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Abstract. We provide explicit bounds on the eigenvalues of transfer operators defined in
terms of holomorphic data.

Linear operators of the form Lf =
∑

i∈I wi · f ◦ Ti, so-called transfer operators (see
e.g. [Bal, Rue1, Rue2]), arise in a number of problems in dynamical systems. If the Ti

are inverse branches of an expanding map T , and the weight functions wi are positive, the
spectrum of L has well-known interpretations in terms of the exponential mixing rate of an
invariant Gibbs measure (see [Bal]). Applications also arise when the wi are real-valued
(e.g. [CCR, JMS, Pol]) or complex-valued (e.g. [Dol, PS]).

In this article we suppose that Ti and wi are analytic functions of d variables, for each i
in some countable1 index set I. Under suitable hypotheses on Ti and wi the transfer operator
L defines a compact operator on Hardy space H2(B), and we can give completely explicit
bounds on its eigenvalue sequence2 {λn(L)}∞n=1:

Theorem 1. Suppose there is a complex Euclidean ball B ⊂ Cd such that each wi : B → C
is holomorphic with

∑
i∈I supz∈B |wi(z)| < ∞, and each Ti : B → B is holomorphic with

∪i∈ITi(B) contained in the ball concentric with B whose radius is r < 1 times that of B.
Then L : H2(B) → H2(B) is compact and

|λn(L)| < W
√

d

rd(1− r2)d/2
n(d−1)/(2d) r

d
d+1

(d!)1/dn1/d

for all n ≥ 1 , (1)

where W := supz∈B

∑
i∈I |wi(z)|.

If d = 1 then

|λn(L)| ≤ W√
1− r2

r(n−1)/2 for all n ≥ 1 . (2)

Remark 2.
(i) An estimate of the form |λn(L)| ≤ Cθn1/d

for some (undefined) constants C > 0, θ ∈ (0, 1)
is asserted, either implicitly or explicitly, in the work of several authors (e.g. [FR, Fri, GLZ]);
the novelty here is that careful derivation of this bound renders explicit the constants C, θ.
(ii) Using different techniques, the bound |λn(L)| ≤ Cθn1/d

can also be established in the
case where B is an arbitrary open subset of Cd (see [BJ]), though here our expressions for
C, θ are more complicated.

Example 3. If Lf(z) =
∑∞

n=1

(
1

n+z

)2
f
(

1
n+z

)
(the Perron-Frobenius operator for the

Gauss map x 7→ 1/x (mod 1), cf. [May]), B ⊂ C may be chosen as the open disc of radius 3/2

1Subsequent results are new even when I is finite, but it is convenient to also allow countably infinite I.
2Precisely, {λn(L)}∞n=1 denotes the sequence of all eigenvalues of L counting algebraic multiplicities and

ordered by decreasing modulus, with the usual convention (see e.g. [Pie, 3.2.20]) that distinct eigenvalues with
the same modulus can be written in any order.
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centred at the point 1. In this case W = supz∈B

∑∞
n=1 |n + z|−2 =

∑∞
n=1(n− 1/2)−2 = π2/2

and r = 2/3, so (2) yields

|λn(L)| ≤ 3π2

2
√

5
(2/3)(n−1)/2 for all n ≥ 1 .

Notation 4. For an open ball D ⊂ Cd, let H∞(D) denote the Banach space consisting
of all bounded holomorphic C-valued functions on D, with norm ‖f‖H∞(D) := supz∈D |f(z)|.

Hardy space H2(D) (see [Kra, Ch. 8.3]) is the L2(∂D, σ)-closure of the set of those
f ∈ H∞(D) which extend continuously to the boundary ∂D, where σ denotes (2d − 1)-
dimensional Lebesgue measure on ∂D, normalised so that σ(∂D) = 1. In particular, H2(D)
is a Hilbert subspace of L2(∂D, σ) with each element f ∈ H2(D) having a natural holomorphic
extension to D (see [Kra, Ch. 1.5]).

In the sequel, no generality is lost by taking B in the statement of Theorem 1 to be the
unit ball B1, and the smaller concentric ball to be Br, the ball of radius r centred at 0.

If L : X1 → X2 is a continuous operator between Banach spaces then for k ≥ 1, its k-th
approximation number ak(L) is defined as

ak(L) = inf{‖L−K‖ |K : X1 → X2 linear and continuous with rank(K) < k} .

The proof of Theorem 1 hinges on the following two lemmas.

Lemma 5. If J : H2(B1) ↪→ H∞(Br) denotes the canonical embedding, then J and L are
compact and for all n ≥ 1

|λn(L)| ≤ W
n∏

k=1

ak(J)1/n . (3)

Proof. If f ∈ H2(B1) and z ∈ Br then |f(z)| ≤ (2/(1− r))d/2 by [Rud, Thm. 7.2.5], so
{f | ‖f‖H2(B1) ≤ 1} is a normal family in H∞(Br), hence relatively compact in H∞(Br) by
Montel’s Theorem (see [Nar, Ch. 1, Prop. 6]), thus J is compact.

Next observe that if f ∈ H∞(B1) then f ∈ H2(B1) by [Rud, Thm. 5.6.8] and the
canonical embedding Ĵ : H∞(B1) ↪→ H2(B1) is continuous of norm 1, because σ(∂B1) = 1.
We claim that L̂f :=

∑
i∈I wi · f ◦ Ti defines a continuous operator L̂ : H∞(Br) → H∞(B1).

To see this, fix f ∈ H∞(Br) and note that wi · f ◦ Ti ∈ H∞(B1) with ‖wi · f ◦ Ti‖H∞(B1) ≤
‖wi‖H∞(B1) ‖f‖H∞(Br) for every i ∈ I. But since ‖L̂f‖H∞(B1) ≤

∑
i∈I ‖wi‖H∞(B1) ‖f‖H∞(Br)

and
∑

i∈I ‖wi‖H∞(B1) < ∞ by hypothesis, we conclude that L̂f ∈ H∞(B1) and that L̂
is continuous. Now |f(Ti(z))| ≤ ‖f‖H∞(Br) for every z ∈ B1, i ∈ I, so ‖L̂f‖H∞(B1) =
supz∈B1

|(L̂f)(z)| ≤ supz∈B1

∑
i∈I |wi(z)| |f(Ti(z))| ≤ W ‖f‖H∞(Br), and hence ‖L̂‖ ≤ W .

Now clearly L = ĴL̂J , so L is compact, and

ak(L) ≤ ‖ĴL̂‖ak(J) ≤ Wak(J) for all k ≥ 1 , (4)

since in general ak(L1L2) ≤ ‖L1‖ ak(L2) whenever L1 and L2 are bounded operators between
Banach spaces (see [Pie, 2.2]). Moreover, since L is a compact operator on Hilbert space,
Weyl’s inequality (see [Pie, 3.5.1], [Wey]) asserts that

∏n
k=1 |λk(L)| ≤

∏n
k=1 ak(L) for all

n ≥ 1. Together with (4) this yields (3), because |λn(L)| ≤
∏n

k=1 |λk(L)|1/n. �

Lemma 6. If hd(k) :=
(
k+d

d

)
then for all n ≥ 1,

an(J)2 ≤
∞∑

l=k

hd−1(l)r2l where k ≥ 0 is such that hd(k − 1) < n ≤ hd(k) . (5)



TRANSFER OPERATOR EIGENVALUES 3

Proof. H2(B1) has reproducing kernel K(z, ζ) = (1−(z, ζ)Cd)−d (see [Kra, Thm. 1.5.5]3),
where (·, ·)Cd denotes the Euclidean inner product, and K(z, ζ) =

∑∞
n=1 pn(z)pn(ζ) when-

ever {pn}∞n=1 is an orthonormal basis for H2(B1), the series converging pointwise for every
(z, ζ) ∈ B1 ×B1 (see [Hal, p. 19]).

Define Jn : H2(B1) → H∞(Br) by Jnf =
∑n−1

k=1(f, pk) pk. If z ∈ Br then

|Jf(z)− Jnf(z)|2 = |f(z)− Jnf(z)|2 =

∣∣∣∣∣
∞∑

k=n

(f, pk) pk(z)

∣∣∣∣∣
2

≤
∞∑

k=n

|(f, pk)|2
∞∑

k=n

|pk(z)|2 ≤ ‖f‖2
H2(B1) (K(z, z)−

n−1∑
k=1

|pk(z)|2) ,

so

an(J)2 ≤ sup
z∈Br

(
K(z, z)−

n−1∑
k=1

|pk(z)|2
)

. (6)

If n = 1 then k = 0, in which case (5) follows from (6) since
∑∞

l=0 hd−1(l)r2l = (1−r2)−d.
Now define the orthonormal basis {pn |n ∈ Nd

0} by (cf. [Rud, Prop. 1.4.8, 1.4.9])

pn(z) = Knzn (n ∈ Nd
0) ,

where Kn =
√

(|n|+d−1)!
(d−1)! n! , n = (n1, . . . , nd), zn = zn1

1 · · · znd
d , n! = n1! · · ·nd!, |n| = n1+· · ·+nd.

If n ≥ 2 then there are
(
k+d−1

d

)
multinomials of degree less than or equal to k − 1, so

an(J)2 ≤ sup
z∈Br

K(z, z)−
∑

|n|≤k−1

∣∣pn(z)
∣∣2 = sup

z∈Br

∞∑
l=k

∑
|n|=l

∣∣pn(z)
∣∣2 ≤ ∞∑

l=k

(l + d− 1)!
(d− 1)! l!

r2l

for all n >
(
k+d−1

d

)
, because

∑
|n|=l

1
n! |z

n|2 ≤ 1
l!r

2l for z ∈ Br by the multinomial theorem. �

Proof of Theorem 1. By Lemma 5 it suffices to bound the geometric means (
∏n

k=1 ak)1/n,
where ak := ak(J). From Lemma 6 it follows that

a2
n ≤ α̃n

r2β̃n

(1− r2)d
for all n ≥ 1 , (7)

where
α̃n := hd−1(k)
β̃n := k

for hd(k − 1) < n ≤ hd(k) ,

because
∞∑

l=k

hd−1(l)r2l = hd−1(k)r2k
∞∑
l=0

hd−1(l + k)
hd−1(k)

r2l ≤ hd−1(k)r2k
∞∑
l=0

hd−1(l)r2l = hd−1(k)
r2k

(1− r2)d
.

Combining (7) with Lemma 5 gives, for all n ≥ 1,

|λn(L)| ≤ Wαn
rβn

(1− r2)d/2
, (8)

where

αn :=
n∏

l=1

α̃
1/(2n)
l , βn :=

1
n

n∑
l=1

β̃l .

3Note that the extra factor (d−1)!/(2πd) appearing in [Kra, Thm. 1.5.5] is due to a different normalisation
of the measure σ on ∂B1.
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To obtain (1) and (2) from (8) we require an upper bound on αn and a lower bound on
βn. We start with the bounds for αn. Observe that

α̃1 = hd−1(0) = 1 , and α̃l ≤ d(l − 1)1−1/d for l ≥ 2 . (9)

To see this note that

hd−1(k)
hd(k − 1)1−1/d

=
(d!)1−1/d

(d− 1)!

( ∏d−1
l=1 (k + l)d∏d−1

l=0 (k + l)d−1

)1/d

=
(d!)1−1/d

(d− 1)!

d−1∏
l=1

(
1 +

l

k

)1/d

is decreasing in k, so if hd(k− 1) < n ≤ hd(k) then α̃l

(l−1)1−1/d ≤
hd−1(k)

hd(k−1)1−1/d ≤
hd−1(1)

hd(0)1−1/d = d .

The estimate (9) now yields the upper bound

αn =
n∏

i=1

α̃
1/(2n)
i ≤

√
d((n− 1)!)(d−1)/(2dn) ≤

√
d
(
2
(n

e

)n)(d−1)/(2dn)
≤
√

dn(d−1)/(2d) , (10)

where, for n > 1, we have used the estimate (n−1)! ≤ 2
(

n
e

)n (i.e. log(n−1)! ≤
∫ n
x=2 log x dx ≤

n log n− n + log 2).
We now turn to the bounds for βn. If hd(k − 1) < l ≤ hd(k), so that β̃l = k, then

l ≤ hd(k) ≤ (d!)−1(k + d)d, which implies β̃l = k ≥ (d!)1/dl1/d − d . Therefore

βn =
1
n

n∑
l=1

β̃l ≥ −d + (d!)1/d 1
n

n∑
l=1

l1/d > −d + (d!)1/d d

d + 1
n1/d , (11)

where we have used
∑n

l=1 l1/d >
∫ n
x=0 x1/d dx = d

d+1n1+1/d.
Assertion (1) now follows from (8), (10), and (11). Finally, if d = 1 then βn = 1

n

∑n
l=1 β̃l =

1
n

∑n
l=1(l − 1) = (n− 1)/2, and (10) becomes αn ≤ 1, so substituting into (8) yields (2). �
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