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Question 1 Let A be a matrix over a field K.

(a) [3 marks] What are the 3 types of elementary column operation which may be applied
to A?

(b) [4 marks] What is meant by the canonical form for equivalence for A, and how is the
rank of A defined?

(c) [10 marks] If

A =
[

1 2 3
4 5 9

]
is a matrix over R, find invertible matrices P and Q such that PAQ is in the canonical
form for equivalence.

(d) [2 marks] What is the rank of the matrix A defined in (c) ?

(e) [2 marks] What does it mean to say that two square matrices (over a field K) are
similar?

(f) [4 marks] Give an example, with justification, of two 2×2 matrices which have the
same rank but are not similar.

Question 2 Let V and W be vector spaces over a field K.

(a) [3 marks] What does it mean to say that a map T : V →W is linear?

(b) [4 marks] If T : V →W is linear, how are its kernel ker(T ), its nullity nul(T ), its
image Im(T ), and its rank rank(T ) defined?

(c) [5 marks] Prove that the map S : R4→ R defined by

S




x1
x2
x3
x4


= 6x2−3x3 + x4

is linear.

(d) [8 marks] For the map T : R3→ R3 defined by

T

x1
x2
x3

=

 x2
x1 + x3

x2

 ,

find a basis for ker(T ). Hence, or otherwise, compute nul(T ) and rank(T ).

(e) [5 marks] Does there exist a linear map T : C5 → C5 such that rank(T ) = nul(T )?
Justify your assertion.
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Question 3 Let K be a field whose characteristic is not equal to 2, and let V be a vector
space over K.

(a) [5 marks] What is meant by a bilinear form (on V )? What does it mean to say that a
bilinear form is symmetric?

(b) [4 marks] What is meant by a quadratic form (on V )?

(c) [3 marks] What does it mean for two symmetric matrices over K to be congruent?

(d) [4 marks] Which real symmetric matrix A represents the real quadratic form

Q(x,y,z) = 6x2 +4y2 + z2 +12xy−12xz−4yz ?

(e) [7 marks] Find a diagonal matrix B which is congruent to the matrix A from part (d).

(f) [2 marks] Compute the signature of the real symmetric matrix A from part (d).

Question 4 Let V be a finite-dimensional vector space over a field K.

(a) [4 marks] What is the definition of a linear form on V ? How is the dual space V ∗

defined?

(b) [3 marks] If v1, . . . ,vn is a basis for V , how is the dual basis for V ∗ defined?

(c) [4 marks] In the case when K = R, what is meant by an inner product on V ?

(d) [3 marks] Given an inner product on V as in (c), what does it mean to say that a basis
v1, . . . ,vn is orthonormal?

(e) [8 marks] Suppose that the vectors v1,v2,v3 form a basis for V = R3, and that the
dual basis for V ∗ is denoted by f1, f2, f3.

Suppose a second basis w1,w2,w3 for V is given by

w1 = v1 +6v2, w2 = 2v2 +4v3, w3 = 2v3 .

If g1,g2,g3 denotes the basis of V ∗ which is dual to w1,w2,w3, then express each of
g1,g2,g3 as a linear combination of f1, f2, and f3.

(f) [3 marks] Suppose that V = R3 is equipped with the standard inner product, and let U

denote the subspace of R3 spanned by the vectors

1
0
3

,

−2
0
5

. Give an orthonormal

basis for U .
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Question 5 Let V be a vector space over a field K.

(a) [3 marks] What does it mean to say that a non-empty subset U of V is a subspace of
V ?

(b) [5 marks] Is the set

U =


s+3t

t
0

 : s, t ∈ R


a subspace of R3? Prove your assertion.

(c) [3 marks] What does it mean to say that the vectors v1, . . . ,vn ∈ V are linearly inde-
pendent?

(d) [3 marks] What does it mean to say that the vectors v1, . . . ,vn ∈V are a basis for V ?

(e) [3 marks] What does it mean to say that V is finite-dimensional? In this case how is
its dimension dim(V ) defined?

(f) [8 marks] Suppose that V is finite-dimensional, and that U is a subspace of V satis-
fying dim(U) = dim(V ). Prove that U = V .

Question 6 Let V be a finite-dimensional vector space over a field K, with dim(V ) > 2.

(a) [4 marks] If T : V → V is a linear map, what does it mean to say that λ ∈ K is
an eigenvalue of T ? For an eigenvalue of T , how is the corresponding eigenspace
defined?

(b) [4 marks] For a linear map T : V →V , how are its characteristic polynomial cT and
minimal polynomial mT defined?

(c) [3 marks] What does it mean to say that a linear map P : V →V is a projection?

(d) [6 marks] Show that if P : V →V is a projection, and Im(P) =V , then P is the identity
map on V (i.e. P(v) = v for all v ∈V ).

(e) [6 marks] List, with justification, all those polynomials which arise as the minimal
polynomial for some projection P : V →V .

(f) [2 marks] List, with justification, those scalars λ ∈ K which arise as the eigenvalue
of some projection P : V →V .

End of Paper
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