Explicit a priori bounds on transfer operator eigenvalues

Oscar F. Bandtlow and Oliver Jenkinson

Abstract

We provide explicit bounds on the eigenvalues of transfer operators defined in terms of holomorphic data.

Linear operators of the form $\mathcal{L} f=\sum_{i \in \mathcal{I}} w_{i} \cdot f \circ T_{i}$, so-called transfer operators (see e.g. [Bal, Rue1, Rue2]), arise in a number of problems in dynamical systems. If the T_{i} are inverse branches of an expanding map T, and the weight functions w_{i} are positive, the spectrum of \mathcal{L} has well-known interpretations in terms of the exponential mixing rate of an invariant Gibbs measure (see $[\mathbf{B a l}]$). Applications also arise when the w_{i} are real-valued (e.g. [CCR, JMS, Pol]) or complex-valued (e.g. [Dol, PS]).

In this article we suppose that T_{i} and w_{i} are analytic functions of d variables, for each i in some countable ${ }^{1}$ index set \mathcal{I}. Under suitable hypotheses on T_{i} and w_{i} the transfer operator \mathcal{L} defines a compact operator on Hardy space $H^{2}(B)$, and we can give completely explicit bounds on its eigenvalue sequence ${ }^{2}\left\{\lambda_{n}(\mathcal{L})\right\}_{n=1}^{\infty}$:

Theorem 1. Suppose there is a complex Euclidean ball $B \subset \mathbb{C}^{d}$ such that each $w_{i}: B \rightarrow \mathbb{C}$ is holomorphic with $\sum_{i \in \mathcal{I}} \sup _{z \in B}\left|w_{i}(z)\right|<\infty$, and each $T_{i}: B \rightarrow B$ is holomorphic with $\cup_{i \in \mathcal{I}} T_{i}(B)$ contained in the ball concentric with B whose radius is $r<1$ times that of B.

Then $\mathcal{L}: H^{2}(B) \rightarrow H^{2}(B)$ is compact and

$$
\begin{equation*}
\left|\lambda_{n}(\mathcal{L})\right|<\frac{W \sqrt{d}}{r^{d}\left(1-r^{2}\right)^{d / 2}} n^{(d-1) /(2 d)} r^{\frac{d}{d+1}(d!)^{1 / d} n^{1 / d}} \quad \text { for all } n \geq 1, \tag{1}
\end{equation*}
$$

where $W:=\sup _{z \in B} \sum_{i \in \mathcal{I}}\left|w_{i}(z)\right|$.
If $d=1$ then

$$
\begin{equation*}
\left|\lambda_{n}(\mathcal{L})\right| \leq \frac{W}{\sqrt{1-r^{2}}} r^{(n-1) / 2} \quad \text { for all } n \geq 1 \tag{2}
\end{equation*}
$$

Remark 2.
(i) An estimate of the form $\left|\lambda_{n}(\mathcal{L})\right| \leq C \theta^{n^{1 / d}}$ for some (undefined) constants $C>0, \theta \in(0,1)$ is asserted, either implicitly or explicitly, in the work of several authors (e.g. [FR, Fri, GLZ]); the novelty here is that careful derivation of this bound renders explicit the constants C, θ. (ii) Using different techniques, the bound $\left|\lambda_{n}(\mathcal{L})\right| \leq C \theta^{n^{1 / d}}$ can also be established in the case where B is an arbitrary open subset of \mathbb{C}^{d} (see $\left.[\mathbf{B J}]\right)$, though here our expressions for C, θ are more complicated.

Example 3. If $\mathcal{L} f(z)=\sum_{n=1}^{\infty}\left(\frac{1}{n+z}\right)^{2} f\left(\frac{1}{n+z}\right)$ (the Perron-Frobenius operator for the Gauss map $x \mapsto 1 / x(\bmod 1)$, cf. [May] $), B \subset \mathbb{C}$ may be chosen as the open disc of radius $3 / 2$

[^0]centred at the point 1 . In this case $W=\sup _{z \in B} \sum_{n=1}^{\infty}|n+z|^{-2}=\sum_{n=1}^{\infty}(n-1 / 2)^{-2}=\pi^{2} / 2$ and $r=2 / 3$, so (2) yields
$$
\left|\lambda_{n}(\mathcal{L})\right| \leq \frac{3 \pi^{2}}{2 \sqrt{5}}(2 / 3)^{(n-1) / 2} \quad \text { for all } n \geq 1
$$

Notation 4. For an open ball $D \subset \mathbb{C}^{d}$, let $H^{\infty}(D)$ denote the Banach space consisting of all bounded holomorphic \mathbb{C}-valued functions on D, with norm $\|f\|_{H^{\infty}(D)}:=\sup _{z \in D}|f(z)|$.

Hardy space $H^{2}(D)$ (see $[\mathbf{K r a}, \mathbf{C h} .8 .3]$) is the $L^{2}(\partial D, \sigma)$-closure of the set of those $f \in H^{\infty}(D)$ which extend continuously to the boundary ∂D, where σ denotes $(2 d-1)$ dimensional Lebesgue measure on ∂D, normalised so that $\sigma(\partial D)=1$. In particular, $H^{2}(D)$ is a Hilbert subspace of $L^{2}(\partial D, \sigma)$ with each element $f \in H^{2}(D)$ having a natural holomorphic extension to D (see [Kra, Ch. 1.5]).

In the sequel, no generality is lost by taking B in the statement of Theorem 1 to be the unit ball B_{1}, and the smaller concentric ball to be B_{r}, the ball of radius r centred at 0 .

If $L: X_{1} \rightarrow X_{2}$ is a continuous operator between Banach spaces then for $k \geq 1$, its k-th approximation number $a_{k}(L)$ is defined as

$$
a_{k}(L)=\inf \left\{\|L-K\| \mid K: X_{1} \rightarrow X_{2} \text { linear and continuous with } \operatorname{rank}(K)<k\right\} .
$$

The proof of Theorem 1 hinges on the following two lemmas.
Lemma 5. If $J: H^{2}\left(B_{1}\right) \hookrightarrow H^{\infty}\left(B_{r}\right)$ denotes the canonical embedding, then J and \mathcal{L} are compact and for all $n \geq 1$

$$
\begin{equation*}
\left|\lambda_{n}(\mathcal{L})\right| \leq W \prod_{k=1}^{n} a_{k}(J)^{1 / n} . \tag{3}
\end{equation*}
$$

Proof. If $f \in H^{2}\left(B_{1}\right)$ and $z \in B_{r}$ then $|f(z)| \leq(2 /(1-r))^{d / 2}$ by [Rud, Thm. 7.2.5], so $\left\{f \mid\|f\|_{H^{2}\left(B_{1}\right)} \leq 1\right\}$ is a normal family in $H^{\infty}\left(B_{r}\right)$, hence relatively compact in $H^{\infty}\left(B_{r}\right)$ by Montel's Theorem (see [Nar, Ch. 1, Prop. 6]), thus J is compact.

Next observe that if $f \in H^{\infty}\left(B_{1}\right)$ then $f \in H^{2}\left(B_{1}\right)$ by [Rud, Thm. 5.6.8] and the canonical embedding $\hat{J}: H^{\infty}\left(B_{1}\right) \hookrightarrow H^{2}\left(B_{1}\right)$ is continuous of norm 1, because $\sigma\left(\partial B_{1}\right)=1$. We claim that $\hat{\mathcal{L}} f:=\sum_{i \in \mathcal{I}} w_{i} \cdot f \circ T_{i}$ defines a continuous operator $\hat{\mathcal{L}}: H^{\infty}\left(B_{r}\right) \rightarrow H^{\infty}\left(B_{1}\right)$. To see this, fix $f \in H^{\infty}\left(B_{r}\right)$ and note that $w_{i} \cdot f \circ T_{i} \in H^{\infty}\left(B_{1}\right)$ with $\left\|w_{i} \cdot f \circ T_{i}\right\|_{H^{\infty}\left(B_{1}\right)} \leq$ $\left\|w_{i}\right\|_{H^{\infty}\left(B_{1}\right)}\|f\|_{H^{\infty}\left(B_{r}\right)}$ for every $i \in \mathcal{I}$. But since $\|\hat{\mathcal{L}} f\|_{H^{\infty}\left(B_{1}\right)} \leq \sum_{i \in \mathcal{I}}\left\|w_{i}\right\|_{H^{\infty}\left(B_{1}\right)}\|f\|_{H^{\infty}\left(B_{r}\right)}$ and $\sum_{i \in \mathcal{I}}\left\|w_{i}\right\|_{H^{\infty}\left(B_{1}\right)}<\infty$ by hypothesis, we conclude that $\hat{\mathcal{L}} f \in H^{\infty}\left(B_{1}\right)$ and that $\hat{\mathcal{L}}$ is continuous. Now $\left|f\left(T_{i}(z)\right)\right| \leq\|f\|_{H^{\infty}\left(B_{r}\right)}$ for every $z \in B_{1}, i \in \mathcal{I}$, so $\|\hat{\mathcal{L}} f\|_{H^{\infty}\left(B_{1}\right)}=$ $\sup _{z \in B_{1}}|(\hat{\mathcal{L}} f)(z)| \leq \sup _{z \in B_{1}} \sum_{i \in \mathcal{I}}\left|w_{i}(z)\right|\left|f\left(T_{i}(z)\right)\right| \leq W\|f\|_{H^{\infty}\left(B_{r}\right)}$, and hence $\|\hat{\mathcal{L}}\| \leq W$. Now clearly $\mathcal{L}=\hat{J} \hat{\mathcal{L}} J$, so \mathcal{L} is compact, and

$$
\begin{equation*}
a_{k}(\mathcal{L}) \leq\|\hat{J} \hat{\mathcal{L}}\| a_{k}(J) \leq W a_{k}(J) \quad \text { for all } k \geq 1 \tag{4}
\end{equation*}
$$

since in general $a_{k}\left(L_{1} L_{2}\right) \leq\left\|L_{1}\right\| a_{k}\left(L_{2}\right)$ whenever L_{1} and L_{2} are bounded operators between Banach spaces (see [Pie, 2.2]). Moreover, since \mathcal{L} is a compact operator on Hilbert space, Weyl's inequality (see [Pie, 3.5.1], [Wey]) asserts that $\prod_{k=1}^{n}\left|\lambda_{k}(\mathcal{L})\right| \leq \prod_{k=1}^{n} a_{k}(\mathcal{L})$ for all $n \geq 1$. Together with (4) this yields (3), because $\left|\lambda_{n}(\mathcal{L})\right| \leq \prod_{k=1}^{n}\left|\lambda_{k}(\mathcal{L})\right|^{1 / n}$.

Lemma 6. If $h_{d}(k):=\binom{k+d}{d}$ then for all $n \geq 1$,

$$
\begin{equation*}
a_{n}(J)^{2} \leq \sum_{l=k}^{\infty} h_{d-1}(l) r^{2 l} \quad \text { where } k \geq 0 \text { is such that } h_{d}(k-1)<n \leq h_{d}(k) \tag{5}
\end{equation*}
$$

Proof. $H^{2}\left(B_{1}\right)$ has reproducing kernel $K(z, \zeta)=\left(1-(z, \zeta)_{\mathbb{C}^{d}}\right)^{-d}\left(\right.$ see $\left.[\text { Kra, Thm. 1.5.5] }]^{3}\right)$, where $(\cdot, \cdot)_{\mathbb{C}^{d}}$ denotes the Euclidean inner product, and $K(z, \zeta)=\sum_{n=1}^{\infty} p_{n}(z) \overline{p_{n}(\zeta)}$ whenever $\left\{p_{n}\right\}_{n=1}^{\infty}$ is an orthonormal basis for $H^{2}\left(B_{1}\right)$, the series converging pointwise for every $(z, \zeta) \in B_{1} \times B_{1}$ (see [Hal, p. 19]).

Define $J_{n}: H^{2}\left(B_{1}\right) \rightarrow H^{\infty}\left(B_{r}\right)$ by $J_{n} f=\sum_{k=1}^{n-1}\left(f, p_{k}\right) p_{k}$. If $z \in B_{r}$ then

$$
\begin{aligned}
\left|J f(z)-J_{n} f(z)\right|^{2}=\mid f(z) & -\left.J_{n} f(z)\right|^{2}=\left|\sum_{k=n}^{\infty}\left(f, p_{k}\right) p_{k}(z)\right|^{2} \\
& \leq \sum_{k=n}^{\infty}\left|\left(f, p_{k}\right)\right|^{2} \sum_{k=n}^{\infty}\left|p_{k}(z)\right|^{2} \leq\|f\|_{H^{2}\left(B_{1}\right)}^{2}\left(K(z, z)-\sum_{k=1}^{n-1}\left|p_{k}(z)\right|^{2}\right),
\end{aligned}
$$

so

$$
\begin{equation*}
a_{n}(J)^{2} \leq \sup _{z \in B_{r}}\left(K(z, z)-\sum_{k=1}^{n-1}\left|p_{k}(z)\right|^{2}\right) . \tag{6}
\end{equation*}
$$

If $n=1$ then $k=0$, in which case (5) follows from (6) since $\sum_{l=0}^{\infty} h_{d-1}(l) r^{2 l}=\left(1-r^{2}\right)^{-d}$. Now define the orthonormal basis $\left\{p_{\underline{n}} \mid \underline{n} \in \mathbb{N}_{0}^{d}\right\}$ by (cf. [Rud, Prop. 1.4.8, 1.4.9])

$$
p_{\underline{n}}(z)=K_{\underline{n}} z^{\underline{n}} \quad\left(\underline{n} \in \mathbb{N}_{0}^{d}\right),
$$

where $K_{\underline{n}}=\sqrt{\frac{(|n|+d-1)!}{(d-1)!\underline{n}!}}, \underline{n}=\left(n_{1}, \ldots, n_{d}\right), z^{\underline{n}}=z_{1}^{n_{1}} \cdots z_{d}^{n_{d}}, \underline{n}!=n_{1}!\cdots n_{d}!,|\underline{n}|=n_{1}+\cdots+n_{d}$.
If $n \geq 2$ then there are $\binom{k+d-1}{d}$ multinomials of degree less than or equal to $k-1$, so

$$
a_{n}(J)^{2} \leq \sup _{z \in B_{r}}\left(K(z, z)-\sum_{|\underline{n}| \leq k-1}\left|p_{\underline{n}}(z)\right|^{2}\right)=\sup _{z \in B_{r}} \sum_{l=k}^{\infty} \sum_{|\underline{n}|=l}\left|p_{\underline{n}}(z)\right|^{2} \leq \sum_{l=k}^{\infty} \frac{(l+d-1)!}{(d-1)!l!} r^{2 l}
$$

for all $n>\binom{k+d-1}{d}$, because $\sum_{|n|=l} \frac{1}{n!}\left|z^{n}\right|^{2} \leq \frac{1}{l!} r^{2 l}$ for $z \in B_{r}$ by the multinomial theorem.
Proof of Theorem 1. By Lemma 5 it suffices to bound the geometric means $\left(\prod_{k=1}^{n} a_{k}\right)^{1 / n}$, where $a_{k}:=a_{k}(J)$. From Lemma 6 it follows that

$$
\begin{equation*}
a_{n}^{2} \leq \tilde{\alpha}_{n} \frac{r^{2 \tilde{\beta}_{n}}}{\left(1-r^{2}\right)^{d}} \quad \text { for all } n \geq 1 \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{\alpha}_{n}:=h_{d-1}(k) \quad \text { for } h_{d}(k-1)<n \leq h_{d}(k), \\
& \tilde{\beta}_{n}:=k
\end{aligned}
$$

because
$\sum_{l=k}^{\infty} h_{d-1}(l) r^{2 l}=h_{d-1}(k) r^{2 k} \sum_{l=0}^{\infty} \frac{h_{d-1}(l+k)}{h_{d-1}(k)} r^{2 l} \leq h_{d-1}(k) r^{2 k} \sum_{l=0}^{\infty} h_{d-1}(l) r^{2 l}=h_{d-1}(k) \frac{r^{2 k}}{\left(1-r^{2}\right)^{d}}$.
Combining (7) with Lemma 5 gives, for all $n \geq 1$,

$$
\begin{equation*}
\left|\lambda_{n}(\mathcal{L})\right| \leq W \alpha_{n} \frac{r^{\beta_{n}}}{\left(1-r^{2}\right)^{d / 2}} \tag{8}
\end{equation*}
$$

where

$$
\alpha_{n}:=\prod_{l=1}^{n} \tilde{\alpha}_{l}^{1 /(2 n)}, \quad \beta_{n}:=\frac{1}{n} \sum_{l=1}^{n} \tilde{\beta}_{l} .
$$

[^1]To obtain (1) and (2) from (8) we require an upper bound on α_{n} and a lower bound on β_{n}. We start with the bounds for α_{n}. Observe that

$$
\begin{equation*}
\tilde{\alpha}_{1}=h_{d-1}(0)=1, \text { and } \tilde{\alpha}_{l} \leq d(l-1)^{1-1 / d} \text { for } l \geq 2 . \tag{9}
\end{equation*}
$$

To see this note that

$$
\frac{h_{d-1}(k)}{h_{d}(k-1)^{1-1 / d}}=\frac{(d!)^{1-1 / d}}{(d-1)!}\left(\frac{\prod_{l=1}^{d-1}(k+l)^{d}}{\prod_{l=0}^{d-1}(k+l)^{d-1}}\right)^{1 / d}=\frac{(d!)^{1-1 / d}}{(d-1)!} \prod_{l=1}^{d-1}\left(1+\frac{l}{k}\right)^{1 / d}
$$

is decreasing in k, so if $h_{d}(k-1)<n \leq h_{d}(k)$ then $\frac{\tilde{\alpha}_{l}}{(l-1)^{1-1 / d}} \leq \frac{h_{d-1}(k)}{h_{d}(k-1)^{1-1 / d}} \leq \frac{h_{d-1}(1)}{h_{d}(0)^{1-1 / d}}=d$.
The estimate (9) now yields the upper bound

$$
\begin{equation*}
\alpha_{n}=\prod_{i=1}^{n} \tilde{\alpha}_{i}^{1 /(2 n)} \leq \sqrt{d}((n-1)!)^{(d-1) /(2 d n)} \leq \sqrt{d}\left(2\left(\frac{n}{e}\right)^{n}\right)^{(d-1) /(2 d n)} \leq \sqrt{d} n^{(d-1) /(2 d)} \tag{10}
\end{equation*}
$$

where, for $n>1$, we have used the estimate $(n-1)!\leq 2\left(\frac{n}{e}\right)^{n}$ (i.e. $\log (n-1)$! $\leq \int_{x=2}^{n} \log x d x \leq$ $n \log n-n+\log 2)$.

We now turn to the bounds for β_{n}. If $h_{d}(k-1)<l \leq h_{d}(k)$, so that $\tilde{\beta}_{l}=k$, then $l \leq h_{d}(k) \leq(d!)^{-1}(k+d)^{d}$, which implies $\tilde{\beta}_{l}=k \geq(d!)^{1 / d} l^{1 / d}-d$. Therefore

$$
\begin{equation*}
\beta_{n}=\frac{1}{n} \sum_{l=1}^{n} \tilde{\beta}_{l} \geq-d+(d!)^{1 / d} \frac{1}{n} \sum_{l=1}^{n} l^{1 / d}>-d+(d!)^{1 / d} \frac{d}{d+1} n^{1 / d} \tag{11}
\end{equation*}
$$

where we have used $\sum_{l=1}^{n} l^{1 / d}>\int_{x=0}^{n} x^{1 / d} d x=\frac{d}{d+1} n^{1+1 / d}$.
Assertion (1) now follows from (8), (10), and (11). Finally, if $d=1$ then $\beta_{n}=\frac{1}{n} \sum_{l=1}^{n} \tilde{\beta}_{l}=$ $\frac{1}{n} \sum_{l=1}^{n}(l-1)=(n-1) / 2$, and (10) becomes $\alpha_{n} \leq 1$, so substituting into (8) yields (2).

References

[Bal] V. Baladi, Positive transfer operators and decay of correlations, Advanced series in nonlinear dynamics vol. 16, World Scientific, Singapore-New Jersey-London-Hong Kong, 2000.
[BJ] O. F. Bandtlow \& O. Jenkinson, Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Advances in Math., to appear.
[CCR] F. Christiansen, P. Cvitanović, \& H.-H. Rugh, The spectrum of the period-doubling operator in terms of cycles, J. Phys. A, $\mathbf{2 3}$ (1990), L713-L717.
[Dol] D. Dolgopyat, On decay of correlations in Anosov flows, Ann. Math., 147 (1998), 357-390.
[FR] F. Faure \& N. Roy, Ruelle-Pollicott resonances for real analytic hyperbolic maps, Nonlinearity, 19 (2006), 1233-1252.
[Fri] D. Fried, Zeta functions of Ruelle and Selberg I, Ann. Sci. Ec. Norm. Sup., 9 (1986) 491-517.
[GLZ] L. Guillopé, K. Lin \& M. Zworski, The Selberg zeta function for convex co-compact Schottky groups, Comm. Math. Phys., 245 (2004), 149-176.
[Hal] P. R. Halmos, A Hilbert space problem book, Springer-Verlag, New York-Heidelberg-Berlin, 1967.
[JMS] Y. Jiang, T. Morita \& D. Sullivan, Expanding direction of the period-doubling operator, Comm. Math. Phys., 144 (1992), 509-520.
[Kra] S. G. Krantz, Function theory of several complex variables, 2nd edition, AMS Chelsea, 1992.
[May] D. H. Mayer, On the thermodynamic formalism for the Gauss map, Comm. Math. Phys., 130 (1990), 311-333.
[Nar] R. Narasimhan, Several complex variables, University of Chicago Press, Chicago, 1971.
[Pie] A. Pietsch, Eigenvalues and s-numbers, CUP, Cambridge, 1987.
[Pol] M. Pollicott, A note on the Artuso-Aurell-Cvitanovic approach to the Feigenbaum tangent operator, J. Stat. Phys., 62 (1991), 257-267.
[PS] M. Pollicott \& R. Sharp, Correlations for pairs of closed geodesics, Invent. Math., 163 (2006), 1-24.
[Rud] W. Rudin, Function theory in the unit ball of C^{n}, Grundlehren der Mathematischen Wissenschaften 241, Springer-Verlag, New York-Berlin, 1980.
[Rue1] D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys., 9 (1968), 267-278.
[Rue2] D. Ruelle, Zeta-functions for expanding maps and Anosov flows, Invent. Math., 34 (1976), 231-242
[Wey] H. Weyl, Inequalities between two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. USA, 35 (1949), 408-411.

Oscar F. Bandtlow; School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
ob@maths.qmul.ac.uk
www.maths.qmul.ac.uk/~ob
Oliver Jenkinson; School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
omj@maths.qmul.ac.uk
www.maths.qmul.ac.uk/~omj

[^0]: ${ }^{1}$ Subsequent results are new even when \mathcal{I} is finite, but it is convenient to also allow countably infinite \mathcal{I}.
 ${ }^{2}$ Precisely, $\left\{\lambda_{n}(\mathcal{L})\right\}_{n=1}^{\infty}$ denotes the sequence of all eigenvalues of \mathcal{L} counting algebraic multiplicities and ordered by decreasing modulus, with the usual convention (see e.g. [Pie, 3.2.20]) that distinct eigenvalues with the same modulus can be written in any order.

[^1]: ${ }^{3}$ Note that the extra factor $(d-1)!/\left(2 \pi^{d}\right)$ appearing in [Kra, Thm. 1.5.5] is due to a different normalisation of the measure σ on ∂B_{1}.

