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Question1 (a) [3 marks]

The 3 types of elementary column operation are:

Type 1 Add a multiple of the jth column to the ith, where j # i.
Type 2 Multiply the ith column by a non-zero scalar.
Tyle 3 Interchange the ith and jth column, where j # i.

(b) [4 marks]

The canonical form for equivalence for A is a matrix B which can be obtained
from A via a succession of elementary row and column operations, and satis-
fies Bj; = 1 for 0 < i < r, where r < min{m,n}, and all other entries of B are
Zero.

The rank of A is the number r.

(c) [10 marks]
We can successively apply the following row and column operations:

1 -2 0
Subtract twice the 1st column from the 2nd (i.e. right multiply by | 0
0

1
Subtract 3 times the 1st column from the 3rd (i.e. right multiply by | 0
0

Subtract 4 times the 1st row from the 2nd row (i.e. left multiply by

Multiply the 2nd row by —1/3 (i.e. left multiply by {(1) _ ? /3} )-

1 0 O
Subtract the 2nd column from the 3rd (i.e. right multiply by (0 1 —11).
0 0 1

The resulting matrix is [ } , the canonical form for equivalence for A,

01 0
A | A RN

-2

with

and
-3 1
0 0
1 0

0 I -2 -1
I -1|=(0 1 -1
0 0

0] (1
0110
1110 0 1

S~ O

1
0=10 1
0 0
(However other valid row and column operations may lead to other valid P

and Q, which will also score full marks).

(d) [2 marks]

A has rank 2, by inspection of its canonical form.
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(e) [2 marks]

Two n x n matrices A, B are similar if there exists an invertible n X n matrix P
(over the same field) such that P~'AP = B.

(f) [4 marks]

The real matrices [ (1) (1) and (2) ﬂ both have rank 2 but are not similar

(their eigenvalues differ).
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Question 2 (a) [3 marks]
T :V — W is linear if

T(cv+V)=cT(v)+TH)

forallc,c € K,v,Vv' €V.
(Full marks for other equivalent definitions such as: T(v+w) =T (v)+T(w)
and T (cv) = cT(v) forallvyw €V, c € K.)
(b) [4 marks]
ker(T)={veV:T(v) =0}
nul(7) = dim(ker(7T))
Im(T)=T(V)={weW:w=T(v) forsomev eV}
rank(7T') = dim(Im(T)).

(c) [5 marks]

X1 X,
X2 )C/

Given v = ol € R*andV = x’2 € R* and ¢,¢’ € K =R, we have
3 3
X4 X

S(ev+V') = 6(cxp +'xh) —3(exs + 'x5) + (cxq +'xy) .
Rearranging gives
S(ev+ V') = c(6xy —3x3 +x4) + /(635 — 335 +xy) = cS(v) +'S(V),

so S is linear.

X1
(d) [5 marks] |xp | € ker(T) if and only if x, = 0 and x; = —x3, so the single
X3
1
vector | O | is a basis for ker(T).
—1

[3 marks] Consequently nul(7") = 1 and rank(7) =3 — nul(T") = 2.
(e) [5 marks]

There does not exist such a linear map, since otherwise
5 =rank(7T) +nul(7T) = 2rank(T),

a contradiction.
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Question 3  (a) [5 marks]

b:V xV — K is a bilinear form if it is a linear function of each variable when
the other is kept constant: that is, for all v,w,vi,vo,w;,wr €V, c € K, we
have:

b(v,wi +wy) =b(v,w1) +b(v,w2), b(v,ew) = cb(v,w)
and

b(vi+va,w) =b(vi,w)+b(va,w), b(cv,w) =cb(v,w).

A bilinear form b is symmetric if b(v,w) = b(w,v) for all v,w € V.

(b) [ 4 marks]
Q:V — K is a quadratic form if

(i) Q(cv)=c*Q(v) forallc€ K, vV, and
(i1) the function b defined by

b(v,w) =Q(v+w) —Q(v) —Q(w)
is a (obviously symmetric) bilinear form on V.

An alternative answer such as: “A quadratic form in n variables xy,...,x,
over a field K is a polynomial

n o n
Z ZAijxixj
i=1j=1

in the variables in which every term has degree two (that is, is a multiple of
x;xj for some i, j), and each A;; belongs to K.”

also scores full marks, while 1 mark is deducted for more informal answers
such as “A quadratic form is a function which, when written out in coordin-
ates, is a polynomial in which every term has total degree 2 in the variables.”

(c) [3 marks]

Two symmetric matrices A,A’ over a field K are congruent if A’ = P AP for
some invertible matrix P.

(d) [4 marks]

The symmetric matrix A representing Q is

6 6 —6
6 4 =2
-6 -2 1
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(e) [6 marks] The calculation
0(x,y,2) = 6(x+y—2)* —2y* =522+ 8yz = 6(x +y —2)* — 2(y — 22)* + 37°

shows the diagonal matrix

6 0 O
B=10 -2 0
0 0 3

to be congruent to A (though any B with signature +1 is also correct).
-1

1 1 -1
[1 mark] for noting that the linear substitution P (i.e. P= |0 1 -2 =
0 0 1
I -1 -1
0 1 2 | in the above) giving the congruence B = P'AP is indeed
0 O 1
invertible.

(f) [2 marks]
The signature of A equals the signature of B, whichis 2 — 1 = +1.
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Question4 (a) [4 marks]

A linear form on V 1is a linear map from V to K (where K is regarded as a
I-dimensional vector space over K).

The dual space V* is the set of all linear forms on V.

(b) [3 marks]
The basis fi,..., f, dual to vy, ..., v, is defined by fj(v;) =1 for 1 <i<nand
filvj)=0for1 <i,j<m,i# .

(c) [4 marks]

An inner product on 'V is a function b : V x V — R satisfying

e ) is bilinear (i.e. linear in the first variable when the second is kept con-
stant and vice versa);
e b is positive definite, that is, b(v,v) > 0 for all v € V, and b(v,v) = 0 if
and only if v =0.
(d) [3 marks]
The basis vy,...,v, is called orthonormal if b(v;,v;) =1 for 1 <i < n and
b(vi,vj)=0for1 <i,j<n,i#j.
(e) [8 marks]

The transition matrix P from the vs to the ws is

1 00
P=|6 2 0],
0 4 2

so the transition matrix between the dual bases is

[ [4 12 24 1 -3 6
(P—l)T:Z 0 2 —4|=|0 1/2 -1
0o 0 2 0 0 1/2

The coordinates of the gs in the basis of fs are the columns of this matrix. In
other words:

gl:f17
1
g =-3fi + Efz,
1
& =06fi — fo + §f3-

() [3 marks]

1 0
One possibility is the basis |0 |, [0
0 1
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Question 5 (a) [3 marks]

A non-empty subset U C V is a subspace of V if cu+c'u' € U forall u,u’ € U,
¢, €K.

(b) [2 marks] U is a subspace of R3.

s+3t '+ 3t
[3 marks] Proof: U is non-empty, and if u = t u = ¢ ceU
0 |0
and c,c’ € K =R, then
(es+c's")+ (Bet + 3c't) S+3T]
cu+cu' = ct+c't = T cU
0 0 |
where S=cs+c's’ and T = ct +('t'.
(c) [3 marks]
Vi,...,v, €V are linearly independent if whenever cy, ..., c, € K satisfy cyv; +
...+ cyvy, =0 then necessarily ¢y = ... =¢, =0.
(d) [3 marks]
vi,...,vy € V are a basis for V if they are linearly independent but also span-
ning, in other words for every v € V there exist cy,...,c, € K satisfying

V=cCiv]i+...+cuvy.

(e) [3 marks]

V is finite-dimensional if it has a (finite) basis. In this case its dimension is
defined to be the number of elements in any basis (proved in the course to be
independent of the basis chosen).

(f) [8 marks]

One possible proof is:

Let dim(U) =dim(V) = n, and choose a basis uy,...,u, forU. Thenuy,...,u,
are linearly independent vectors in V, a space of dimension n; so they form a
basis for V. So in particular uy, ..., u, is a spanning set; this means that every
vector v € V is a linear combination of uy,...,u,, and hence lies in U. So
V CU. But we are given that U CV;soU =V.
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Question 6 (a) [4 marks]
A € K is an eigenvalue of T if there exists v € V \ {0} such that T'(v) = Av.
The corresponding eigenspace is the set {v € V : T'(v) = Av}.

(b) [4 marks]

The characteristic polynomial cy is defined by cr(x) = det(xI — T), in other
words ¢ (x) = ca(x) = det(xI — A) for any matrix A which represents 7' (with
respect to some basis of V).

The minimal polynomial mr is the monic polynomial p of smallest possible
degree such that p(T) = 0.

(c) [3 marks]
It means that P? = P.

(d) [6 marks]
Let v be any vector in V. We have to show that P(v) =v. Now Im(P) =V,
so there exists V' € V such that P(v') = v. But P is a projection, so P(v) =
P(P(V')) = P(V') = v, as required.

(e) [6 marks]
The possible polynomials are (i) x, (ii) x — 1, and (iii) x(x — 1).

To see that these are the only candidates note that P> — P = 0, so the minimal
polynomial must divide x(x — 1).

Each of the 3 polynomials does indeed arise as the minimal polynomial of
some projection, namely: (i) the zero map, (i1) the identity map, (iii) all other

projections (e.g. P ( B}) = [3] onV = K?).

(f) [2 marks]
0 and 1 are the only possible eigenvalues.

Proof: A is an eigenvalue if and only if x — A divides mz(x). The result then
follows from (f).

(Alternative proof: if A is an eigenvalue, with eigenvector v, then Av = Pv =
P>y =2A%,30A1 —A%=0,hence A =0or 1).
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