

MTH6140

Linear Algebra II

Fields and vector spaces

Summary

A *field* is an algebraic structure K in which we can add and multiply elements, such that the following laws hold:

Addition laws

- (FA0) For any $a, b \in K$, there is a unique element $a + b \in K$.
- (FA1) For all $a, b, c \in K$, we have a + (b + c) = (a + b) + c.
- (FA2) There is an element $0 \in K$ such that a + 0 = 0 + a = a for all $a \in K$.
- (FA3) For any $a \in K$, there exists $-a \in K$ such that a + (-a) = (-a) + a = 0.
- (FA4) For any $a, b \in K$, we have a + b = b + a.

Multiplication laws

- (FM0) For any $a, b \in K$, there is a unique element $ab \in K$.
- (FM1) For all $a, b, c \in K$, we have a(bc) = (ab)c.
- (FM2) There is an element $1 \in K$ such that a1 = 1a = a for all $a \in K$.
- (FM3) For any $a \in K$ with $a \neq 0$, there exists $a^{-1} \in K$ such that $aa^{-1} = a^{-1}a = 1$.
- (FM4) For any $a, b \in K$, we have ab = ba.

Distributive law

(D) For all $a, b, c \in K$, we have a(b+c) = ab + ac.

Note the similarity of the addition and multiplication laws. We say that (K, +) is an *abelian group* if (FA0)–(FA4) hold. Then (FM0)–(FM4) say that $(K \setminus \{0\}, \cdot)$ is also an abelian group. (We have to leave out 0 because, as (FM3) says, 0 does not have a multiplicative inverse.)

Examples of fields include \mathbb{Q} (the rational numbers), \mathbb{R} (the real numbers), \mathbb{C} (the complex numbers), and \mathbb{F}_p (the integers mod p, for p a prime number).

Let K be a field. A vector space V over K is an algebraic structure in which we can add two elements of V, and multiply an element of V by an element of K (this is called *scalar multiplication*), such that the following rules hold:

Addition laws

- (VA0) For any $u, v \in V$, there is a unique element $u + v \in V$.
- (VA1) For all $u, v, w \in V$, we have u + (v + w) = (u + v) + w.
- (VA2) There is an element $0 \in V$ such that v + 0 = 0 + v = av for all $v \in V$.
- (VA3) For any $v \in V$, there exists $-v \in V$ such that v + (-v) = (-v) + v = 0.
- (VA4) For any $u, v \in K$, we have u + v = v + u.

Scalar multiplication laws

- (VM0) For any $a \in K$, $v \in V$, there is a unique element $av \in V$.
- (VM1) For any $a \in K$, $u, v \in V$, we have a(u+v) = au + av.
- (VM2) For any $a, b \in K$, $v \in V$, we have (a+b)v = av + bv.
- (VM3) For any $a, b \in K$, $v \in V$, we have (ab)v = a(bv).
- (VM4) For any $v \in V$, we have 1v = v (where 1 is the element given by (FM2)).

Again, we can summarise (VA0)–(VA4) by saying that (V, +) is an abelian group.

The most important example of a vector space over a field K is the set K^n of all *n*-tuples of elements of K: the addition and scalar multiplication are defined by the rules

$$(u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n) = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n),$$

$$a(v_1, v_2, \dots, v_n) = (av_1, av_2, \dots, av_n).$$

You may assume this information, and are not expected to provide proofs of what is claimed here.