

MTH6140

Linear Algebra II

Assignment 3 For handing in on Monday 15th November

Questions 1 and 2 only will be marked for credit. Write your name and student number at the top of your solution before handing it in. Post the solution in the **YELLOW** post-box in the **BASEMENT** of the Maths building before 15:00 on Monday.

Let $s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 s_9$ denote your student number (i.e. the digits of your student number are, in order, s_1 , s_2 , s_3 , s_4 , s_5 , s_6 , s_7 , s_8 , s_9).

1 Let $T: V \to V$ be a linear map, where V is a vector space of dimension $s_2 + s_3$. Suppose that $T^2 = O$ (i.e. the composition $T^2 = T \circ T$ is the map which sends every vector to the zero vector).

- (a) Show that $\text{Im}(T) \subset \text{ker}(T)$.
- (b) Is Im(T) a subspace of ker(T)?

(c) Use the Rank-Nullity Theorem to show that $\operatorname{rank}(T) \leq (s_2 + s_3)/2$.

2 Let $T: V \to V$ be a linear map, and suppose there are non-zero vectors $v, w \in V$ such that $T(v) = (s_2 + s_9)v$ and $T(w) = -(s_2 + s_9)w$. Show that v and w are linearly independent.

3 (a) Suppose that the map $T : \mathbb{R}^4 \to \mathbb{R}$ is defined by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4\end{bmatrix}\right) = s_1 x_1 + \sqrt{s_2} x_2 - s_5 x_3 + s_7^2 x_4.$$

Either prove, or disprove, that *T* is linear.

- (b) Does there exist a linear map $T : \mathbb{R}^{2s_9+3} \to \mathbb{R}^{s_5+1}$ such that rank(T) = nul(T)? Justify your answer.
- (c) Does there exist a linear map $T : \mathbb{R}^{s_2-1} \to \mathbb{R}^{s_1+2}$ such that $2 \operatorname{rank}(T) = \operatorname{nul}(T)$? Justify your answer.
- (d) Give an example of a 1-dimensional subspace U of \mathbb{R}^3 which is *different* from the example given by all other students answering this question.
- 4 Let $(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_{12}, v_{13}, v_{14})$ be a basis for a vector space *V* over the field \mathbb{R} .
 - (a) Is V finite-dimensional? If so, what is its dimension?
 - (b) What does the notation $\langle s_1v_1, s_2v_3, s_3v_4, s_5v_7 \rangle$ mean?
 - (c) Is $\langle s_1v_1, s_2v_3, s_3v_4, s_5v_7 \rangle$ finite-dimensional? If so, what is its dimension?
 - (d) Is $\langle s_2v_3, s_3v_4, s_5v_7 \rangle$ finite-dimensional? If so, what is its dimension?
 - (e) Is $\langle s_2v_3 + s_3v_4 + s_5v_7 \rangle$ finite-dimensional? If so, what is its dimension?

5 Let \mathbb{F}_{11} denote the field of integers modulo 11, and consider the digits s_1 , s_2 , s_3 , s_4 , s_5 , s_6 , s_7 , s_8 , s_9 in your student number to be elements of \mathbb{F}_{11} .

- (a) Calculate $s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_7 + s_8 + s_9$ as an element of \mathbb{F}_{11} .
- (b) Calculate the product $s_2 s_3 s_4 s_5 s_6 s_7 s_8 s_9$ as an element of \mathbb{F}_{11} .
- (c) What is the dimension of the vector space $\mathbb{F}_{11}^{s_2}$?
- (d) How many vectors belong to $\mathbb{F}_{11}^{s_2}$?

(e) Give an example of a 1-dimensional subspace of $\mathbb{F}_{11}^{s_2}$. How many vectors belong to this subspace?

6 Suppose that the map $T : \mathbb{R}^3 \to \mathbb{R}^2$ is linear, and satisfies

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}s_1\\s_2\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}s_8\\2s_2\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}4s_8\\2s_9\end{bmatrix}.$$
(a) What is $T\left(\begin{bmatrix}2\\-1\\0.25\end{bmatrix}\right)$? Justify your answer.

(b) What is the matrix representing *T* relative to the bases $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$ for \mathbb{R}^3 and $\begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ for \mathbb{R}^2 ?

(c) What is the rank of the matrix from part (b)? Briefly justify your answer.

(d) If
$$S : \mathbb{R}^2 \to \mathbb{R}^3$$
 is linear, with $S\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\0\\0\end{bmatrix}$ and $S\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\0\\0\end{bmatrix}$, then compute $S\left(\begin{bmatrix}s_4\\-s_7\end{bmatrix}\right)$.

7 Define

$$v_{0} = \begin{bmatrix} 1\\0\\0\\0\\0\\0 \end{bmatrix}, \quad v_{1} = \begin{bmatrix} 0\\1\\0\\0\\0\\0 \end{bmatrix}, \quad v_{2} = \begin{bmatrix} 0\\0\\1\\0\\0\\0 \end{bmatrix}, \quad v_{3} = \begin{bmatrix} 0\\0\\0\\1\\0\\0 \end{bmatrix}, \quad v_{4} = \begin{bmatrix} 0\\0\\0\\0\\1\\0 \end{bmatrix}, \quad v_{5} = \begin{bmatrix} 0\\0\\0\\0\\0\\1 \end{bmatrix}$$

and define the linear map $T: \mathbb{R}^3 \to \mathbb{R}^6$ by

$$T\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = x_1v_{s_1} + x_2v_{s_2-3} + x_3v_{s_3}$$

- (a) Compute rank(T).
- (b) Compute nul(T).

8 (a) Explain carefully what it means for two matrices to be *equivalent*.

(b) Give an example of two different $(s_8 + 1) \times (s_9 + 1)$ matrices which are equivalent, justifying *very briefly* your answer.

(c) Consider the matrix

$$A = \begin{bmatrix} s_1 & 0 & 0\\ 1 & s_2 & 0\\ 0 & 0 & s_4 \end{bmatrix}$$

over the field \mathbb{R} .

What is its canonical form for equivalence, and what is its rank? Find invertible matrices P and Q such that PAQ is in the canonical form for equivalence.

(d) Determine the rank of the linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = \begin{bmatrix}s_1x\\x+s_2y\\s_4z\end{bmatrix}.$$