
MTH6140 Linear Algebra II

Assignment 1 Solutions

1 [For this marked question, each of the five parts is worth 20%].

(a) Of course there is no single correct answer to this question, but I recommend
choosing the vector space V = Qn where n is a natural number that other students
are unlikely to choose. For example: V = Q385729998.

(b) I recommend choosing V = Cs2+s3 , and letting the basis consist of vectors vi, for
1≤ i≤ s2 + s3, where each vi is defined to have the entry 1 as its ith component,
and the entry 0 for all other components. (However, of course this is not the only
correct answer).

So if, for example, you have s2 = 2 and s3 = 1, then choose V = C3, with basis
consisting of the three vectors

v1 =

1
0
0

 , v2 =

0
1
0

 , v3 =

0
0
1

 .

(c) Once again, there is no single correct answer to this question, but you might
choose V = R2 as your vector space. Since this space is 2-dimensional, we can

choose two vectors (for example
[

1
0

]
and

[
0
1

]
) to form a basis, and declare these

to be the first two vectors in our list. Then simply choose the remaining s9 + 1
vectors in our list to be anything we like; the resulting list certainly spans R2, but
is not a basis (since it is not linearly independent).

(d) Almost all of you will have student numbers where the 3 vectors are linearly inde-
pendent, and a quick proof (which is not required in this question) is to calculate
that the determinant

det

 s1 is4 s7
is2 s5 s8
s3 s6 is9

= s3s4s8i− s3s5s7 + s2s6s7i− s1s6s8 + s1s5s9i− s2s4s9(−i)
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is non-zero. Alternatively, use the definition of linear independence to show that
the only complex numbers c1,c2,c3 satisfying

c1

 s1
is2
s3

+ c2

 is4
25
s6

+ c3

 s7
s8
is9

=

0
0
0


are c1 = c2 = c3 = 0.

You may be among the small minority for whom the three vectors are not linearly
independent - in this case the above determinant would be zero, and there exist
non-zero c1,c2,c3 satisfying the above equation.

(e) If your s7 = 0 then U is a subspace. If your s7 6= 0 then U is not a subspace.

Tip: To get the answer, without formally testing U against the definition
of subspace, remember the rule of thumb: parametrising variables (in this
case the variable a) should appear with degree EXACTLY ONE if U is to be
a subspace. Note that s7 = 0 ensures s7 +1 = 1, so in the term 3as7+1 = 3a the
variable a does appear with degree equal to one.

Justification of answer:

If your s7 6= 0 then to show U is not a subspace it would be sufficient to find some
vector u which belongs to U but such that some multiple, for example, 2u, does
not belong to U . To generate this vector u you might choose a = 1, giving

u =

2s2− s3
3

s6 + s8

 ∈U .

If your s7 = 0 then to show U is a subspace you must check that for all u,u′ ∈U
and c ∈ R, we have that u+u′ ∈U and cu ∈U .

2 (a) To show linear independence, suppose that for real numbers c1, c2 and c3 we
have:

c1

3
2
1

+ c2

4
1
5

+ c3

 9
−11
−5

=

0
0
0

 .

We would like to show that necessarily c1 = c2 = c3 = 0. One way of seeing this
is to write the above equation as3 4 9

2 1 −11
1 5 −5

c1
c2
c3

=

0
0
0

 ,
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so thatc1
c2
c3

=

3 4 9
2 1 −11
1 5 −5

−10
0
0

=
1

227

 50 65 −53
−1 −24 51
9 −11 −5

0
0
0

=

0
0
0

 ,

and this vector equation tells us precisely that c1 = c2 = c3 = 0, as required.

[Note that the above proof works because the matrix A =

3 4 9
2 1 −11
1 5 −5

 is

invertible, which is equivalent to det(A) 6= 0; full marks can also be scored by
simply using this observation, rather than giving the full calculation above.]

To show the vectors are spanning we have a choice of methods. One method is
to recall (see e.g. Theorem 4.44 in Linear Algebra I) that if n vectors in an n-
dimensional space are linearly independent then they are automatically spanning
(where n = 3 in this case). Another method is to directly use the definition of

spanning: we have to check that for any vector v =

x
y
z

 ∈ R3, we can find

scalars a, b, c such thatx
y
z

= a

3
2
1

+b

4
1
5

+ c

 9
−11
−5

 .

If we re-write the above vector equation asx
y
z

=

3 4 9
2 1 −11
1 5 −5

a
b
c


then we see it has solutiona

b
c

=

3 4 9
2 1 −11
1 5 −5

−1x
y
z

=
1

227

 50 65 −53
−1 −24 51
9 −11 −5

x
y
z

 ,

so a = 1
227(50x + 65y− 53z), b = 1

227(−x− 24y + 51z), c = 1
227(9x− 11y− 5z),

so indeed the scalars a, b, c exist, as required.

(b) Almost all of you will have student number such that B′ is a basis (so in particular
is both linearly independent and spanning). You can use the same methods as in
part (a) to prove this. Alternatively, simply check that the determinant

det

s1 s4 s7
s2 s5 s8
s3 s6 s9

= s3s4s8− s3s5s7 + s2s6s7− s1s6s8 + s1s5s9− s2s4s9
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is non-zero.

On the other hand if this determinant does equal zero for your student number,
then your B′ is not a basis (and in fact the vectors are neither linearly independent
nor spanning, again by Theorem 4.44 in Linear Algebra I).

(c) Here the technique is essentially the same for each of the 3 vectors in B′, and
indeed is essentially the same as the calculation used in the ‘spanning’ part of (a)

above. For example for the first vector

s1
s2
s3

, its coordinates with respect to the

basis B are the scalars a, b, c such thats1
s2
s3

= a

3
2
1

+b

4
1
5

+ c

 9
−11
−5

 ,

and the corresponding coordinate representation is (a,b,c). By a computation
analogous to that in (a) we see that the coordinate representation is

1
227

(50s1 +65s2−53s3 , −s1−24s2 +51s3 , 9s1−11s2−5s3) .

Similarly, the coordinate representation of

s4
s5
s6

 (with respect to B) is

1
227

(50s4 +65s5−53s6 , −s4−24s5 +51s6 , 9s4−11s5−5s6) ,

and the coordinate representation of

s7
s8
s9

 (with respect to B) is

1
227

(50s7 +65s8−53s9 , −s7−24s8 +51s9 , 9s7−11s8−5s9) ,

(d) Assuming your B′ is a basis, the transition matrix P = PB,B′ is defined (see Defini-
tion 1.6) to be the 3×3 matrix whose jth column is the coordinate representation
(interpreted as a column vector) of the jth vector of B′ relative to the basis B.
Thus

P =
1

227

50s1 +65s2−53s3 50s4 +65s5−53s6 50s7 +65s8−53s9
−s1−24s2 +51s3 −s4−24s5 +51s6 −s7−24s8 +51s9
9s1−11s2−5s3 9s4−11s5−5s6 9s7−11s8−5s9

 .
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3 (a) True. The three vectors

v1 =

1
0
0

 ,v2 =

1
1
0

 ,v3 =

1
1
7


are linearly independent, because if

c1v1 + c2v2 + c3v3 = 0

for some c1,c2,c3 ∈ R then c1 + c2 + c3 = 0, and c2 + c3 = 0, and 7c3 = 0. Therefore
c3 = 0, hence c2 =−c3 = 0, and hence c1 =−c2− c3 = 0.

The list B = (v1,v2,v3) is also spanning. One proof of this is to note that three
linearly independent vectors in (the 3-dimensional space) R3 automatically constitute a
spanning set (by Proposition 1.8(b)).

(b) True. The three vectors

v1 =

1
0
0

 ,v2 =

0
1
0

 ,v3 =

0
0
1


are linearly independent, because if

c1v1 + c2v2 + c3v3 = 0

for some c1,c2,c3 ∈ C then c1 = 0, c2 = 0, and c3 = 0.

The list B = (v1,v2,v3) is also spanning, since three linearly independent vectors in (the
3-dimensional space) C3 automatically constitute a spanning set.

(c) False. The vectors

v1 =
[

1
0

]
,v2 =

[
0
1

]
,v3 =

[
i
0

]
,v4 =

[
0
i

]
are spanning, but are not linearly independent, hence do not constitute a basis. To
see that these vectors are not linearly independent, note (for example) that if c1 = −i,
c2 = 0, c3 = 1, c4 = 0 then c1v1 + c2v2 + c3v3 + c4v4 = 0.

(d) False. For example v =
[

1
1

]
∈U , but 2v =

[
2
2

]
/∈U .

(e) True. If u,u′ ∈U then

u =

 0
s

s+ t

 , u′ =

 0
s′

s′+ t ′
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for some s,s′, t, t ′ ∈ R, so the sum

u+u′ =

 0
s+ s′

(s+ s′)+(t + t ′)


does belong to U , and if a ∈ R then

au =

 0
as

as+at


also belongs to U .

4 (a) False. Whenever the field K is infinite (e.g. if it equals R, C, or Q) then every
vector space V over K will contain infinitely many elements unless V = {0}.

(b) False. Whenever the field K is finite (e.g. if it equals Fp, the field of integers
mod p for some prime p) then every finite-dimensional vector space V over K
(e.g. V = Kn for some n≥ 1) will contain only finitely many elements.

(c) False. For example if {0} 6= U1 ⊂ U2 then U1 +U2 = U2, so dim(U1 +U2) =
dim(U2) < dim(U1)+ dim(U2). In general dim(U1 +U2) = dim(U1)+ dim(U2)
holds if and only if U1∩U2 = {0}.

(d) True. If u2 ∈U2 then −u2 ∈U2 as well, so u1−u2 ∈U1 +U2.

5 As usual with proofs, there are several approaches . . . Here is one.
Let dim(U) = dim(V ) = n, and choose a basis (u1, . . . ,un) for U . Then u1, . . . ,un

are linearly independent vectors in V , a space of dimension n; so they form a basis for
V . So in particular u1, . . . ,un is a spanning set; this means that every vector v ∈ V is a
linear combination of u1, . . . ,un, and hence lies in U . So V ⊆U . But we are given that
U ⊆V ; so U = V .

6 Let S = (v1, . . . ,vn) be spanning. If it is a basis, then we are done, so suppose not.
This means that it is not linearly independent, so we have

c1v1 + · · ·+ cnvn = 0,

where c1, . . . ,cn are not all zero. Select one of them which is not zero. Suppose that
cn 6= 0. Then we can divide through by cn and move vn to the other side of the equation
to get

vn = a1v1 + · · ·+an−1vn−1.
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We claim that the list (v1, . . . ,vn−1) is still spanning. For let v be any vector in V .
By assumption, we can write v as a linear combination of v1, . . . ,vn; say

v = x1v1 + · · ·+ xn−1vn−1 + xnvn

= x1v1 + · · ·+ xn−1vn−1 + xn(a1v1 + · · ·+an−1vn−1)
= (x1 +a1xn)v1 + · · ·+(xn−1 +an−1xn)vn−1.

Thus, we have expressed v in terms of v1, . . . ,vn−1; so this list of vectors is spanning.
Now we continue throwing away vectors in this manner until we reach a sublist

which is a basis.

To show that the given vectors are spanning, we have to show that we can express
any vector as a linear combination of them: this can be done by solving some linear
equations.

Furthermore, by solving equations, we find that

7

1
2
3

−
1

4
5

−2

2
3
4

−2

1
2
4

=

0
0
0

 ,

so we can drop the fourth vector from the list. Now a similar calculation shows that the
first three really are linearly independent: the three equations resulting from

x

1
2
3

+ y

1
4
5

+ z

2
3
4

=

0
0
0


have only the solution x = y = z = 0. Thus the first three vectors form a basis.
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