.

If s4 = 0 then the canonical form for equivalence is

1 0 0
0 0 0
0 0 0

, so rank = 1. To

see this, swap the 1st and 2nd rows, then subtract s2 copies of the first column from the
second column, and the matrix is already in canonical form. We have

P =

0 1 0
1 0 0
0 0 1

 , Q =

1 −s2 0
0 1 0
0 0 1

 .

If s4 6= 0 then the canonical form for equivalence is

1 0 0
0 1 0
0 0 0

, so rank = 2. To

see this, swap the 1st and 2nd rows, next subtract s2 copies of the first column from the
second column, then swap the 2nd and 3rd rows, then swap the 2nd and 3rd columns,
and finally multiply the 2nd row by s−1

4 to obtain the canonical form. We have

P =

0 1 0
0 0 s−1

4
1 0 0

 , Q =

1 0 −s2
0 0 1
0 1 0

 .
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(d) Since T (v) = Av where A is as in (d), the rank of T equals the rank of A. So
rank(T ) = 1 if s4 = 0, and rank(T ) = 2 if s4 6= 0.
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