
MTH6140 Linear Algebra II

Assignment 2 Solutions

1 (a) If s3 6= 0 then the rank is 2 and the canonical form for equivalence is
[

1 0
0 1

]
.

If s3 = 0 then the rank is 1 and the canonical form for equivalence is
[

1 0
0 0

]
.

(Note that the above answers rely on the fact that you all have s1 = 0 and s2 6= 0).

(b) If s2 and s3 are both odd then the rank is 2, and the canonical form for equiva-

lence is
[

1 0
0 1

]
.

If s2, s3 and s4 are all even then the rank is 0 and the canonical form is
[

0 0
0 0

]
.

Otherwise the rank is 1, and the canonical form for equivalence is
[

1 0
0 0

]
.

(c) If s2 and s3 are both not a multiple of 3 then the rank is 2, and the canonical

form for equivalence is
[

1 0
0 1

]
.

If s2, s3 and s4 are all multiples of 3 then the rank is 0 and the canonical form for

equivalence is
[

0 0
0 0

]
.

Otherwise the rank is 1, and the canonical form for equivalence is
[

1 0
0 0

]
.

2 (a) The equation
A = 1

2(A+A>)+ 1
2(A−A>)

shows that every matrix is the sum of a symmetric and a skew-symmetric matrix. (A+
A> is symmetric because

(A+A>)> = A>+(A>)> = A>+A,

and similarly A−A> is skew-symmetric.) Thus

Mn(R) = Sn(R)+An(R).
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Also, suppose that A is both symmetric and skew-symmetric. Then

A = A> =−A,

so 2A = O, whence A = O. This shows that Sn(R)∩An(R) = {O}, and hence

Mn(R) = Sn(R)⊕An(R).

(b) Yes if the prime p≥ 3, using the same proof as in (a) (with R replaced by Fp).
No if p = 2: in this case −x = x for all x, so the definitions of “symmetric” and

“skew-symmetric” coincide, so Sn(F2)∩An(F2) = Sn(F2) 6= {O}.

3 (a) No, it is not. Although R3 is a subset of C3, it is not a subspace. Note that C3 is

(by definition) a vector space over C, but for example v =

1
1
1

∈R3 yet iv =

 i
i
i

 /∈R3.

[Here i denotes the square root of −1].

(b) Yes, it is true that s5u−s9u′ ∈U . This follows from the definition of a subspace:
s5 ∈R so s5u∈U , and−s9 ∈R so−s9u′ ∈U , therefore s5u−s9u′ = s5u+(−s9u′)∈U .

(c) It is a subspace if s4 = 0 (to show this, just check it satisfies the definition of a
subspace), but is not a subspace if s4 6= 0 (one way of showing this is to find a vectorx

y
z

 which lies in U , but such that some scalar multiple, for example

2x
2y
2z

, does not

lie in U).

(d) You all have s1 = 0, so A2 =

0 0 s3s4
0 0 0
0 0 0

. This clearly has rank 0 if s3 = 0

or s4 = 0, and has rank 1 otherwise.

(e) p = 11 for all of you (at least I think this is true - everyone has a digit ≥ 7 in
their student number, don’t they?), so the field is F11. Now the second column in A is
equal to twice the first column (since 12 ≡ 1 modulo 11), so the (column) rank of A

equals 1. The canonical form for equivalence is therefore
[

1 0
0 0

]
.

4 (a) Subtract the first row from the second, add the first row to the third, then multiply
the new second row by −1 and subtract four times this row from the third, to get the
matrix

B =

1 2 4 −1 5
0 0 1 0 2
0 0 0 0 0

 .

The first two rows clearly form a basis for the row space.
(b) The rank is 2, since there is a basis with two elements.
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(c) The column rank is equal to the row rank and so is also equal to 2. By inspection,
the first and third columns are linearly independent, so they form a basis.

(d) By step (a), we have PA = B, where P is obtained by performing the same
elementary row operations on the 3×3 identity matrix I3:

P =

 1 0 0
1 −1 0
−3 4 1

 .

Now B can be brought to the canonical form

C =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0


by subtracting 2, 4, −1 and 5 times the first column from the second, third, fourth and
fifth columns, and twice the third column from the fifth, and then swapping the second
and third columns; so C = BQ (whence C = PAQ), where Q is obtained by performing
the same column operations on I5:

Q =


1 −4 −2 1 3
0 0 1 0 0
0 1 0 0 −2
0 0 0 1 0
0 0 0 0 1

 .

Remark: P and Q can also be found by multiplying elementary matrices, if desired;
but the above method is simpler.

5 This can be solved using elementary row and column operations to reduce A to a
matrix in canonical form for equivalence (as in the lecture notes), then counting the
number of 1’s in this matrix.

The rank of A is equal to the rank of A> (since e.g. the row rank of A clearly equals
the column rank of A>).

Depending on your student number, this rank will be either 1, 2 or 3. For most of
you the rank will be 3.

6 There are 24 = 16 such matrices.

One matrix has rank 0, namely
[

0 0
0 0

]
.

9 matrices have rank 1, namely
[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]
,
[

1 0
1 0

]
,[

0 1
0 1

]
,
[

1 1
0 0

]
,
[

0 0
1 1

]
, and

[
1 1
1 1

]
.
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6 matrices have rank 2:
[

1 0
0 1

]
,
[

0 1
1 0

]
,
[

1 1
0 1

]
,
[

1 1
1 0

]
,
[

0 1
1 1

]
, and

[
1 0
1 1

]
.

None of the matrices have rank 3 or 4 (in general the rank of an n×n matrix is≤ n).

7 (a) 〈v1,v2,v3,v4,v5〉 := {a1v1 +a2v2 +a3v3 +a4v4 +a5v5 : a1,a2,a3,a4,a5 ∈ R}.

(b) We now prove that 〈v1,v2,v3,v4,v5〉= 〈v1−3v4,v2,v3,v4,v5〉.
If v ∈ 〈v1,v2,v3,v4,v5〉 then

v = a1v1 +a2v2 +a3v3 +a4v4 +a5v5

for some a1,a2,a3,a4,a5 ∈ R. But we can re-write this as

v = a1(v1−3v4)+a2v2 +a3v3 +(3a1 +a4)v4 +a5v5 ∈ 〈v1−3v4,v2,v3,v4,v5〉 ,

hence 〈v1,v2,v3,v4,v5〉 ⊂ 〈v1−3v4,v2,v3,v4,v5〉.
Similarly, if

w = b1(v1−3v4)+b2v2 +b3v3 +b4v4 +b5v5 ∈ 〈v1−3v4,v2,v3,v4,v5〉

then
w = b1v1 +b2v2 +b3v3 +(b4−3b1)v4 +b5v5 ∈ 〈v1,v2,v3,v4,v5〉 ,

hence 〈v1−3v4,v2,v3,v4,v5〉 ⊂ 〈v1,v2,v3,v4,v5〉, and the proof is complete.

(c) This holds if and only if v1 = cv2 for some non-zero scalar c ∈ R.

8 None of these sets are subspaces of R3.
In fact the only subspaces of R3 are:
(i) The trivial subspace {0}. [This has dimension equal to 0].

(ii) Any line through the origin, i.e. any set of the form

t

x
y
z

 : t ∈ R

 for some

non-zero vector

x
y
z

. [Such subspaces have dimension equal to 1].

(iii) Any plane through the origin, i.e. any set of the form


x

y
z

 ∈ R3 : ax+by+ cz = 0


for some non-zero vector

a
b
c

. [Such subspaces have dimension equal to 2].

(iv) R3 itself. [This has dimension equal to 3].
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