

B. Sc. Examination by Course Unit 2009

MTH6140 Linear Algebra II

Duration: 2 hours

Date and time: ??

Solutions

Question 1 (a) [3 marks]

The 3 types of elementary column operation are:

Type 1 Add a multiple of the *j*th column to the *i*th, where $j \neq i$.

Type 2 Multiply the *i*th column by a non-zero scalar.

Tyle 3 Interchange the *i*th and *j*th column, where $j \neq i$.

(b) [4 marks]

The *canonical form for equivalence* for *A* is a matrix *B* which can be obtained from *A* via a succession of elementary row and column operations, and satisfies $B_{ii} = 1$ for $0 \le i \le r$, where $r \le \min\{m, n\}$, and all other entries of *B* are zero.

The *rank* of *A* is the number *r*.

(c) [10 marks]

We can successively apply the following row and column operations:

Subtract twice the 1st column from the 2nd (i.e. right multiply by $\begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$). Subtract 3 times the 1st column from the 3rd (i.e. right multiply by $\begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$). Subtract 4 times the 1st row from the 2nd row (i.e. left multiply by $\begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix}$). Multiply the 2nd row by -1/3 (i.e. left multiply by $\begin{bmatrix} 1 & 0 \\ 0 & -1/3 \end{bmatrix}$). Subtract the 2nd column from the 3rd (i.e. right multiply by $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$). The resulting matrix is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, the canonical form for equivalence for *A*, with $P = \begin{bmatrix} 1 & 0 \\ 0 & -1/3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 4/3 & -1/3 \end{bmatrix}$ and

$$Q = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

(However other valid row and column operations may lead to other valid P and Q, which will also score full marks).

(d) [2 marks]

A has rank 2, by inspection of its canonical form.

© Queen Mary, University of London 2009

2

(e) [2 marks]

Two $n \times n$ matrices A, B are *similar* if there exists an invertible $n \times n$ matrix P (over the same field) such that $P^{-1}AP = B$.

(f) [4 marks]

The real matrices $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ both have rank 2 but are not similar (their eigenvalues differ).

Question 2 (a) [3 marks]

 $T: V \rightarrow W$ is *linear* if

$$T(cv+c'v') = cT(v) + c'T(v')$$

for all $c, c' \in K, v, v' \in V$.

(Full marks for other equivalent definitions such as: T(v+w) = T(v) + T(w)and T(cv) = cT(v) for all $v, w \in V$, $c \in K$.)

(b) [4 marks]

$$ker(T) = \{v \in V : T(v) = 0\}$$

nul(T) = dim(ker(T))
$$Im(T) = T(V) = \{w \in W : w = T(v) \text{ for some } v \in V\}$$

rank(T) = dim(Im(T)).

(c) [5 marks]

Given
$$v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^4$$
 and $v' = \begin{bmatrix} x'_1 \\ x'_2 \\ x'_3 \\ x'_4 \end{bmatrix} \in \mathbb{R}^4$, and $c, c' \in K = \mathbb{R}$, we have
 $S(cv + c'v') = 6(cx_2 + c'x'_2) - 3(cx_3 + c'x'_3) + (cx_4 + c'x'_4).$

Rearranging gives

$$S(cv + c'v') = c(6x_2 - 3x_3 + x_4) + c'(6x'_2 - 3x'_3 + x'_4) = cS(v) + c'S(v'),$$

so S is linear.

(d) [5 marks]
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \ker(T)$$
 if and only if $x_2 = 0$ and $x_1 = -x_3$, so the single vector $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ is a basis for $\ker(T)$.
[3 marks] Consequently $\operatorname{nul}(T) = 1$ and $\operatorname{rank}(T) = 3 - \operatorname{nul}(T) = 2$.

(e) [5 marks]

There does not exist such a linear map, since otherwise

$$5 = \operatorname{rank}(T) + \operatorname{nul}(T) = 2\operatorname{rank}(T),$$

a contradiction.

© Queen Mary, University of London 2009

MTH6140

Question 3 (a) [5 marks]

 $b: V \times V \to K$ is a *bilinear form* if it is a linear function of each variable when the other is kept constant: that is, for all $v, w, v_1, v_2, w_1, w_2 \in V$, $c \in K$, we have:

$$b(v, w_1 + w_2) = b(v, w_1) + b(v, w_2), \qquad b(v, cw) = cb(v, w)$$

and

$$b(v_1 + v_2, w) = b(v_1, w) + b(v_2, w), \qquad b(cv, w) = cb(v, w).$$

A bilinear form *b* is symmetric if b(v, w) = b(w, v) for all $v, w \in V$.

(b) [4 marks]

 $Q: V \to K$ is a *quadratic form* if

- (i) $Q(cv) = c^2 Q(v)$ for all $c \in K$, $v \in V$, and
- (ii) the function *b* defined by

$$b(v,w) = Q(v+w) - Q(v) - Q(w)$$

is a (obviously symmetric) bilinear form on V.

An alternative answer such as: "A quadratic form in n variables x_1, \ldots, x_n over a field K is a polynomial

$$\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j$$

in the variables in which every term has degree two (that is, is a multiple of $x_i x_j$ for some i, j), and each A_{ij} belongs to K."

also scores full marks, while 1 mark is deducted for more informal answers such as "A quadratic form is a function which, when written out in coordinates, is a polynomial in which every term has total degree 2 in the variables."

(c) [3 marks]

Two symmetric matrices A, A' over a field *K* are *congruent* if $A' = P^{\top}AP$ for some invertible matrix *P*.

(d) [4 marks]

The symmetric matrix A representing Q is

$$\begin{bmatrix} 6 & 6 & -6 \\ 6 & 4 & -2 \\ -6 & -2 & 1 \end{bmatrix}.$$

(c) Queen Mary, University of London 2009

TURN OVER

(e) [6 marks] The calculation

$$Q(x, y, z) = 6(x + y - z)^2 - 2y^2 - 5z^2 + 8yz = 6(x + y - z)^2 - 2(y - 2z)^2 + 3z^2$$

shows the diagonal matrix

$$B = \begin{bmatrix} 6 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

to be congruent to A (though any B with signature +1 is also correct).

[1 mark] for noting that the linear substitution P (i.e. $P = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}^{-1}$

 $\begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ in the above) giving the congruence $B = P^{\top}AP$ is indeed *invertible*.

(f) [2 marks]

The signature of *A* equals the signature of *B*, which is 2 - 1 = +1.

Question 4 (a) [4 marks]

A *linear form* on V is a linear map from V to K (where K is regarded as a 1-dimensional vector space over K).

The *dual space* V^* is the set of all linear forms on *V*.

(b) [3 marks]

The basis f_1, \ldots, f_n dual to v_1, \ldots, v_n is defined by $f_i(v_i) = 1$ for $1 \le i \le n$ and $f_i(v_j) = 0$ for $1 \le i, j \le n, i \ne j$.

(c) [4 marks]

An *inner product* on *V* is a function $b: V \times V \rightarrow \mathbb{R}$ satisfying

- *b* is bilinear (i.e. linear in the first variable when the second is kept constant and *vice versa*);
- *b* is *positive definite*, that is, $b(v,v) \ge 0$ for all $v \in V$, and b(v,v) = 0 if and only if v = 0.
- (d) [3 marks]

The basis v_1, \ldots, v_n is called *orthonormal* if $b(v_i, v_i) = 1$ for $1 \le i \le n$ and $b(v_i, v_j) = 0$ for $1 \le i, j \le n, i \ne j$.

(e) [8 marks]

The transition matrix *P* from the *vs* to the *ws* is

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 6 & 2 & 0 \\ 0 & 4 & 2 \end{bmatrix},$$

so the transition matrix between the dual bases is

$$(P^{-1})^{\top} = \frac{1}{4} \begin{bmatrix} 4 & -12 & 24 \\ 0 & 2 & -4 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 6 \\ 0 & 1/2 & -1 \\ 0 & 0 & 1/2 \end{bmatrix}.$$

The coordinates of the gs in the basis of fs are the columns of this matrix. In other words:

$$g_1 = f_1,$$

$$g_2 = -3f_1 + \frac{1}{2}f_2,$$

$$g_3 = 6f_1 - f_2 + \frac{1}{2}f_3.$$

(f) [3 marks]

One possibility is the basis $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$.

© Queen Mary, University of London 2009

Question 5 (a) [3 marks]

A non-empty subset $U \subseteq V$ is a *subspace* of V if $cu + c'u' \in U$ for all $u, u' \in U$, $c, c' \in K$.

(b) [2 marks] U is a subspace of \mathbb{R}^3 .

[3 marks] Proof: U is non-empty, and if $u = \begin{bmatrix} s+3t \\ t \\ 0 \end{bmatrix}, u' = \begin{bmatrix} s'+3t' \\ t' \\ 0 \end{bmatrix} \in U$

and $c, c' \in K = \mathbb{R}$, then

$$cu + c'u' = \begin{bmatrix} (cs + c's') + (3ct + 3c't') \\ ct + c't' \\ 0 \end{bmatrix} = \begin{bmatrix} S + 3T \\ T \\ 0 \end{bmatrix} \in U$$

where S = cs + c's' and T = ct + c't'.

(c) [3 marks]

 $v_1, \ldots, v_n \in V$ are *linearly independent* if whenever $c_1, \ldots, c_n \in K$ satisfy $c_1v_1 + \ldots + c_nv_n = 0$ then necessarily $c_1 = \ldots = c_n = 0$.

(d) [3 marks]

 $v_1, \ldots, v_n \in V$ are a *basis* for V if they are linearly independent but also *spanning*, in other words for every $v \in V$ there exist $c_1, \ldots, c_n \in K$ satisfying $v = c_1v_1 + \ldots + c_nv_n$.

(e) [3 marks]

V is *finite-dimensional* if it has a (finite) basis. In this case its *dimension* is defined to be the number of elements in any basis (proved in the course to be independent of the basis chosen).

(f) [8 marks]

One possible proof is:

Let $\dim(U) = \dim(V) = n$, and choose a basis u_1, \ldots, u_n for U. Then u_1, \ldots, u_n are linearly independent vectors in V, a space of dimension n; so they form a basis for V. So in particular u_1, \ldots, u_n is a spanning set; this means that every vector $v \in V$ is a linear combination of u_1, \ldots, u_n , and hence lies in U. So $V \subseteq U$. But we are given that $U \subseteq V$; so U = V.

Question 6 (a) [4 marks]

 $\lambda \in K$ is an *eigenvalue* of *T* if there exists $v \in V \setminus \{0\}$ such that $T(v) = \lambda v$. The corresponding *eigenspace* is the set $\{v \in V : T(v) = \lambda v\}$.

(b) [4 marks]

The *characteristic polynomial* c_T is defined by $c_T(x) = \det(xI - T)$, in other words $c_T(x) = c_A(x) = \det(xI - A)$ for any matrix A which represents T (with respect to some basis of V).

The minimal polynomial m_T is the monic polynomial p of smallest possible degree such that p(T) = 0.

(c) [3 marks]

It means that $P^2 = P$.

(d) [6 marks]

Let v be any vector in V. We have to show that P(v) = v. Now Im(P) = V, so there exists $v' \in V$ such that P(v') = v. But P is a projection, so P(v) = P(P(v')) = P(v') = v, as required.

(e) [6 marks]

The possible polynomials are (i) x, (ii) x - 1, and (iii) x(x - 1).

To see that these are the only candidates note that $P^2 - P = 0$, so the minimal polynomial must divide x(x-1).

Each of the 3 polynomials does indeed arise as the minimal polynomial of some projection, namely: (i) the zero map, (ii) the identity map, (iii) all other projections (e.g. $P\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ 0 \end{bmatrix}$ on $V = K^2$).

(f) [2 marks]

0 and 1 are the only possible eigenvalues.

Proof: λ is an eigenvalue if and only if $x - \lambda$ divides $m_T(x)$. The result then follows from (f).

(Alternative proof: if λ is an eigenvalue, with eigenvector v, then $\lambda v = Pv = P^2 v = \lambda^2 v$, so $\lambda - \lambda^2 = 0$, hence $\lambda = 0$ or 1).