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Abstract. Building on tools that have been successfully used in the study of rational bil-
liards, such as induced maps and interval exchange transformations, we provide a construc-
tion of a one-parameter family of isosceles triangles exhibiting non-periodic trajectories that
are not everywhere dense. This provides, by elementary means, a definitive negative answer
to a long-standing open question on the density of non-periodic trajectories in triangular
billiards.

1. Introduction and results

Billiards, that is, the ballistic motion of a point particle in the plane with elastic collisions
at the boundary, are among the simplest mechanical systems producing intricate dynamical
features and thus serve as a paradigm in applied dynamical systems theory [5]. The seemingly
trivial case of billiards with piecewise straight boundaries, known as polygonal billiards,
offers surprisingly hard challenges [10]. When the inner angles of the polygon are rational
multiples of π the billiard dynamics is dominated by a collection of conserved quantities and
a rigorous and sophisticated machinery for its treatment becomes available, see, for example,
[9, 13] for overviews. Much less is known in the irrational case. A notable exception is the
proof of ergodicity of Lebesgue measure for a topologically large class of irrational polygonal
billiards [12]. It is however not clear what this result means for numerical simulations of the
billiard dynamics, as numerical studies of polygonal billiards are inconclusive. Depending
on the shape of the polygon, correlations in irrational billiards may or may not exhibit
decay [1, 4], and even the ergodicity of Lebesgue measure has been questioned [19]. The
relevance of symmetries has been emphasised as an explanation for this conundrum [20] and
these predominantly numerical studies are underpinned by well established rigorous results
on recurrence in polygonal billiards, see for instance [16, 17].

In this article we shall be concerned with the simplest examples of polygonal billiards,
namely those of triangular shape. In particular we shall revisit a hypothesis formulated by
Zemlyakov, see [7], according to which trajectories are either periodic or cover the billiard

2010 Mathematics Subject Classification. Primary 37C83; Secondary 37C79, 37B20, 37E30.
Key words and phrases. Irrational billiard, recurrence, induced map.

1



2 J. SLIPANTSCHUK, O.F. BANDTLOW, AND W. JUST

table densely. While [7] shows that this dichotomy does not hold in convex1 polygonal
billiards with more than three sides, the proof is flawed for triangular billiards, as pointed
out recently in [15]. Thus the existence of non-periodic and not everywhere dense trajectories
in triangular billiards remains an open problem, see also [6] and references therein. We will
fill this gap by constructing trajectories of this type for a large set of symmetric triangular
billiards. For this purpose, similarly to [7], we reduce this problem to the properties of
an induced one-dimensional map, a technique more commonly used in the case of rational
billiards. Leaving details of the notation for later sections, we will prove the following.

Theorem 1. Consider a billiard map in the isosceles triangle determined by inner angles
(α, α, π − 2α) with base angle α ∈ (α∗, 3π/10) for some α∗ satisfying π/4 < α∗ < 2π/7.
Then there exist an angle φ∗ ∈ (0, π) and an induced map {[k = 1, φ∗, x] : x ∈ [0, 1]} on the
base of the triangle which is a rotation on the unit interval, that is, x 7→ x + ω mod 1 with
ω = cos(3α)/(2 cos(α) cos(4α)).

As the rotation number ω is continuous and strictly mononotic for the given range of α,
this theorem implies that non-periodic not everywhere dense trajectories exist in the billiard
dynamics of the isosceles triangle for all but a countable subset of α ∈ (α∗, 3π/10), providing
a negative answer to the hypothesis by Zemlyakov. More precisely, we have the following
corollary.

Corollary 2. For all α ∈ (α∗, 3π/10) with cos(5α)/ cos(3α) ∈ R \ Q, in particular for
all α ∈ (α∗, 3π/10) with α/π algebraic and irrational, the billiard dynamics in the isosceles
triangle contains trajectories which are non-periodic and not everywhere dense in the triangle.

The main idea of the proof can be gleaned from the Zemlyakov-Katok unfolding of the
billiard dynamics [22]. Unfolding the dynamics in a particular direction determined by an
orbit starting and ending at a vertex (known as a generalised diagonal), it can be seen that
the dynamics takes place in two recurrent cylinders, see Figure 1. This occurs, for instance,
for an isosceles triangle with base angle α = π

√
3/6. For the geometrically minded reader we

summarise the essence of the proof. The existence of the required cylinders can be verified by
an explicit coordinatisation of the vertices in Figure 1. Moreover, symmetry considerations
show that this cylinder configuration persists for all values α in a certain neighbourhood
of π
√

3/6. As a result it is then possible to introduce an induced map (on the base of the
triangle), which turns out to be a rotation with rotation number varying continuously with
α, in particular taking irrational values for a full-measure subset of the admissible range of
α values. The construction also reveals that the cylinders do not cover the whole interior
of the triangle, thus yielding non-periodic and not everywhere dense trajectories, together
forming a non-trivial flat strip in the sense of [2]. Most of this article is devoted to making
this argument rigorous and completely explicit by an algebraic approach. The idea for the
geometric construction depicted in Figure 1 has been reported in [21] where anomalous dy-
namics and recurrence in triangular billiards has been studied by a combination of numerical
computations and analytic arguments. The exposition contained in that reference provides
compelling numerical evidence that the dynamics in a particular direction is governed by an

1For the simpler case of non-convex billiards, McMullen constructed an L-shaped example for which this
dichotomy fails.
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irrational rotation map, but a rigorous proof for this observation has not been provided so
far.

Figure 1. Diagrammatic view of the Zemlyakov-Katok unfolding of the bil-
liard dynamics in an isosceles triangle with a 10- (red) and a 4-recurrent
cylinder (blue), respectively. Each cylinder is point symmetric with respect to
the midpoint of the central base (yellow diamond). The unfolded generalised
diagonal is shown in dashed yellow. The three sides of the triangle and the
vertices have been coloured (base: light red, right leg: light green, left leg:
light blue).

We note that the proof of Corollary 2 implies that the constructed billiard trajectories
never visit a certain neighbourhood around a tip of the isosceles triangle. This neighbourhood
can be replaced by a polygonal one, forming a convex n-gon for any n ≥ 4, thus providing
an alternative, accessible, and elementary proof of Theorem 1 in [7] on the existence of
non-periodic and not everywhere dense billiard trajectories in convex n-gons.

We would like to mention in passing, that the complementary question of characterising
billiards satisfying the so-called “Veech dichotomy”, that is those with the property that each
direction is either completely periodic or uniquely ergodic, has received significant attention
in the literature in the case of rational billiards; see for example [8, 18, 11, 14].

This article is organised as follows. After fixing notation in Section 2, the existence of
the generalised diagonal will be established by Lemma 8 in Section 3.2. We then turn to
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the existence and the properties of the two recurrent cylinders in Proposition 13 in Section
3.3 and Proposition 15 in Section 3.4, respectively. The symmetry of the triangle will be
instrumental in setting up these cylinders and Lemma 12 of Section 3.3 summarises the main
impact of the symmetry. The proof of the main results follows standard arguments and will
be presented in Section 3.5.

Our construction works for a limited range of base angles α ∈ (α∗, 3π/10). For base angles
outside this range the particular generalised diagonal or the recurrent cylinders of period ten
and four cease to exist. Nevertheless we suspect that the main conclusion of Corollary 2, the
existence of non-periodic not everywhere dense orbits holds for almost all isosceles triangles.
Analogous constructions can be performed for other angles, but a more systematic approach
would be needed to cover the general case. For trivial reasons analogous statements hold in
right-angled triangles.

2. Notation and billiard map

Consider a triangle with positively oriented boundary. The sides are labelled by a cyclic
index k = 1, 2, 3. We denote by sk the length of side k. The side with label k = 1 is called the
base. We chose units of length such that s1 = 1. Denote by γ2 and γ3 the left and right inner
angle on the base, respectively. The angle opposite to the base is denoted by γ1. We shall
focus exclusively on the case of isosceles triangles, that is, γ2 = γ3 = α. It readily follows
that s2 = s3 = 1/(2 cos(α)).

The ballistic motion of a point particle with elastic bounces on the sides of the triangle
traces out a planar curve consisting of straight line segments. We call this curve the trajectory.

We denote by x
[k]
t , 0 < x

[k]
t < sk, the location of the bounce of the particle (at discrete time

t) at side k, and by φ
[k]
t ∈ (0, π) the angle between the oriented side and the outgoing ray

of the trajectory. We call a move counter-clockwise (ccw) if a bounce on side k is followed
by a bounce on side k + 1. Similarly we call a move clockwise (cw) if a bounce on side k is
followed by a bounce on side k − 1. Subsequent bounces are related by the billiard map

(x
[kt]
t , φ

[kt]
t ) 7→ (x

[kt+1]
t+1 , φ

[kt+1]
t+1 ) (1)

where

φ
[kt+1]
t+1 =

{
π − φ[kt]

t − γkt−1 if kt+1 = kt + 1 (ccw)

π − φ[kt]
t + γkt+1 if kt+1 = kt − 1 (cw)

(2)

x
[kt+1]
t+1 =

{
(skt − x

[kt]
t ) sin(φ

[kt]
t )/ sin(φ

[kt+1]
t+1 ) if kt+1 = kt + 1 (ccw)

skt+1 − x
[kt]
t sin(φ

[kt]
t )/ sin(φ

[kt+1]
t+1 ) if kt+1 = kt − 1 (cw)

(3)

As it will be useful to keep track of the sequence of bouncing sides, we use a slightly non-

standard notation and call an orbit a finite or infinite sequence of triplets ([kt, φ
[kt]
t , x

[kt]
t ])t∈I

which obeys the billiard map (1). Each orbit corresponds to a trajectory in the plane, and

vice versa. We call a point [k, φ[k], x[k]] singular, if it corresponds to one of the corners of

the triangle, that is, if x[k] = 0 or x[k] = sk. We call an orbit regular if all its points are
non-singular. An orbit which starts or ends at a singular point will be referred to as a singular
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orbit, while a billiard orbit which starts and ends at a singular point is called a generalised
diagonal2.

For a fixed side k of the triangle and a fixed angle φ, we will refer to the family of parallel
trajectory segments reflecting from k at angle φ and returning to k with the same angle φ
after a fixed sequence of bouncing sides as a recurrent cylinder.

3. Proof of results

Our proof consists of several steps. We will first establish the existence of a suitable
induction angle, such that an orbit emanating from the left endpoint of the base at this
angle forms a generalised diagonal with a certain length-5 sequence of bouncing sides. We
will then show that every orbit emanating from the base at this angle returns to the base
with the same angle after a fixed number of bounces (either 10 or 4, depending on the initial
point). The two corresponding sets of billiard trajectories will form two recurrent cylinders in
the plane, crucially bounded away by a positive distance from one of the triangle’s vertices.
This construction will yield an induced map, forming an interval exchange transformation
over two subintervals of the triangle base. The rotation number of this interval exchange
transformation will depend continuously on the angle of the isosceles triangle, implying an
irrational rotation and hence dense trajectories in the union of the recurrent cylinders for a
large set of angles of the triangle.

3.1. Induction angle. We begin by proving several lemmas, which will be used to
establish that for a suitable range of values of α there exists an angle φ∗ (depending on
α), such that the orbit emanating from the left endpoint of the base at angle φ∗ forms a
generalised diagonal.

Lemma 3. For α ∈ (π/4, 3π/10) the equation g(α) = sin(7α)− sin(3α) + sin(α) = 0 has
a unique solution α∗ ∈ (π/4, 2π/7).

Proof. We have that g(π/4) = sin(7π/4) < 0 and g(3π/10) = sin(3π/10) > 0. Since
7α ∈ (7π/4, 21π/10), 3α ∈ (3π/4, 9π/10) and α ∈ (π/4, 3π/10) it follows that

g′(α) = 7 cos(7α)− 3 cos(3α) + cos(α) > 0 .

Existence and uniqueness of α∗ ∈ (π/4, 3π/10) now follow from a variant of the intermediate
value theorem. For the remaining assertion observe that g(2π/7) = sin(2π/7)− sin(6π/7) =
sin(2π/7)− sin(π/7) > 0. �

The angle α∗ established by Lemma 3 is the value of the base angle where the geometry
shown in Figure 1 starts to break down, since the generalised diagonal hits the top vertex of
the triangle, as we will show shortly.

Lemma 4. Let α ∈ [π/4, 3π/10]. The equation

g(α, φ) = sin(6α+ φ)− sin(2α+ φ) + sin(φ) = 0 (4)

has a unique solution φ = φ∗(α) in (0, π).

2When viewing the billiard flow as a flow on a translation surface, this is also referred to as a saddle
connection.
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Proof. We have g(α, 0) = 2 sin(2α) cos(4α) < 0. Existence and uniqueness of the solu-
tion in (0, π) follow from the observation that g(α, φ) is a Fourier polynomial in φ containing
only the two first order terms. �

For the range α ∈ (α∗, 3π/10) of base angles, Lemma 4 defines a direction φ∗ of the
directional billiard flow which determines the unfolding shown in Figure 1. This flow will be
instrumental in proving our main result.

Lemma 5. Let α ∈ (α∗, 3π/10). The solution to (4) obeys

0 < φ∗ < α, α+ φ∗ >
π

2
, 3α+ φ∗ > π, 6α+ φ∗ < 2π < 7α+ φ∗ . (5)

Proof. Using the substitution

α = 3π/10 + x, φ∗ = π/5 + y

with −π/20 < x < 0 (equivalent to α ∈ (π/4, 3π/10)), equation (4) reads

ḡ(x, y) = sin(6x+ y) + 2 sin(x+ y) sin(3π/10 + x) = 0 . (6)

We have that

ḡ(x,−x) = sin(5x) < 0, ḡ(x,−6x) = 2 sin(−5x) sin(3π/10 + x) > 0 .

It follows that −x < y < −6x with −π/20 < x < 0, and therefore

α+ φ∗ = 3π/10 + π/5 + x+ y > π/2,

6α+ φ∗ = 9π/5 + π/5 + 6x+ y < 2π,

3α+ φ∗ = 9π/10 + 3x+ π/5 + y = π + x+ y + π/10 + 2x > π,

7α+ φ∗ = 6α+ α+ φ∗ > 3π/2 + π/2 .

Treating y in (6) as a function of x, implicit differentiation yields

0 =
dy

dx
(cos(6x+ y) + 2 cos(x+ y) sin(3π/10 + x))

+ 6 cos(6x+ y) + 2 cos(x+ y) sin(3π/10 + x) + 2 sin(x+ y) cos(3π/10 + x) .

Since −3π/10 < 6x + y < 0, 0 < x + y < 3π/10, and π/4 < 3π/10 + x < 3π/10, all
trigonometric terms are positive and dy/dx < 0. Hence the solution φ∗(α) is a strictly
monotonic decreasing function for α ∈ (π/4, 3π/10). Since Lemma 3 and 4 imply φ∗(α∗) = α∗
the final assertion follows. �

For the remainder of the paper we will refer to the value obtained in Lemma 3 as α∗, and
for α ∈ (α∗, 3π/10) we will write φ∗ = φ∗(α), omitting the dependence on the angle α where
there is no risk of ambiguity.

3.2. Generalised diagonal. Next, we proceed to show the existence of a generalised
diagonal starting from the left endpoint of the base at angle φ∗. For this, we will ascertain
that the formal recurrence equations (2) and (3) are satisfied by a given sequence of bouncing
sides, angles, and spatial coordinates, which therefore form a valid (that is, realisable) orbit.
We define the sequence of bouncing sides

(mt)0≤t≤5 = (1, 2, 3, 1, 3, 1) (7)
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and introduce the sequence of angles

ψ0 = φ∗, ψ1 = π − α− φ∗, ψ2 = −π + 3α+ φ∗,
ψ3 = 2π − 4α− φ∗, ψ4 = −π + 5α+ φ∗, ψ5 = 2π − 6α− φ∗ .

(8)

It is straightforward to check that the angles (8) together with (7) satisfy the recurrence (2).
Furthermore, Lemma 5 yields the following result.

Lemma 6. Let α ∈ (α∗, 3π/10). The angles defined by (7) and (8) obey 0 < ψt < π,
0 ≤ t ≤ 5.

Define, for δ ∈ R, the spatial coordinates

ξ0(δ) = δ,

ξ1(δ) = (s1 − δ)
sin(ψ0)

sin(ψ1)
,

ξ2(δ) = s2
sin(ψ1)

sin(ψ2)
− (s1 − δ)

sin(ψ0)

sin(ψ2)
,

ξ3(δ) = s3
sin(ψ2)

sin(ψ3)
− s2

sin(ψ1)

sin(ψ3)
+ (s1 − δ)

sin(ψ0)

sin(ψ3)
,

ξ4(δ) = s3 − s3
sin(ψ2)

sin(ψ4)
+ s2

sin(ψ1)

sin(ψ4)
− (s1 − δ)

sin(ψ0)

sin(ψ4)
,

ξ5(δ) = s3
sin(ψ2)

sin(ψ5)
− s2

sin(ψ1)

sin(ψ5)
+ (s1 − δ)

sin(ψ0)

sin(ψ5)
. (9)

It is again straightforward to check that the expressions in (9) together with (7) and (8) obey
the formal recurrence in (3).

Lemma 7. Let α ∈ (α∗, 3π/10). The coordinates defined in (7), (8), and (9) satisfy
ξ0(0) = 0, ξ5(0) = 1, and 0 < ξt(0) < skt, 1 ≤ t ≤ 4.

Proof. The initial coordinate ξ0(0) = 0 is obvious. From Lemma 4 we have

0 = 2 cos(α) (sin(6α+ φ∗)− sin(2α+ φ∗) + sin(φ∗))

= 2 cos(α) sin(6α+ φ∗)− sin(3α+ φ∗)− sin(α+ φ∗) + 2 cos(α) sin(φ∗) .

With (8) and 1 = s1 = 2 cos(α)s2/3 this reads

sin(ψ5) = s3 sin(ψ2)− s2 sin(ψ1) + s1 sin(ψ0) , (10)

which implies ξ5(0) = 1.
Using (10) and Lemma 6 we have

ξ4(0) = s3 − sin(ψ5)/ sin(ψ4) < s3 .

Furthermore, by Lemma 5 we have

sin(ψ4)− 2 cos(α) sin(ψ5) = sin(7α+ φ∗) > 0 ,

which implies ξ4(0) > 0.
Again using (10) and Lemma 6 we have

ξ3(0) = sin(ψ5)/ sin(ψ3) > 0 ,
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and by Lemma 5 and 2α > π/2 we obtain

sin(ψ3)− sin(ψ5) = 2 sin(α) cos(5α+ φ∗) > 0 ,

which implies ξ3(0) < 1 = s1.
Lemma 5 implies

0 < sin(α− φ∗) = sin(α+ φ∗)− 2 cos(α) sin(φ∗)

so that, using the abbreviations (8) we have

sin(ψ0) < s2 sin(ψ1) . (11)

Hence ξ2(0) > 0. Furthermore, (10) and Lemma 6 yield

0 < s3 − s2
sin(ψ1)

sin(ψ2)
+ s1

sin(ψ0)

sin(ψ2)
,

which is equivalent to ξ2(0) < s3.
Finally, ξ1(0) > 0 is obvious, and ξ1(0) < s2 follows from (11). �

Lemma 6 and 7 now yield the following conclusion.

Lemma 8. Let α ∈ (α∗, 3π/10). With the definitions (7), (8), and (9) the sequence
([mt, ψt, ξt(0)])0≤t≤5 defines a generalised diagonal.

Lemma 8 establishes the generalised diagonal, shown in Figure 1 as a dashed yellow
line, by purely algebraic means. The generalised diagonal determines the direction φ∗ of
the unfolding. If the base angle of the triangle, α, drops below the critical value α∗ this
connection ceases to exist. At α = α∗ the generalised diagonal hits the top vertex of the first
triangle in the unfolding, as can be gleaned from Figure 1. This geometric condition poses
the major constraint on the existence of the generalised diagonal.

3.3. Recurrent cylinder of length ten. In this section we will establish the existence
of a point xD on the base of the triangle, such that all points in (0, xD) × {φ∗} share the
same length-10 sequence of bouncing sides. Using a symmetry of the triangle, this sequence
will be shown to consist of the length-5 sequence (7), followed by a ‘mirrored’ variant of the
same sequence, in a sense made precise below. Moreover we will observe that the image of
(0, xD) × {φ∗} under the 10th iteration of the billiard map is (1 − xD, 1) × {φ∗}. The orbit
of the point (xD, φ∗) itself will be singular, giving rise to a discontinuity of the induced map
on the base. We begin by defining

xD = 1− sin(2α+ φ∗)

sin(φ∗)
. (12)

Lemma 9. Let α ∈ (α∗, 3π/10). The quantity defined by (12) obeys xD ∈ (0, 1) and

xD =
sin(ψ5)

sin(ψ0)
= 1− cos(3α)

2 cos(α) cos(4α)
.

Proof. Lemma 5 implies 2α+ φ∗ < π so that xD < 1. Furthermore

sin(2α+ φ∗)− sin(φ∗) = 2 sin(α) cos(α+ φ∗) < 0
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so that xD > 0. Using Lemma 4 we have

xD =
− sin(6α+ φ∗)

sin(φ∗)
=

sin(ψ5)

sin(ψ0)
.

Furthermore, (4) yields

(cos(6α)− cos(2α) + 1) sin(φ∗) + (sin(6α)− sin(2α)) cos(φ∗) = 0

so that

sin(2α+ φ∗)

sin(φ∗)
= − sin(2α)

cos(6α)− cos(2α) + 1

sin(6α)− sin(2α)
+ cos(2α)

=
sin(4α)− sin(2α)

sin(6α)− sin(2α)
=

cos(3α)

2 cos(α) cos(4α)
.

�

Lemma 10. Let α ∈ (α∗, 3π/10). The coordinates defined in (7), (8), and (9) obey
0 < ξt(xD) < smt, t = 0, 1, ξ2(xD) = ξ4(xD) = s3, and ξ3(xD) = ξ5(xD) = 0.

Proof. Since ξ0(xD) = xD, Lemma 9 yields the assertion for t = 0.
Using (10) and Lemma 9 we have

ξ5(xD) = 1− xD
sin(ψ0)

sin(ψ5)
= 0 .

The assertions ξ3(xD) = 0 and ξ2(xD) = ξ4(xD) = s3, follow from the equalities ξ3(δ) =
ξ5(δ) sin(ψ5)/ sin(ψ3), ξ2(δ) = s3−ξ5(δ) sin(ψ5)/ sin(ψ2), and ξ4(δ) = s3−ξ5(δ) sin(ψ5)/ sin(ψ4).
By Lemma 9 we have sin(ψ0) > sin(ψ5), which implies

ξ1(xD) =
sin(ψ0)

sin(ψ1)
− sin(ψ5)

sin(ψ1)
> 0 .

Finally, using (11) we obtain

ξ1(xD) =
sin(ψ0)

sin(ψ1)
− sin(ψ5)

sin(ψ1)
<

sin(ψ0)

sin(ψ1)
< s2 .

�

Since the angles and spatial coordinates defined in (7), (8), and (9) obey the formal
recurrence scheme determined by the billiard map (1), Lemmas 6 and 10 yield the following
result.

Lemma 11. Let α ∈ (α∗, 3π/10). Then the following holds. Given any δ ∈ (0, xD),
the sequence ([mt, ψt, ξt(δ)])0≤t≤5 with components defined by (7), (8), and (9) constitutes a
regular orbit of the billiard map (1).

The symmetry of the triangle has implications for the structure of orbits. Reflecting an
orbit at the symmetry axis of the triangle yields again an orbit. In formal terms, this type
of reflection is expressed as [k, φ[k], x[k]] 7→ [k̄, π − φ[k], sk − x[k]] where the adjoint index k̄ is
given by 1̄ = 1, 2̄ = 3, 3̄ = 2. Similarly, reversing the motion gives again an orbit. In formal
terms, the corresponding transformation reads [k, φ[k], x[k]] 7→ [k, π − φ[k], x[k]]. Combining
both operations maps an orbit to another orbit.
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Lemma 12. If ([kt, φ
[kt]
t , x

[kt]
t ])0≤t≤T denotes a finite regular orbit in a symmetric trian-

gular billiard then ([`t, ϕ
[`t]
t , z

[`t]
t ])0≤t≤T gives a finite regular orbit of the same length where

`t = k̄T−t, ϕ
[`t]
t = φ

[kT−t]
T−t and z

[`t]
t = skT−t

− x[kT−t]
T−t . Here k̄ denotes the adjoint index defined

by 1̄ = 1, 2̄ = 3, 3̄ = 2.

Proof. We first note the identity k ± 1 = k̄ ∓ 1. The symmetry of the triangle is
equivalent to γk = γk̄ and sk = sk̄. We consider a fixed time t, 0 ≤ t < T .

Case A: Assume that the move T −t−1→ T −t in the original orbit is counter-clockwise,
that is, kT−t = kT−t−1+1. Then `t = k̄T−t = k̄T−t−1−1 = `t+1−1 (that is, the move t→ t+1
in the image orbit is counter-clockwise as well).

Equation (2) tells us that for the original angles we have

φ
[kT−t]
T−t = π − φ[kT−t−1]

T−t−1 − γkT−t−1−1 .

Observing that

γkT−t−1−1 = γkT−t−1−1 = γk̄T−t−1+1 = γ`t+1+1 = γ`t−1 ,

we have

ϕ
[`t]
t = π − ϕ[`t+1]

t+1 − γ`t−1

which is the angle dynamics of the billiard map for the image orbit.
Similarly, (3) implies for the spatial coordinates of the original orbit that

x
[kT−t]
T−t =

(
skT−t−1

− x[kT−t−1]
T−t−1

) sin(φ
[kT−t−1]
T−t−1 )

sin(φ
[kT−t]
T−t )

so that

skT−t
− z[`t]

t = z
[`t+1]
t+1

sin(ϕ
[`t+1]
t+1 )

sin(ϕ
[`t]
t )

.

Recalling that skT−t
= sk̄T−t

= s`t we obtain the position dynamics of the billiard map for

the image orbit.
Case B: The proof in case the move T − t− 1→ T − t in the original orbit is clockwise,

that is, kT−t = kT−t−1 − 1, is similar. �

The symmetry allows us to extend the regular orbit derived in Lemma 11 to a recurrent

orbit with φ
[k0]
0 = φ

[kT ]
T .

Proposition 13. Let α ∈ (α∗, 3π/10). For any δ ∈ (0, xD) there exists a recurrent reg-

ular orbit of length 10 given by ([kt, φ
[kt]
t , x

[kt]
t ])0≤t≤10 with initial condition [k0, φ

[k0]
0 , x

[k0]
0 ] =

[1, φ∗, δ] and endpoint [k10, φ
[k10]
10 , x

[k10]
10 ] = [1, φ∗, δ + 1 − xD]. The explicit expression for the

orbit is given by kt = mt, φ
[kt]
t = ψt, and x

[kt]
t = ξt(δ) for 0 ≤ t ≤ 5 and kt = m̄10−t,

φ
[kt]
t = ψ10−t, and x

[kt]
t = sm̄10−t − ξ10−t(xD − δ) for 6 ≤ t ≤ 10.

Proof. Let δ ∈ (0, xD). Lemma 11 provides us with the regular orbit of length 5,
([mt, ψt, ξt(δ)])0≤t≤5, with initial condition [1, φ∗, δ] and endpoint [1, ψ5, ξ5(δ)]. Replacing δ
by xD − δ, Lemma 11 yields the regular length-5 orbit given by ([mt, ψt, ξt(xD − δ)])0≤t≤5.
Applying Lemma 12 we obtain the regular orbit ([m̄5−t, ψ5−t, sm̄5−t−ξ5−t(xD−δ)])0≤t≤5 with
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initial condition [1, ψ5, s1−ξ5(xD−δ)] and endpoint [1, φ∗, 1−xD+δ]. Recalling that (9) and
(10) imply ξ5(δ) = 1−δ sin(ψ0)/ sin(ψ5) and using Lemma 9, we obtain s1−ξ5(xD−δ) = ξ5(δ).
The assertions of the proposition follow by transitivity of orbits of the billiard map. �

Proposition 13 establishes by purely algebraic means the recurrent cylinder of length 10
depicted in Figure 1 as the red parallelogram. Due to the symmetry of the underlying
triangle, the entire structure shown in Figure 1 is point symmetric about the midpoint of
this parallelogram. Hence the top and bottom side of the parallelogram are guaranteed to
be parallel ensuring recurrence of the scattering angle of the billiard dynamics. The same
symmetry ensures that the right side of the parallelogram also contains a generalised diagonal
and links up with another periodic cylinder. The width of the parallelogram, that is, the
distance between the two long sides is essentially given by (12). Both sides approach each
other when increasing the base angle α, and the width of the parallelogram vanishes at the
upper critical angle α = 3π/10. Our algebra ensures that no further geometric obstruction,
that is, no further vertex, appears within the cylinder of period 10, as can be gleaned from
Figure 1.

3.4. Recurrent cylinder of length four. In an analogous way we can define a recur-

rent cylinder of length 4 for initial conditions x
[1]
0 in (xD, 1). For that purpose we define

(`t)0≤t≤2 = (1, 2, 1), (13)

θ0 = φ∗, θ1 = π − α− φ∗, θ2 = 2α+ φ∗, (14)

η0(δ) = δ,

η1(δ) = (s1 − δ)
sin(θ0)

sin(θ1)
,

η2(δ) = s1 − (s1 − δ)
sin(θ0)

sin(θ2)
. (15)

Formally, the angles and spatial coordinates defined in (13), (14), and (15) obey the recursion
scheme of the billiard map (1). In a similar vein to Lemma 11 we have the following result.

Lemma 14. Let α ∈ (α∗, 3π/10). Then the following holds. Given any δ ∈ (xD, 1), the
sequence ([`t, θt, ηt(δ)])0≤t≤2 with components defined by (13), (14), and (15) constitutes a
regular orbit of the billiard map (1).

Proof. By Lemma 5 we have that 0 < θt < π for 0 ≤ t ≤ 2. Fixing δ ∈ (xD, 1), Lemma
9 yields 0 < η0(δ) < 1. We next observe that η2(1) = 1, while (12) yields η2(xD) = 0, and
hence 0 < η2(δ) < 1.

Finally, we have η1(1) = 0; furthermore, since

2 cos(α) sin(2α+ φ∗)− sin(α+ φ∗) = sin(3α+ φ∗) < 0

by Lemma 5, we have

η1(xD) =
sin(2α+ φ∗)

sin(α+ φ∗)
<

1

2 cos(α)
,

and so 0 < η1(xD) < s2, which yields 0 < η1(δ) < s2 for δ ∈ (xD, 1). �

Again employing the symmetry of the triangle yields the following result.
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Proposition 15. Let α ∈ (α∗, 3π/10). For any δ ∈ (xD, 1) there exists a recurrent regular

orbit of length 4 given by ([kt, φ
[kt]
t , x

[kt]
t ])0≤t≤4 with initial condition [k0, φ

[k0]
0 , x

[k0]
0 ] = [1, φ∗, δ]

and endpoint [k4, φ
[k4]
4 , x

[k4]
4 ] = [1, φ∗, δ − xD]. The explicit expression for the orbit is given

by kt = `t, φ
[kt]
t = θt, and x

[kt]
t = ηt(δ) for 0 ≤ t ≤ 2 and kt = ¯̀

4−t, φ
[kt]
t = θ4−t, and

x
[kt]
t = s¯̀

4−t
− η4−t(1 + xD − δ) for 3 ≤ t ≤ 4.

Proof. Let δ ∈ (xD, 1). Lemma 14 provides us with the regular orbit of length 2,
([`t, θt, ηt(δ)])0≤t≤2, with initial condition [1, φ∗, δ] and endpoint [1, θ2, η2(δ)]. Replacing δ by
1 +xD− δ, Lemma 14 yields the regular length-2 orbit given by ([`t, θt, ηt(1 +xD− δ)])0≤t≤2.
Applying Lemma 12 we obtain the regular orbit ([¯̀s−t, θs−t, s¯̀

2−t
− η2−t(1 + xD − δ)])0≤t≤2

with initial condition [1, θ2, s1 − η2(1 + xD − δ)] and endpoint [1, φ∗, δ − xD]. Recalling that
(12), (14) and (15) imply xD = 1− sin(θ2)/ sin(θ0) and η2(δ) = 1− (1− δ) sin(θ0)/ sin(θ2) we
obtain s1 − η2(1 + xD − δ) = η2(δ). The assertions of the proposition follow by transitivity
of orbits of the billiard map. �

3.5. Proof of the theorem and its corollary. Propositions 13 and 15 constitute the
proof of Theorem 1 with the expression for the rotation number ω = 1−xD following readily
from Lemma 9. The proof of the corollary will be based on the following lemma which
summarises the findings in Lemma 7 and 14.

Lemma 16. Let α ∈ (α∗, 3π/10). There exists ε > 0 such that any infinite regular

orbit ([kt, φ
[kt]
t , x

[kt]
t )t≥0 of the billiard map with initial condition ([k0, φ

[k0]
0 , x

[k0]
0 ] = [1, φ∗, x

[1]
0 ]

satisfies the conditions x
[kt]
t ≤ s2 − ε whenever kt = 2, and x

[kt]
t ≥ ε whenever kt = 3.

Proof. The spatial coordinate x
[kt]
t does not take the values 0,1, or xD if kt = 1 as those

are singularities or are mapped to singularities, see Lemma 10. Furthermore, by Proposition
13 and 15 the orbit is recurrent. Hence it is sufficient to consider the 4- and 10-recurrent
pieces of the orbit.

Consider [k0, φ
[k0]
0 , x

[k0]
0 ] = [1, φ∗, δ] with xD < δ < 1, that is, a piece of the orbit in a

4-recurrent cylinder. Since by (12) and (15)

η1(δ) ≤ η1(xD) =
sin(θ2)

sin(θ1)

s3 − η1(1 + xD − δ) ≥ s3 − η1(xD) = s3 −
sin(θ2)

sin(θ1)

we conclude from Proposition 15 that for 0 ≤ t ≤ 4 we have x
[kt]
t ≤ sin(θ2)/ sin(θ1) whenever

kt = 2 and x
[kt]
t ≥ s3 − sin(θ2)/ sin(θ1) whenever kt = 3.
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Similarly, consider [k0, φ
[k0]
0 , x

[k0]
0 ] = [1, φ∗, δ] with 0 < δ < xD, that is, a part of the orbit

in a 10-recurrent cylinder. Then by (9) and (10)

ξ1(δ) ≤ ξ1(0) =
sin(ψ0)

sin(ψ1)

ξ2(δ) ≥ ξ2(0) = s3 −
sin(ψ5)

sin(ψ2)

ξ4(δ) ≥ ξ4(0) = s3 −
sin(ψ5)

sin(ψ4)

s2 − ξ4(xD − δ) ≤ s2 − ξ4(0) =
sin(ψ5)

sin(ψ4)

s2 − ξ2(xD − δ) ≤ s2 − ξ2(0) =
sin(ψ5)

sin(ψ2)

s3 − ξ1(xD − δ) ≥ s3 − ξ1(0) = s3 −
sin(ψ0)

sin(ψ1)
.

Hence we conclude from Proposition 13 that for 0 ≤ t ≤ 10 we have x
[kt]
t ≤ ε whenever kt = 2

and x
[kt]
t ≥ s3 − ε whenever kt = 3, where

ε = min{s2 − sin(ψ0)/ sin(ψ1), s2 − sin(ψ5)/ sin(ψ2), s2 − sin(ψ5/ sin(ψ4)} .

Altogether, the claim of the lemma is valid with the choice

ε = min

{
s2 −

sin(θ2)

sin(θ1)
, s2 −

sin(ψ0)

sin(ψ1)
, s2 −

sin(ψ5)

sin(ψ2)
, s2 −

sin(ψ5)

sin(ψ4)

}
.

Lemma 7 and 14 ensure that ε > 0. �

Since 2 cos(α) cos(4α) = cos(5α)− cos(3α) it follows that choosing α ∈ (α∗, 3π/10) such
that cos(5α)/ cos(3α) ∈ R \ Q ensures that the map in Theorem 1 is an irrational rotation.
In fact, the ratio cos(5α)/ cos(3α) is continuous and strictly monotonic for α ∈ (α∗, 3π/10),
so that apart from a countable set of α values we obtain an irrational rotation. For explicit
examples of such angles we invoke the Gelfond–Schneider Theorem (see, for example, [3,
Theorem 5.1]), according to which for any algebraic a ∈ R \ {0, 1} and algebraic irrational b,
the number ab is transcendental. Thus, if α = πβ with β 6= 0 an algebraic irrational number,
then cos(5α)/ cos(3α) must be irrational, otherwise exp(iα) = exp(iπβ) = (−1)β would be
algebraic, which contradicts the Gelfond-Schneider Theorem.

Hence, if α ∈ (α∗, 3π/10) with cos(5α)/ cos(3α) ∈ R\Q, it follows that Lebesgue almost all

initial values x
[1]
0 will give rise to a regular non-periodic orbit with initial condition [1, φ∗, x

[1]
0 ].

By Lemma 16 the corresponding trajectory does not have bounces on the sides within a
distance ε > 0 of the tip of the triangle (when distance is measured along the bouncing side).
Hence, the trajectory does not enter a small symmetric triangular region at the tip of the
triangle and is thus not everywhere dense. A graphical illustration of this type of trajectory
is shown in Figure 2.
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Figure 2. Finite trajectory of 500 bounces with initial condition on the base

at x
[1]
0 = 1/

√
2, φ0 = 0.7329252 . . ., see (4) in an isosceles triangle with base

angle α = π
√

3/6 (see Lemma 3).
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