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Question 1 (a) [3 marks]

The 3 types of elementary column operation are:

Type 1 Add a multiple of the jth column to the ith, where j 6= i.

Type 2 Multiply the ith column by a non-zero scalar.

Tyle 3 Interchange the ith and jth column, where j 6= i.

(b) [4 marks]

The canonical form for equivalence for A is a matrix B which can be obtained
from A via a succession of elementary row and column operations, and satis-
fies Bii = 1 for 0 ≤ i≤ r, where r ≤min{m,n}, and all other entries of B are
zero.

The rank of A is the number r.

(c) [10 marks]

We can successively apply the following row and column operations:

Subtract twice the 1st column from the 2nd (i.e. right multiply by

1 −2 0
0 1 0
0 0 1

).

Subtract 3 times the 1st column from the 3rd (i.e. right multiply by

1 0 −3
0 1 0
0 0 1

).

Subtract 4 times the 1st row from the 2nd row (i.e. left multiply by
[

1 0
−4 1

]
).

Multiply the 2nd row by −1/3 (i.e. left multiply by
[

1 0
0 −1/3

]
).

Subtract the 2nd column from the 3rd (i.e. right multiply by

1 0 0
0 1 −1
0 0 1

).

The resulting matrix is
[

1 0 0
0 1 0

]
, the canonical form for equivalence for A,

with

P =
[

1 0
0 −1/3

][
1 0
−4 1

]
=
[

1 0
4/3 −1/3

]
and

Q =

1 −2 0
0 1 0
0 0 1

1 0 −3
0 1 0
0 0 1

1 0 0
0 1 −1
0 0 1

=

1 −2 −1
0 1 −1
0 0 1

 .

(However other valid row and column operations may lead to other valid P
and Q, which will also score full marks).

(d) [2 marks]

A has rank 2, by inspection of its canonical form.
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(e) [2 marks]

Two n×n matrices A,B are similar if there exists an invertible n×n matrix P
(over the same field) such that P−1AP = B.

(f) [4 marks]

The real matrices
[

1 0
0 1

]
and

[
2 0
0 1

]
both have rank 2 but are not similar

(their eigenvalues differ).

c© Queen Mary, University of London 2009 TURN OVER



4

Question 2 (a) [3 marks]

T : V →W is linear if

T (cv+ c′v′) = cT (v)+ c′T (v′)

for all c,c′ ∈ K, v,v′ ∈V .

(Full marks for other equivalent definitions such as: T (v+w) = T (v)+T (w)
and T (cv) = cT (v) for all v,w ∈V , c ∈ K.)

(b) [4 marks]

ker(T ) = {v ∈V : T (v) = 0}
nul(T ) = dim(ker(T ))

Im(T ) = T (V ) = {w ∈W : w = T (v) for some v ∈V}
rank(T ) = dim(Im(T )).

(c) [5 marks]

Given v =


x1
x2
x3
x4

 ∈ R4 and v′ =


x′1
x′2
x′3
x′4

 ∈ R4, and c,c′ ∈ K = R, we have

S(cv+ c′v′) = 6(cx2 + c′x′2)−3(cx3 + c′x′3)+(cx4 + c′x′4) .

Rearranging gives

S(cv+ c′v′) = c(6x2−3x3 + x4)+ c′(6x′2−3x′3 + x′4) = cS(v)+ c′S(v′) ,

so S is linear.

(d) [5 marks]

x1
x2
x3

 ∈ ker(T ) if and only if x2 = 0 and x1 = −x3, so the single

vector

 1
0
−1

 is a basis for ker(T ).

[3 marks] Consequently nul(T ) = 1 and rank(T ) = 3−nul(T ) = 2.

(e) [5 marks]

There does not exist such a linear map, since otherwise

5 = rank(T )+nul(T ) = 2rank(T ) ,

a contradiction.
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Question 3 (a) [5 marks]

b : V ×V →K is a bilinear form if it is a linear function of each variable when
the other is kept constant: that is, for all v,w,v1,v2,w1,w2 ∈ V , c ∈ K, we
have:

b(v,w1 +w2) = b(v,w1)+b(v,w2), b(v,cw) = cb(v,w)

and

b(v1 + v2,w) = b(v1,w)+b(v2,w), b(cv,w) = cb(v,w) .

A bilinear form b is symmetric if b(v,w) = b(w,v) for all v,w ∈V .

(b) [ 4 marks]

Q : V → K is a quadratic form if

(i) Q(cv) = c2Q(v) for all c ∈ K, v ∈V , and

(ii) the function b defined by

b(v,w) = Q(v+w)−Q(v)−Q(w)

is a (obviously symmetric) bilinear form on V .

An alternative answer such as: “A quadratic form in n variables x1, . . . ,xn
over a field K is a polynomial

n

∑
i=1

n

∑
j=1

Ai jxix j

in the variables in which every term has degree two (that is, is a multiple of
xix j for some i, j), and each Ai j belongs to K.”

also scores full marks, while 1 mark is deducted for more informal answers
such as “A quadratic form is a function which, when written out in coordin-
ates, is a polynomial in which every term has total degree 2 in the variables.”

(c) [3 marks]

Two symmetric matrices A,A′ over a field K are congruent if A′ = P>AP for
some invertible matrix P.

(d) [4 marks]

The symmetric matrix A representing Q is 6 6 −6
6 4 −2
−6 −2 1

 .
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(e) [6 marks] The calculation

Q(x,y,z) = 6(x+ y− z)2−2y2−5z2 +8yz = 6(x+ y− z)2−2(y−2z)2 +3z2

shows the diagonal matrix

B =

6 0 0
0 −2 0
0 0 3


to be congruent to A (though any B with signature +1 is also correct).

[1 mark] for noting that the linear substitution P (i.e. P =

1 1 −1
0 1 −2
0 0 1

−1

=1 −1 −1
0 1 2
0 0 1

 in the above) giving the congruence B = P>AP is indeed

invertible.

(f) [2 marks]

The signature of A equals the signature of B, which is 2−1 = +1.
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Question 4 (a) [4 marks]

A linear form on V is a linear map from V to K (where K is regarded as a
1-dimensional vector space over K).

The dual space V ∗ is the set of all linear forms on V .

(b) [3 marks]

The basis f1, . . . , fn dual to v1, . . . ,vn is defined by fi(vi) = 1 for 1≤ i≤ n and
fi(v j) = 0 for 1≤ i, j ≤ n, i 6= j.

(c) [4 marks]

An inner product on V is a function b : V ×V → R satisfying

• b is bilinear (i.e. linear in the first variable when the second is kept con-
stant and vice versa);

• b is positive definite, that is, b(v,v) ≥ 0 for all v ∈ V , and b(v,v) = 0 if
and only if v = 0.

(d) [3 marks]

The basis v1, . . . ,vn is called orthonormal if b(vi,vi) = 1 for 1 ≤ i ≤ n and
b(vi,v j) = 0 for 1≤ i, j ≤ n, i 6= j.

(e) [8 marks]

The transition matrix P from the vs to the ws is

P =

1 0 0
6 2 0
0 4 2

 ,

so the transition matrix between the dual bases is

(P−1)> =
1
4

4 −12 24
0 2 −4
0 0 2

=

1 −3 6
0 1/2 −1
0 0 1/2

 .

The coordinates of the gs in the basis of f s are the columns of this matrix. In
other words:

g1 = f1 ,

g2 =−3 f1 +
1
2

f2 ,

g3 = 6 f1 − f2 +
1
2

f3 .

(f) [3 marks]

One possibility is the basis

1
0
0

,

0
0
1

.
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Question 5 (a) [3 marks]

A non-empty subset U ⊆V is a subspace of V if cu+c′u′ ∈U for all u,u′ ∈U ,
c,c′ ∈ K.

(b) [2 marks] U is a subspace of R3.

[3 marks] Proof: U is non-empty, and if u =

s+3t
t
0

 ,u′ =

s′+3t ′

t ′

0

 ∈U

and c,c′ ∈ K = R, then

cu+ c′u′ =

(cs+ c′s′)+(3ct +3c′t ′)
ct + c′t ′

0

=

S +3T
T
0

 ∈U

where S = cs+ c′s′ and T = ct + c′t ′.

(c) [3 marks]

v1, . . . ,vn ∈V are linearly independent if whenever c1, . . . ,cn ∈K satisfy c1v1+
. . .+ cnvn = 0 then necessarily c1 = . . . = cn = 0.

(d) [3 marks]

v1, . . . ,vn ∈V are a basis for V if they are linearly independent but also span-
ning, in other words for every v ∈ V there exist c1, . . . ,cn ∈ K satisfying
v = c1v1 + . . .+ cnvn.

(e) [3 marks]

V is finite-dimensional if it has a (finite) basis. In this case its dimension is
defined to be the number of elements in any basis (proved in the course to be
independent of the basis chosen).

(f) [8 marks]

One possible proof is:

Let dim(U)= dim(V )= n, and choose a basis u1, . . . ,un for U . Then u1, . . . ,un
are linearly independent vectors in V , a space of dimension n; so they form a
basis for V . So in particular u1, . . . ,un is a spanning set; this means that every
vector v ∈ V is a linear combination of u1, . . . ,un, and hence lies in U . So
V ⊆U . But we are given that U ⊆V ; so U = V .
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Question 6 (a) [4 marks]

λ ∈ K is an eigenvalue of T if there exists v ∈V \{0} such that T (v) = λv.

The corresponding eigenspace is the set {v ∈V : T (v) = λv}.

(b) [4 marks]

The characteristic polynomial cT is defined by cT (x) = det(xI−T ), in other
words cT (x) = cA(x) = det(xI−A) for any matrix A which represents T (with
respect to some basis of V ).

The minimal polynomial mT is the monic polynomial p of smallest possible
degree such that p(T ) = 0.

(c) [3 marks]

It means that P2 = P.

(d) [6 marks]

Let v be any vector in V . We have to show that P(v) = v. Now Im(P) = V ,
so there exists v′ ∈ V such that P(v′) = v. But P is a projection, so P(v) =
P(P(v′)) = P(v′) = v, as required.

(e) [6 marks]

The possible polynomials are (i) x, (ii) x−1, and (iii) x(x−1).

To see that these are the only candidates note that P2−P = 0, so the minimal
polynomial must divide x(x−1).

Each of the 3 polynomials does indeed arise as the minimal polynomial of
some projection, namely: (i) the zero map, (ii) the identity map, (iii) all other

projections (e.g. P
([

x
y

])
=
[

x
0

]
on V = K2).

(f) [2 marks]

0 and 1 are the only possible eigenvalues.

Proof: λ is an eigenvalue if and only if x−λ divides mT (x). The result then
follows from (f).

(Alternative proof: if λ is an eigenvalue, with eigenvector v, then λv = Pv =
P2v = λ 2v, so λ −λ 2 = 0, hence λ = 0 or 1).
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