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Question 1 (a) [3 marks]

The 3 types of elementary row operation are:

Type 1 Add a multiple of the jth row to the ith, where j 6= i.

Type 2 Multiply the ith row by a non-zero scalar.

Tyle 3 Interchange the ith and jth row, where j 6= i.

(b) [3 marks]

A and B are said to be equivalent if B = PAQ, where P and Q are invertible
matrices (of sizes m×m and n×n respectively, if A and B are both m×n).

(c) [4 marks]

The canonical form for equivalence for A is a matrix B which can be obtained
from A via a succession of elementary row and column operations, and satis-
fies Bii = 1 for 0 ≤ i≤ r, where r ≤min{m,n}, and all other entries of B are
zero.

The rank of A is the number r.

(d) [7 marks]

The first column in A is equal to twice the second column (since 12≡ 1 mod-
ulo 11), so the (column) rank of A equals 1. The canonical form for equiva-

lence is therefore
[

1 0
0 0

]
.

(e) [2 marks]

There are 24 = 16 such matrices.

[3 marks]

9 matrices have rank 1, namely
[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]
,
[

1 0
1 0

]
,[

0 1
0 1

]
,
[

1 1
0 0

]
,
[

0 0
1 1

]
, and

[
1 1
1 1

]
.

[3 marks]

Of the above, 6 have the property that their square is also of rank 1, namely:[
1 0
0 0

]
,
[

0 0
0 1

]
,
[

1 0
1 0

]
,
[

0 1
0 1

]
,
[

1 1
0 0

]
, and

[
0 0
1 1

]
.
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Question 2 (a) [3 marks]

T : V →W is linear if

T (cv+ c′v′) = cT (v)+ c′T (v′)

for all c,c′ ∈ K, v,v′ ∈V .

(Full marks for other equivalent definitions such as: T (v+w) = T (v)+T (w)
and T (cv) = cT (v) for all v,w ∈V , c ∈ K.)

(b) [4 marks]

ker(T ) = {v ∈V : T (v) = 0}
nul(T ) = dim(ker(T ))

Im(T ) = T (V ) = {w ∈W : w = T (v) for some v ∈V}
rank(T ) = dim(Im(T )).

(c) [3 marks]

The Rank-Nullity Theorem asserts that rank(T )+nul(T ) = dim(V ).

(d) [5 marks]

Given v =

x1
x2
x3

 ∈ C3 and v′ =

x′1
x′2
x′3

 ∈ C3, and c,c′ ∈ K = C, we have

S(cv+ c′v′) = cx1 + c′x′1 +(cx2 + c′x′2)−5(cx3 + c′x′3) .

Rearranging gives

S(cv+ c′v′) = c(x1 + x2−5x3)+ c′(x′1 + x′2−5x′3) = cS(v)+ c′S(v′) ,

so S is linear.

(e) [3 marks]

No, there does not exist such a linear map: by the Rank-Nullity Theorem,
(r,n) = (rank(T ),nul(T )) = (0,4) or (1,3) or (2,2) or (3,1) or (4,0), and by
inspection none of these pairs is such that r2 = n.

(f) [3 marks]

Yes, such T do exist, for example T defined by T (x1,x2,x3,x4,x5,x6) =
[

x1
x2

]
.

(g) [3 marks]

Many examples, e.g. let S =−T be any non-zero constant map.
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Question 3 (a) [4 marks] Q : V → R is a quadratic form if

(i) Q(cv) = c2Q(v) for all c ∈ R, v ∈V , and

(ii) the function b defined by

b(v,w) = Q(v+w)−Q(v)−Q(w)

is a (obviously symmetric) bilinear form on V (i.e. it is a map b : V 2→R
which is linear in both its arguments).

An alternative answer such as: “A quadratic form in n variables x1, . . . ,xn
over is a polynomial

n

∑
i=1

n

∑
j=1

Ai jxix j

in the variables in which every term has degree two (that is, is a multiple of
xix j for some i, j), and each Ai j belongs to R.”

would also score full marks.

1 mark would be deducted for more informal answers such as “A quadratic
form is a function which, when written out in coordinates, is a polynomial in
which every term has total degree 2 in the variables.”

(b) [2 marks]

Two symmetric matrices A,B over the field R are congruent if B = P>AP for
some invertible real matrix P.

(c) [3 marks]

Sylvester’s Law of Inertia asserts that any n× n real symmetric matrix A is
congruent to a matrix of the form Is O O

O −It O
O O O


for some (uniquely defined) s, t.

(d) [4 marks]

The symmetric matrix A representing Q is 4 8 −4
8 14 −10
−4 −10 5

 .

(e) [7 marks]

The calculation

Q(x,y,z) = 4(x+2y− z)2−2y2 + z2−4yz = 4(x+2y− z)2−2(y+ z)2 +3z2
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shows the diagonal matrix

B =

4 0 0
0 −2 0
0 0 3


to be congruent to A (though any B with signature +1 is also correct).

[1 mark] for noting that the linear substitution P (i.e. P =

1 2 −1
0 1 1
0 0 1

−1

in

the above) giving the congruence B = P>AP is indeed invertible.

(f) [5 marks]

The congruence holds for the set of all strictly positive real values of α (i.e. for
all α > 0).

Incorrect answers may score partial marks for including elements of the fol-
lowing working: Note that the matrix A represents the quadratic form

Q(x,y) = αx2 +2α
2xy+α

3y2 = α(x+αy)2 = αu2 +0.v2 = 1.U2 +0.V 2 ,

where we set u := x + αy, v := y, and U :=
√

αu =
√

α(x + αy), V := v = y
(we can take the square root of α if it is positive).

So the (invertible) linear substitution P1 =
[

1 α

0 1

]−1

=
[

1 −α

0 1

]
gives

P>1 AP1 =
[

α 0
0 0

]

and the (invertible) linear substitution P2 =
[√

α 0
0 1

]−1

=
[

α−1/2 0
0 1

]
gives

P>2

[
α 0
0 0

]
P2 =

[
1 0
0 0

]
.

Therefore, setting P = P1P2 gives that P>AP =
[

1 0
0 0

]
, so the matrices A and[

1 0
0 0

]
are congruent.

If α < 0 then A is congruent to
[
−1 0
0 0

]
, and if α = 0 then A is equal, hence

congruent, to
[

0 0
0 0

]
. So in these cases A is not congruent to

[
1 0
0 0

]
(by

Sylvester’s law of inertia).
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Question 4 (a) [3 marks]

The basis f1, . . . , fn dual to v1, . . . ,vn is defined by fi(vi) = 1 for 1≤ i≤ n and
fi(v j) = 0 for 1≤ i, j ≤ n, i 6= j.

(b) [8 marks]

The transition matrix P from the vs to the ws is

P =

1 0 0
2 2 0
0 −4 8

 ,

so the transition matrix between the dual bases is

(P−1)> =
1

16

16 −16 −8
0 8 4
0 0 2

=

1 −1 −1/2
0 1/2 1/4
0 0 1/8

 .

The coordinates of the gs in the basis of f s are the columns of this matrix. In
other words:

g1 = f1 ,

g2 =− f1 +
1
2

f2 ,

g3 =−1
2

f1 +
1
4

f2 +
1
8

f3 .

(c) [4 marks]

The characteristic polynomial cT is defined by cT (x) = det(xI−T ), in other
words cT (x) = cA(x) = det(xI−A) for any matrix A which represents T (with
respect to some basis of V ).

The minimal polynomial mT is the monic polynomial p of smallest possible
degree such that p(T ) = 0.

(d) [2 marks]

The Cayley-Hamilton theorem asserts that cT (T ) = 0.

(e) [8 marks]

The characteristic polynomial is

cA(x) =

∣∣∣∣∣∣
x 4 6
−1 x−4 −3
0 0 x−2

∣∣∣∣∣∣= (x−2)3 .

The minimal polynomial is mA(x) = (x− 2)2, because (A− 2I)2 = 0 (and
A−2I 6= 0).
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Question 5 (a) [3 marks]

A non-empty subset U ⊆V is a subspace of V if cu+c′u′ ∈U for all u,u′ ∈U ,
c,c′ ∈ K.

(b) [2 marks]

U1 +U2 = {u1 +u2 : u1 ∈U1,u2 ∈U2}.

(c) [3 marks]

v1, . . . ,vn ∈ V are spanning if for every v ∈ V there exist c1, . . . ,cn ∈ K satis-
fying v = c1v1 + . . .+ cnvn.

(d) [4 marks]

U is not a subspace of C4, since it does not contain the zero vector


0
0
0
0

.

(e) [4 marks]

One possible example is
[

1
0

]
,
[

0
1

]
,
[

0
2

]
.

(f) [4 marks]

The transition matrix is

PB,B′ =
[

i 1
1 2− i

]
.

[4 marks]

The coordinate representation [v]B′ can be computed as

[v]B′ = P−1
B,B′[v]B =

1
2i

[
2− i −1

1 2− i

][
2

4−3i

]
=

1
2i

[
i

4i+1

]
=
[

1/2
2− i/2

]
.

(Alternatively, set
[

2
4−3i

]
= a

[
i
1

]
+ b
[

1
2− i

]
and solve to find a = 1/2,

b = 2− i/2).
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Question 6 (a) [4 marks]

An inner product on V is a function b : V ×V → R satisfying

• b is bilinear (i.e. linear in the first variable when the second is kept con-
stant and vice versa);

• b is positive definite, that is, b(v,v) ≥ 0 for all v ∈ V , and b(v,v) = 0 if
and only if v = 0.

(b) [3 marks]

The basis v1, . . . ,vn is called orthonormal if b(vi,vi) = 1 for 1 ≤ i ≤ n and
b(vi,v j) = 0 for 1≤ i, j ≤ n, i 6= j.

(c) [4 marks]

λ ∈ K is an eigenvalue of T if there exists v ∈ V \ {0} such that T (v) = λv.
Any such v is an eigenvector of T .

(d) [6 marks]

The eigenvalues are 0 and 3, since these are the roots of the characteristic
polynomial

cT (s) = det

s−1 1 1
1 s−1 −1
1 −1 s−1

= (s−1)((s−1)2−1)−2s = s2(s−3) .

(e) [8 marks: 4 for computing the eigenvectors, 4 for orthonormalising them]

One possible basis is

1√
3

 1
−1
−1

 ,
1√
2

 0
1
−1

 ,
1√
6

2
1
1

 .

(Here the first vector is an eigenvector for 3. The second and third vectors are
eigenvectors for 0, hence automatically orthogonal to the first vector, though
care is needed in ensuring their mutual orthogonality).
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