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Abstract. Using analytic properties of Blaschke factors we construct a family

of analytic hyperbolic diffeomorphisms of the torus for which the spectra of the
associated transfer operator acting on a suitable Hilbert space can be computed

explicitly. As a result, we obtain expressions for the decay of correlations of

analytic observables without resorting to any kind of perturbation argument.

1. Introduction

Spectral theory constitutes one of the major approaches to study complex chaotic
motion. Drawing on both functional analytic techniques and dynamical systems
theory, it furnishes a powerful method to construct invariant measures with good
statistical properties as well as a means to study the fine-structure of the corre-
sponding correlation decay. The general theory is fairly well developed (see, for
example, [KatH, Kel, Bal1, Bal2]) and has resulted in several major breakthroughs
in the understanding of complex dynamical behaviour from an ergodic theoretic
perspective. Despite this deep understanding there is still a considerable lack of
exactly solvable models serving as paradigmatic examples illustrating the theory.

To date, examples of maps for which spectral properties of the corresponding
transfer operator can be computed explicitly are essentially limited to the one-
dimensional uniformly expanding case, with the first examples arising in the context
of piecewise linear Markov maps, where spectral properties can be reduced to finite-
dimensional matrix calculations (see [MorSO]; see also [SBJ1] for a more recent
exposition). Exploiting the rich analytic structure of Blaschke products (see, for
example, [Mar]) nonlinear examples of full-branch analytic expanding interval maps
for which complete spectral data of the corresponding transfer operator is available
have recently been introduced by the authors (see [SBJ2]; see also [BanJS] for
examples of analytic expanding maps of the circle).

Trivial examples obtained by taking products of one-dimensional maps excepted,
the situation in higher dimensions is even more challenging, which is unfortunate,
since diffeomorphisms, in particular higher-dimensional symplectic maps, play a
vital role for the dynamical foundations of nonequilibrium statistical mechanics, in
particular regarding irreversibility and entropy production [AT, BaC, Dor, Gal].
Due to the lack of available models explicit calculations are normally limited to the
linear case, including the celebrated Arnold cat map or baker-type transformations.
To the best of our knowledge not a single properly nonlinear diffeomorphism is
known for which the entire spectrum and the corresponding correlation decay rates
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have been computed explicitly.1 We try to fill this gap by introducing a model
where this spectral information is available.

For hyperbolic maps with expanding and contracting directions, progress was
for a long time hampered by the lack of suitable function spaces on which the
corresponding transfer operator can be shown to have good spectral properties.
This changed with the publication of [BKL], where it was shown that by adapting
the space to take into account expanding and contracting directions the spectral
properties of transfer operators familiar from the uniformly expanding situation can
be retained for Anosov diffeomorphisms of compact manifolds. Since then, quite a
number of these ‘anisotropic’ Banach spaces have been constructed, capturing the
behaviour of rather general hyperbolic diffeomorphisms with low regularity (see
[GouL1, GouL2, BalT1, BalT2, BalG, FauRS], or [Bal2, Bal3] for recent reviews).
The main thrust of these works has been to show that the associated transfer
operator is quasicompact, that is, its peripheral spectrum is discrete like that of a
compact operator, but lower-lying spectral points may (and usually will) be part of
the essential spectrum, characterised by persistence under compact perturbations.

There are only few papers dealing with hyperbolic diffeomorphisms with very
high regularity, where there is a chance of obtaining compact transfer operators
forcing the essential spectrum to consist of the origin only. In the analytic setting,
Rugh, in a paper predating [BKL], has constructed anisotropic Banach spaces of
analytic functions on which the transfer operator of hyperbolic maps with rather
special geometries can be shown to be trace class, and hence compact (see [Rug]).
Our work fits into this category: by restricting to the analytic setting where transfer
operators can be shown to be compact, a complete description of the spectrum is
facilitated.

In the following, we will introduce an example of an analytic hyperbolic diffeo-
morphism of the torus, for which the entire spectrum of a properly defined compact
transfer operator can be computed and linked with correlation decay of analytic
observables. The underlying space is taken from a study of Faure and Roy [FauR],
who were able to link the correlation decay of small analytic perturbations of linear
automorphisms of the torus to spectral properties of a certain transfer operator.
While we still base our analysis on an analytic deformation of the cat map, we
do not need to resort to a perturbative treatment. The same space has recently
been used by Adam [Ada] to show that transfer operators of generic analytic per-
turbations of hyperbolic linear automorphisms have non-trivial eigenvalues. His
approach, however, only yields the existence of at least one non-zero eigenvalue
(albeit generically), while our example exhibits infinitely many (explicitly known)
eigenvalues. In passing we note that the generic existence of infinitely many eigen-
values for the transfer operators of analytic expanding maps on Rn is shown in
[Nau] and for transfer operators of analytic expanding circle maps in [BanN]. We
also note that infinitely many Pollicott-Ruelle resonances have been shown to exist
for contact Anosov flows (see [FauT]) and for certain compact hyperbolic surfaces
(see [GuiHW]).

For any complex number λ smaller than one in modulus let us introduce the an-
alytic map T : T2 → T2 on the complex unit torus T2= {z ∈ C2 : |z1| = 1, |z2| = 1}

1 For flows the situation has changed recently with a series of articles by Dang and Rivière
[DaR1, DaR2, DaR3] providing a complete description of Pollicott-Ruelle resonances as well as

the corresponding resonant states for certain Morse-Smale flows.
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defined by

T (z1, z2) =

(
z1
z1 − λ
1− λ̄z1

z2,
z1 − λ
1− λ̄z1

z2

)
. (1)

Using canonical coordinates on the unit torus, z` = exp(2πiφ`), the real represen-
tation of the map, considered as a map on R2/Z2, reads

(φ1, φ2) 7→ (2φ1 + ψ(φ1) + φ2, φ1 + ψ(φ1) + φ2) , (2)

where the nonlinear part is given by

ψ(φ) =
1

π
arctan

(
|λ| sin(2πφ− α)

1− |λ| cos(2πφ− α)

)
. (3)

Here, λ = |λ| exp(iα) denotes the polar representation of the parameter with |λ| <
1. Clearly, our family of maps contains the Arnold cat map for the choice λ = 0.
The toral map (1) is a special case of a so-called two-dimensional Blaschke product
which has already received some attention in the context of ergodic theory (see
[PS]).

It is not difficult to see that the derivative of the map given by (2) maps the
first and third quadrant of R2 strictly inside itself and that the derivative of its
inverse maps the second and fourth quadrant of R2 strictly inside itself. Thus (1)
yields a family of analytic uniformly hyperbolic toral diffeomorphisms, also known
as Anosov diffeomorphisms (see [Mos, Lemma 4] or [Has, Chapter 2.1.b]).

Clearly, the map defined by (2) is area-preserving and thus provides an example
of a chaotic Hamiltonian system. A few more empirical features, numerical simu-
lations, and some basic results on correlation decay are presented in Appendix A.

Unlike the situation for one-dimensional non-invertible maps there is no clear
distinction between Perron-Frobenius and Koopman operators as we are dealing
with area preserving diffeomorphisms. The operator governing the dynamics of our
system is essentially a composition operator C defined by

(Cf)(z1, z2) = (f ◦ T )(z1, z2) = f

(
z1
z1 − λ
1− λ̄z1

z2,
z1 − λ
1− λ̄z1

z2

)
(4)

where f : T2 → C. As alluded to earlier, the choice of a space of functions on
which C acts and has nice spectral properties is a delicate matter. We shall use a
family of Hilbert spaces Ha indexed by a positive real parameter a which contains
all Laurent polynomials on the unit torus as a dense subset. Postponing the formal
definition to the following section our main result can be stated as follows.

Theorem 1.1. The composition operator C : Ha → Ha is a well-defined compact
operator for any a > 0 and any |λ| < 1. Its spectrum is given by

σ(C) = {(−λ)n : n ∈ N} ∪ {(−λ̄)n : n ∈ N} ∪ {1, 0} . (5)

Each non-zero element of the spectrum is an eigenvalue, the algebraic and geometric
multiplicity of which coincide with the number of times the non-zero number occurs
in (5).

The above equality of algebraic and geometric multiplicity for each non-zero
eigenvalue implies that the non-zero spectrum of C : Ha → Ha has no non-trivial
Jordan blocks. In passing we note that non-trivial Jordan blocks can occur for
piecewise linear expanding interval maps (see, for example, [AQ, Dae, Dri]) and for
geodesic flows on hyperbolic surfaces (see [FF, GuiHW]).
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Using the definition (4) and the invariance of Haar measure µ on the unit torus it
is straightforward to relate the spectral properties of the operator with correlation
functions and to bound the decay of correlations for sufficiently nice observables.

Corollary 1.2. For any functions g : T2 → C and h : T2 → C analytic in an open
neighbourhood of the unit torus the corresponding correlation function

Cgh(k) =

∫
g · h ◦ T kdµ−

∫
gdµ

∫
hdµ , (6)

where µ denotes the invariant Haar measure on T2, satisfies

|Cgh(k)| ≤ K|λ|k (7)

for all k ∈ N with K a suitable constant. In particular, T is strongly mixing with
respect to µ.

With a little bit more effort one can also derive asymptotic expansions for the
correlation function. In particular, the estimate given in Corollary 1.2 is sharp as
one can easily find cases where the upper bound is attained, see (73).

Another simple consequence of Theorem 1.1 is the following result on the location
of the Pollicott-Ruelle resonances (see [Pol1, Pol2, Rue1, Rue2]) of T , that is,
the poles of the meromorphic continuation of the Z-transform of the correlation
function.

Corollary 1.3. For any g : T2 → C and h : T2 → C analytic in an open neighbour-
hood of the unit torus the Z-transform Ĉgh of the corresponding correlation function
given by

Ĉgh(ζ) =

∞∑
k=0

ζ−kCgh(k) (8)

for ζ ∈ C with |ζ| > 1, has a meromorphic continuation to C \ {0} with no poles
outside of

{(−λ)n : n ∈ N} ∪ {(−λ̄)n : n ∈ N} . (9)

This article is organised as follows. In Section 2 we will define the function
space Ha on which the transfer operator (4) will be defined. We will spend some
effort on its motivation, as its structure is fundamentally linked to the physics of
the underlying dynamical system. Compactness of the composition operator will
be proven in Section 3 by establishing suitable bounds on the entries of a matrix
representation of C with respect to an orthonormal basis of Ha. Using the fact that
this matrix representation is lower-triangular we will then be able to obtain the
entire spectrum of C in closed form, thus completing the proof of our main result,
Theorem 1.1.

Section 4 is devoted to proving the two corollaries, which involves a discussion
of the properties of the invariant measure and the corresponding correlation decay
for analytic observables.

Part of our presentation requires some basic knowledge of functional analysis,
which, in spite of the fact that it can be found in standard textbooks, we cover in
some detail so as to make the exposition accessible to a larger audience in applied
dynamical systems theory.

In this article, we shall only be concerned with the particular example given
in (1), postponing the discussion of possible generalisations to the conclusion and
Appendix C.
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2. Hilbert space and transfer operator

The main purpose of this section is to introduce a family of Hilbert spaces and
to show that the composition operator (4) is compact on each of these spaces.

We start by defining the family of Hilbert spaces. For λ = 0 the map given
by (1) or (2) induces a linear automorphism on the torus (viewed as R2/Z2). The
corresponding unstable/stable eigenvalues and eigenvectors are given by

λu/s = ϕ±2, vu/s = (λu/s − 1, 1) , (10)

where ϕ := (1+
√

5)/2 denotes the golden mean. For brevity we will use multi-index
notation n = (n1, n2) ∈ Z2 with |n| = |n1|+ |n2|, and we abbreviate the monomials
of z = (z1, z2) ∈ C2 by zn = zn1

1 zn2
2 . Let us denote by

nu/s = vu/sn = (λu/s − 1)n1 + n2 (11)

the components of n with respect to the stable and unstable direction of the cat
map.

Before defining the family of spaces recall that a Laurent monomial is a map
z 7→ zn from T2 to C where n ∈ Z2. Clearly, a Laurent monomial corresponds to a
Fourier mode on R2/Z2. We call a finite linear combination of Laurent monomials
a Laurent polynomial and denote the set of all Laurent polynomials by L. Thus

L = {f : T2 → C : f(z) =
∑
|n|≤N

fnz
n, with fn ∈ C, N ∈ N} . (12)

Following [FauR], we will define anisotropic Hilbert spaces adapted to the ac-
tion of the transfer operator given by (4) as the completion of the set of Laurent
polynomials with respect to a certain norm, which we shall define presently.

Given a > 0 define an inner product on L by

〈f, g〉a =
∑
n∈Z2

fnḡn exp(−2a|nu|+ 2a|ns|) , (13)

where (fn)n∈Z2 and (gn)n∈Z2 denote the Fourier coefficients of the Laurent polyno-
mials f and g, respectively, that is,

f(z) =
∑
n∈Z2

fnz
n and g(z) =

∑
n∈Z2

gnz
n ; (14)

the corresponding norm will be denoted by ‖ · ‖a, that is, we have

‖f‖2a =
∑
n∈Z2

|fn|2 exp(−2a|nu|+ 2a|ns|) . (15)

We are now ready to define the family of Hilbert spaces.

Definition 2.1. Let a > 0 then Ha is the completion of L with respect to the
norm ‖ · ‖a.

It turns out thatHa is a separable Hilbert space, which, by construction, contains
all Laurent polynomials as a dense subset (see, for example, [RS, Theorem I.3]).
However, it also contains functions analytic in a sufficiently large open neighbour-
hood of the torus as the following lemma shows.

Lemma 2.2. If a > 0 and f : T2 → C is analytic in an open neighbourhood of

{exp(−
√

5a) ≤ |z1| ≤ exp(
√

5a)} × {|z2| = 1} , (16)
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then f ∈ Ha. In particular, any function analytic on an open neighbourhood of the
torus belongs to Ha for all sufficiently small a.

Proof. Suppose that f is analytic on an open neighbourhood of the poly-annulus
(16). Then, using Cauchy’s integral formula, the function f has a Laurent expansion
of the form

f(z) =
∑
n∈Z2

fnz
n (17)

with ∑
n∈Z2

|fn|2 exp(2a
√

5|n1|) <∞ . (18)

Since, by (11), we have

|ns| − |nu| ≤ |ns − nu| =
√

5|n1| , (19)

the bound (18) implies that∑
n∈Z2

|fn|2 exp(−2a|nu|+ 2a|ns|)

=
∑
n∈Z2

|fn|2 exp(2a
√

5|n1|) exp(−2a|nu|+ 2a|ns| − 2a
√

5|n1|) <∞ , (20)

which shows that f is a limit of Laurent polynomials convergent in the norm ‖ · ‖a
and can thus be uniquely identified with an element in Ha. �

While, as we have just seen, the space Ha contains functions analytic on a
sufficiently large neighbourhood of the torus, it also contains generalised functions,
not interpretable as ordinary functions on the torus.

At first glance, the choice of weighting in the definition of the norm (15) appears
peculiar. However, this choice is intimately linked with the underlying dynamics.
Broadly speaking, the weighting requires that the Fourier coefficients (fn)n∈Z2 of
f ∈ Ha decay exponentially in the stable direction whereas they are allowed to
grow exponentially in the unstable direction. The corresponding function on the
unit torus inherits this behaviour, that is, it is smooth in the stable but allowed
to be rather rough in the unstable direction. It is precisely this property which
makes it possible to capture the dynamics of the underlying map. For instance,
the simple textbook example of the Arnold cat map shows that an initially smooth
density remains smooth along the unstable direction but becomes jagged in the
stable direction. If we keep in mind that a Perron-Frobenius operator governing the
motion of densities involves the inverse of the map and thus interchanges stable and
unstable direction, it is precisely the space defined above which is able to capture the
ergodic properties of the dynamical system. In physics terms, the structure of this
space breaks the time reversal symmetry of the dynamical system, capturing the
macroscopically irreversible behaviour of the motion (see, for example, [AT]). In the
mathematics literature, these ideas are precisely those underlying the construction
of various anisotropic function spaces in [Bal3, BKL, BalT1, FauRS] as well as
in [FauR], the main difference between the former groups of work and the latter
being the restrictions imposed on the decay (respectively, growth) of the Fourier
coefficients in the unstable (respectively, stable) direction, which is algebraic in the
former and exponential in the latter.
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As in [FauR], we could have used a slightly more general setup for the underlying
space by giving different weights to the stable and unstable parts in Definition 2.1.
The restricted case considered here will turn out to be sufficient for our purpose.
We will revisit this issue in the conclusion.

For later use, we note that the normalised monomials

en(z) = zn exp(a|nu| − a|ns|) (∀n ∈ Z2) , (21)

yield an orthonormal basis for Ha for every a > 0.
Having introduced the underlying Hilbert space we are now going to define a

transfer operator associated with the map. The definition (4) makes perfect sense
for Laurent polynomials, which form a dense subset of Ha. Hence, it remains to
show that C is bounded with respect to the norm of Ha on the set of Laurent
polynomials. For this in turn, it is sufficient to evaluate the images (under C) of
the basis elements (21) and to show that their norm decays sufficiently fast with
|n|.

We start by observing that (4) and (21) yield

(Cen)(z) = exp(a|nu| − a|ns|)zn1
1 zn1+n2

2

(
z1 − λ
1− λ̄z1

)n1+n2

= exp(a|nu| − a|ns|)
∑
m∈Z2

bm,nz
m , (22)

where the expansion coefficients of the Laurent series in a neighbourhood of the
unit torus are given by

bm,n = δm2,n1+n2
M−m1+2n1+n2

(λ, n1 + n2) , (23)

where we have introduced the shorthand

M`(λ, k) =

∫
|ζ|=1

ζ`
(

1− λ/ζ
1− λ̄ζ

)k
dζ

2πiζ
(24)

for the expansion coefficient of a single Blaschke factor. Hence, using the definition
of the norm in (15), we obtain

‖Cen‖2a =
∑
m∈Z2

exp(2a|nu| − 2a|ns|)δm2,n1+n2
|M−m1+2n1+n2

(λ, n1 + n2)|2

× exp(−2a|mu|+ 2a|ms|) . (25)

Before we proceed, let us first comment on the trivial case of the cat map, which
corresponds to λ = 0. In this case, expression (24) simplifies to M`(λ, k) = δ`,0
and only the term m1 = 2n1 + n2, m2 = n1 + n2 contributes to the series in (25).
Thanks to (11), that is, thanks to the stable and unstable directions of the cat map
this gives mu/s = λu/snu/s and so (25) becomes

‖Cen‖2a = exp(−2a(λu − 1)|nu| − 2a(1− λs)|ns|) . (26)

Since all norms in R2 are equivalent, we see that in this simple case there is a δ > 0,
such that

‖Cen‖a ≤ exp(−δ|n|) (∀n ∈ Z2) , (27)

that is, we end up with an upper bound, which is exponentially small in |n|. This
in turn finally guarantees that the transfer operator C is well-defined and compact
on Ha, using a simple summability argument (see the proof of Proposition 2.5).



8 J. SLIPANTSCHUK, O.F. BANDTLOW, W. JUST

The same observation together with a localisation argument for the expression
(24) has been used in [FauR] to derive similar upper bounds for the transfer op-
erators of maps which are small perturbations (in the C1 sense) of linear maps of
the torus. Restricting to our particular choice of maps, we will obtain a slightly
stronger result without resorting to any perturbative argument.

In order to do this, let us first focus on an estimate for the expression (24).

Lemma 2.3. For any λ = |λ| exp(iγ) ∈ C with |λ| < 1 the expression (24) obeys

i) M`(λ, k) = M−`(λ̄,−k);
ii) M`(|λ| exp(iγ), k) = exp(i`γ)M`(|λ|, k);

iii) M`(λ, 0) = δ`,0;
iv) M`(λ, k) = 0 if ` > k > 0;
v) |M`(λ, k)| ≤ 1.

In addition, there exists α > 0 and β ∈ (0, 1) such that for k > 0 and βk ≤ ` ≤ k
the estimate

|M`(λ, k)| ≤ exp(−α(`− βk)) (28)

holds.

Proof. The symmetry properties i) and ii) can be obtained by appropriate substi-
tutions in the integral (24), namely ζ ′ = ζ−1 and ζ ′ = ζ exp(−iγ), respectively.
Property iii) is obvious. Since the integrand in (24) is holomorphic in the unit
disk for ` > k > 0, property iv) follows. Finally v) is obvious, as the integrand is
bounded by one. Hence, the only non-trivial part which remains to be proven is
the estimate (28).

Due to the phase symmetry ii) it is sufficient to prove (28) with |λ| instead of λ.
By contour deformation we have for r ∈ (0, 1)

|M`(λ, k)| =

∣∣∣∣∣
∫
|ζ|=r

ζ`
(

1− |λ|/ζ
1− |λ|ζ

)k
dζ

2πiζ

∣∣∣∣∣
≤ r

`

2π

∫ 2π

0

∣∣∣∣1− |λ|/r exp(−iφ)

1− |λ|r exp(iφ)

∣∣∣∣k dφ . (29)

It is not difficult to see that the integrand takes its maximum at φ = π, that is,∣∣∣∣1− |λ|/r exp(−iφ)

1− |λ|r exp(iφ)

∣∣∣∣ ≤ 1 + |λ|/r
1 + |λ|r

(∀φ ∈ [0, 2π)) (30)

so that for any β ∈ (0, 1) we have

|M`(λ, k)| ≤ r`−βk
(
rβ

1 + |λ|/r
1 + |λ|r

)k
. (31)

The base F (r) = rβ(1+|λ|/r)/(1+|λ|r) clearly obeys F (1) = 1 and F ′(1) > 0 if β >
2|λ|/(1 + |λ|). Hence, the assertion follows by first choosing β ∈ (2|λ|/(1 + |λ|), 1)
and then choosing r = exp(−α) ∈ (0, 1) with F (r) ≤ 1. �

Let us now return to (25). Using Lemma 2.3 it is fairly straightforward to
establish the following.

Lemma 2.4. For λ ∈ C with |λ| < 1 and a > 0 there exists c > 0 and δ > 0 such
that

‖Cen‖a ≤ c exp(−δ|n|) (∀n ∈ Z2) . (32)
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Proof. Because of the symmetry relations i) and ii) in Lemma 2.3 the series (25)
obeys ‖Cen‖a = ‖Ce−n‖a. Hence it is sufficient to consider the case n1 + n2 ≥ 0.

If n1 +n2 = 0 then property iii) of Lemma 2.3 guarantees that only a single term
with m1 = 2n1 +n2 and m2 = n1 +n2 contributes to (25), so that mu = λunu and
ns = λsns by (11). Thus

‖Cen‖a = exp(−a(λu − 1)|nu| − a(1− λs)|ns|)
≤ exp(−a(1− λs)(|nu|+ |ns|)), (33)

where we have used λuλs = 1 and λu > 1. As |n1| + |n2| ≤ 2(|nu| + |ns|) relation
(32) holds for any c ≥ 1 and any δ ≤ a(1− λs)/2.

Let us now assume that n1 + n2 > 0. The sum in (25) only runs over m1, as
only m2 = n1 + n2 can give rise to non-zero terms. Making use of (28), we now
split this sum into three parts.

‖Cen‖2a = S1 + S2 + S3, (34)

where

Si =
∑
m1∈Ii

m2=n1+n2

|M−m1+2n1+n2(λ, n1+n2)|2 exp(−2a(|ns|−|nu|+|mu|−|ms|)) (35)

with I1 = {m1 : m1 < n1}, I2 = {m1 : n1 ≤ m1 ≤ n1 + (1 − β)(n1 + n2)}, and
I3 = {m1 : m1 > n1 + (1− β)(n1 + n2)}. Note that S1 = 0 by iv) of Lemma 2.3.

For S2 and S3, we first need to have a closer look at the exponential factor.
Using (11), the exponent can be written as

2a(|ns| − |nu|+ |mu| − |ms|) = a|n1 + n2|F
(

m1

n1 + n2
,

n1
n1 + n2

)
(36)

where

F (x, y) = 2
(
|ϕx+ 1| − |ϕ−1x− 1|+ |ϕy − 1| − |ϕ−1y + 1|

)
,

and, as before, ϕ = (
√

5 + 1)/2 denotes the golden mean. If we employ the basic
lower bound for F derived in Lemma B.1 in Appendix B, then (36) yields

2a(|ns| − |nu|+ |mu| − |ms|) ≥ a(m1 − n1 + |n1|Θn/2) (37)

with

Θn =

{
0 if |n1| < 2ϕ−1|n1 + n2|,
1 if |n1| ≥ 2ϕ−1|n1 + n2|.

(38)

With this lower bound we can now estimate S2 and S3 as we have essentially
reduced the problem to a geometric series. For S3 we use the trivial estimate v) of
Lemma 2.3 giving

|S3| ≤
exp(−a(1− β)(n1 + n2))

1− exp(−a)
exp(−a|n1|Θn/2) . (39)

Now, a short calculation shows that

|n1 + n2|+ |n1|Θn ≥ (|n1|+ |n2|)/4 , (40)

so we can bound S3 from above by

|S3| ≤
exp(−δ′|n|)
1− exp(−a)

(41)

for any δ′ ≤ a(1− β)/8.
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For S2, the bound (28) yields

|S2| ≤
∑

0≤k≤(1−β)(n1+n2)

exp(−ak) exp(−2α((1− β)(n1 +n2)− k) exp(−a|n1|Θn/2).

Estimating this finite sum by a simple bound for its largest term we can write

|S2| ≤ ((1− β)(n1 + n2) + 1) exp(−min{a, 2α}(1− β)(n1 + n2)− a|n1|Θn/2).

Using (40) we see that

|S2| ≤ ((1− β)|n|+ 1) exp(−δ′|n|) , (42)

for any δ′ ≤ min{a/8, α/4}(1−β). Putting the two bounds for S2 and S3 together,
the assertion finally follows. �

Standard arguments now yield the following result.

Proposition 2.5. For any λ ∈ C with |λ| < 1 and any a > 0, expression (4) gives
rise to a bounded and compact operator C : Ha → Ha.

Proof. Lemma 2.4 implies that

M :=

(∑
n∈Z2

‖Cen‖2a

)1/2

<∞ . (43)

Thus the operator given by the expression (4) is bounded on the set of Laurent
polynomials since, using the Cauchy-Schwarz inequality, we have

‖Cf‖a ≤
∑
n∈Z2

|fn| exp(−a|nu|+ a|ns|)‖Cen‖a ≤M‖f‖a ; (44)

thus, by a standard result (see, for example, [RS, Theorem 1.7]) the operator C
has a unique bounded extension, which we denote by the same symbol, from Ha to
Ha. In fact, inequality (43) implies that C is Hilbert-Schmidt on Ha, and therefore
compact (see, for example, [RS, Theorem VI.22]). �

We have just seen that C : Ha → Ha is Hilbert-Schmidt. In fact, the exponential
decay of the matrix elements of C established in Lemma 2.4 implies that C has even
stronger compactness properties. It can be shown, for example by the argument
used in the proof of [FauR, Theorem 7], that the singular values of C decay at
a stretched-exponential rate, so C belongs the exponential classes introduced in
[Ban], in common with the transfer operators corresponding to higher-dimensional
analytic expanding maps (see, for example, [BanJ1, BanJ2]).

3. Spectral data

In order to complete the proof of Theorem 1.1, it remains to compute the spec-
trum of the operator C. This can be achieved by considering suitable matrix repre-
sentations of projections of this compact operator to finite-dimensional subspaces.

We start by observing that, by (21) and (22), the matrix representation Γ of C
with respect to the orthonormal basis (en)n∈Z2 of Ha is of the form

Γm,n = 〈Cen em〉a = bm,n exp(a|nu| − a|ns| − a|mu|+ a|ms|) . (45)



COMPLETE SPECTRAL DATA FOR ANALYTIC ANOSOV MAPS OF THE TORUS 11

A short calculation using (23), (24) and Lemma 2.3 i), iii), iv) yields the following
cases:

m2 6= n1 + n2 : bm,n = 0 (46)

m2 = n1 + n2 = 0 : bm,n = δm1,n1
(47)

m2 = n1 + n2 > 0 : bm,n =

{
0 if m1 < n1
(−λ)m2 if m1 = n1

(48)

m2 = n1 + n2 < 0 : bm,n =

{
0 if m1 > n1
(−λ̄)−m2 if m1 = n1 .

(49)

These properties will turn out to be sufficient to show that we can order the basis
elements in such a way that the corresponding matrix is lower-triangular. We first
arrange the basis (en)n∈Z2 as a sequence in the order of increasing norm |n|, with
groups of elements with the same norm traversed in counter-clockwise direction,
that is,

e0,0, e1,0, e0,1, e−1,0, e0,−1, e2,0, e1,1, e0,2, e−1,1, e−2,0, e−1,−1, e0,−2, e1,−1, . . . .

We then re-order this sequence as follows. We move along the sequence above
from left to right. If we encounter a basis element en1,n2 with n1n2 < 0 we move
the element to the left-most position of the current sequence. We thus obtain the
following order:

. . . , e1,−1, e−1,1, e0,0, e1,0, e0,1, e−1,0, e0,−1, e2,0, e1,1, e0,2, e−2,0, e−1,−1, e0,−2, . . . .

Lemma 3.1. The matrix given by (45) is lower-triangular with respect to the basis
re-ordered as above. Moreover, its only non-zero diagonal entries are Γ00,00 = 1,
Γ0k,0k = (−λ)k and Γ0−k,0−k = (−λ̄)k where k ∈ N.

Proof. We first prove that the entire upper-right block with n1n2 ≥ 0 andm1m2 < 0
consists of zeros. Assume the contrary, that is, assume that there exists some non-
vanishing matrix element Γm,n in this sector, that is, bm,n 6= 0. From (46) we get
m2 = n1 + n2, which is non-zero as m1m2 6= 0. If n1 + n2 = m2 > 0 > m1, then
n1, n2 are non-negative, so n1 > m1 and (48) results in the contradiction bm,n = 0.
A similar reasoning applies in the case n1 + n2 = m2 < 0 < m1.

Next, we confirm that the upper-left block matrix with n1n2 < 0 and m1m2 < 0
is an lower-triangular matrix with zeros on the diagonal. For this we assume that a
matrix entry lying on or above the diagonal is non-zero. Note that, with the chosen
ordering, the indices of a matrix element on or above the diagonal satisfy

|m1|+ |m2| = |m| ≥ |n| = |n1|+ |n2| . (50)

Since m1m2 < 0 we have m2 6= 0. If m2 > 0 then (48) implies m1 ≥ n1 and hence
the condition (50) results in n1 ≤ m1 < 0 < n2 ≤ m2. In particular m2 > n1 + n2
so that (46) yields the contradiction bm,n = 0. The case for m2 < 0 is analogous.

Finally, we show the claim for the most interesting case, the lower-right block
matrix where n1n2 ≥ 0 and m1m2 ≥ 0. In this case, the indices of a matrix element
on or above the diagonal satisfy |n| ≥ |m|. Since the components of n and m have
equal signs, this condition can be written as |n1 + n2| ≥ |m1 + m2|. If bm,n 6= 0,
then m2 = n1 +n2 by (46), so that |m2| ≥ |m1 +m2|. Since m1m2 ≥ 0 we conclude
m1 = 0. Then one of the following three cases holds:

i) m2 = 0: We get 0 = m2 = n1 + n2 and n1n2 ≥ 0 results in n1 = n2 = m1 =
m2 = 0 for which Γ00,00 = 1 by (47).
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ii) m2 > 0: By (48) we have 0 = m1 ≥ n1. Since m2 = n1 + n2 > 0 and n1 and
n2 have the same sign this implies m1 = n1 = 0 and m2 = n2. The corresponding
diagonal entry is given by Γ0m2,0m2 = (−λ)m2 by (48).

iii) m2 < 0: By (49) we have 0 = m1 ≤ n1 and by the same argument as in the
previous case we get n1 = m1 = 0 and n2 = m2. The corresponding diagonal entry
is given by Γ0m2,0m2

= (−λ̄)−m2 by (49). �

Lemma 3.2. The subspace of Ha spanned by {en : n1 · n2 ≥ 0} decomposes as
V +⊕V −0 into two invariant subspaces V + and V −0 spanned by {en : n1, n2 ≥ 0} and
{en : n1, n2 ≤ 0, n1 +n2 < 0}, respectively, so that C(V +) ⊆ V + and C(V −0 ) ⊆ V −0 .

Proof. To show invariance of V +, we inspect Cen =
∑
m∈Z2 Γm,nem for en ∈ V +, so

that n1, n2 ≥ 0. From (46) and (48) it follows that Γm,n = 0, unless m2 = n1+n2 ≥
0 and m1 ≥ n1 ≥ 0. This implies that Cen ∈ V + and hence C(V +) ⊆ V +. Similarly
we get C(V −0 ) ⊆ V −0 , completing the proof of the lemma. �

We are now able to finish the proof of the main result.

Proof of Theorem 1.1. Compactness of C : Ha → Ha was established in Proposition
2.5. Let N ∈ N and let PN : Ha → Ha denote the orthogonal projection onto the
subspace spanned by {en : |n| ≤ N}. By Lemma 3.1, the spectrum of the finite
rank operator PNCPN is given by

σ(PNCPN ) = {(−λ)k : k ∈ {1, . . . , N}} ∪ {(−λ̄)k : k ∈ {1, . . . , N}} ∪ {1, 0} . (51)

Moreover, each non-zero element of the spectrum of PNCPN is an eigenvalue the
algebraic multiplicity of which coincides with the number of times the non-zero
number occurs in (51).

Since (−λ)k ∈ σ(PN (C|V +)PN ) and (−λ̄)k ∈ σ(PN (C|V −
0

)PN ) for the invari-

ant subspaces V +, V −0 ⊂ Ha from Lemma 3.2, it follows that the geometric and
algebraic multiplicities of these eigenvalues coincide, meaning they are 2 when
(−λ)k = (−λ̄)k, and 1 otherwise.

Now, in order to finish the proof we only need to show that the non-zero spectrum
(with algebraic and geometric multiplicities) of the transfer operator C is captured
by the non-zero spectra of the finite rank operators PNCPN . This follows from
a standard spectral approximation result (see, for example, [DS, XI.9.5]) together
with the fact that PNCPN converges to C in the operator norm on Ha, which in turn
follows from the fact that C is compact (see, for example, [ALL, Theorem 4.1]). �

4. Invariant measure and correlation decay

Since the map (2) is area preserving it is clear that the Haar measure µ on the
torus is invariant under T . This invariance can also be cast in terms of spectral
properties of the transfer operator. In order to see this, we note that the constant
function e0 is the eigenfunction of the transfer operator corresponding to the eigen-
value 1, since Ce0 = e0◦T = e0. Furthermore, for f a Laurent polynomial we define
the functional

`0(f) =

∫
T2

f dµ =

∫
T2

f(z)
dz1

2πiz1

dz2
2πiz2

= f0 . (52)

Using the definition of the norm (15) we have |`0(f)| = |f0| ≤ ‖f‖a. Thus the
functional `0 is bounded on the dense subset of Laurent polynomials and thus
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extends uniquely to a functional `0 : Ha → C on the entire space Ha, which for
simplicity we denote by `0 again.

Using the fact that the map T preserves Haar measure µ on T2, we have for any
Laurent polynomial f the relation `0(Cf) = `0(f ◦T ) = `0(f) and by continuity this
identity carries over to the entire space as well. Hence `0 is the left-eigenfunctional
of the transfer operator corresponding to the leading eigenvalue 1.

All in all, we can now define a bounded projection P0 : Ha → Ha by setting

P0f = `0(f)e0 , (53)

which, by what has been said above, satisfies

CP0 = P0C = P0 , (54)

which means that P0 is the spectral projection corresponding to the eigenvalue 1.
We now turn to the study of correlation functions with respect to µ. Let g : T2 →

C be analytic in a neighbourhood of the unit torus so that |gn| ≤ c exp(−γ|n|) for
some γ > 0, c > 0. Choose a sufficiently small so that exp(−γ|n|) exp(a|nu|−a|ns|)
decays exponentially in |n|. Define the functional

`g(f) =

∫
T2

fg dµ =

∫
T2

g(z)f(z)
dz1

2πiz1

dz2
2πiz2

=
∑
n∈Z2

g−nfn (55)

on the dense subset of Laurent polynomials. Using the Cauchy-Schwarz inequality
and the definition of the norm (15) we conclude that

|`g(f)|2 ≤ ‖f‖2a
∑
n∈Z2

|g−n|2 exp(2a|nu| − 2a|ns|) . (56)

Hence `g extends to a bounded functional on the entire space Ha.
Thus, for any observable h ∈ Ha, the correlation function (6) can, using (52),

(53) and (55), be cast into spectral form as follows:

Cgh(k) = `g(Ckh)− `g(e0)`0(h) = `g(Ckh− P0h) . (57)

Since, by Theorem 1.1, the spectrum of C is discrete and has no non-trivial Jordan
blocks, we have a partial spectral decomposition (see, for example, [TL, Chapter V,
Theorem 9.2]) of the form

Ckh = P0h+ λkP1 + λ̄kP2 +Qkh . (58)

Here P1 and P2 denote the one-dimensional spectral projections associated with
the eigenvalues λ and λ̄, respectively, while Q : Ha → Ha is a compact operator
with

σ(Q) = σ(C) \ {1, λ, λ̄} , (59)

which implies that the spectral radius of Q is equal to |λ|2, that is,

lim
k→∞

‖Qk‖1/k = |λ|2 . (60)

Combining (57), (58) and (60) we obtain the desired bound

|Cgh(k)| ≤ (|`g(P1h)|+ |`g(P2h)|)|λ|k + |`g(Qkh)| ≤ K|λ|k, (61)

where the constant K only depends on `g and h. This furnishes the proof of
Corollary 1.2.

It is quite easy to see that including lower-lying eigenvalues into the spectral de-
composition (58) we can obtain asymptotic expansions for the correlation function.
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For the proof of Corollary 1.3 we first note that (54) implies that for every natural
number k we have

Ck − P0 = Rk , (62)

where R = λP1 + λ̄P2 +Q is a compact operator with

σ(R) = σ(C) \ {1} . (63)

Using a Neumann series for the resolvent of R together with (62) and (57) we now
obtain for all ζ ∈ C with |ζ| > 1

Ĉgh(ζ) =

∞∑
k=0

ζ−kCgh(k) (64)

=

∞∑
k=0

ζ−k`g(Ckh− Ph) (65)

= `g(

∞∑
k=0

ζ−kRkh) (66)

= ζ`g((ζI −R)−1h) . (67)

The corollary now follows from (63) together with the observation that the resolvent
of the compact operatorR is analytic on the punctured plane C\{0} except for poles
at the non-zero eigenvalues ofR (see, for example, [TL, Chapter V, Corollary 10.3]).

5. Conclusion

Having access to explicitly solvable examples helps to understand dynamical
features and to test conjectures. Our example demonstrates that in the analytic
category hyperbolic diffeomorphisms exist for which the corresponding transfer op-
erator has infinitely many distinct eigenvalues. In addition, eigenvalues can be
arbitrarily close to one in modulus.

The Hamiltonian structure, that is, the fact that we have considered an area
preserving diffeomorphism has simplified our arguments at a technical level. In
addition, the model considered here does not show the generic decay of eigenvalues
expected for two dimensional maps (see [Nau]). It is, however, rather straightfor-
ward to analyse more general models along the lines presented here to restore the
generic behaviour and to investigate cases with a non-trivial invariant measure.

Our setup has been tailored for the model under consideration. We have chosen
a special Hilbert space with equal weightings and components according to the
eigendirections of the cat map, see (11). While these choices turned out to be
successful their precise meaning remained somehow obscure. In addition, we were
able to transform the matrix representation of the transfer operator to a triangular
structure which gave us access to the entire spectrum. All these features are not
entirely coincidental, in the sense that there is an underlying functional analytic
structure. Uncovering this structure requires a more general approach based on
more subtle functional analytic techniques. The focus of the present contribution
has been on an elementary rigorous study of a particular example which should be
accessible for a larger, non-specialised audience. The general theory for analytic
diffeomorphism of the torus alluded to above will be presented elsewhere.
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Appendix A. Some numerical findings

A visual impression of the hyperbolic structure can be obtained by the numerical
computation of the unstable and stable manifold of the fixed point. Straightforward
forward and backward iteration gives a fairly robust algorithm for the computation
of a finite part of these manifolds, see Figure 1. Even though the invariant density
is uniform the geometry of the hyperbolic structure is apparently non-uniform,
but this non-uniformity is compensated for by a respective variation of the local
expansion and contraction rates.

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

φ
2

φ
1

Figure 1. Numerical result for the unstable (blue) and stable
(bronze) manifold of the map given by (2), for λ = 0.7 exp(0.3i).

For simple trigonometric observables, the correlation function can be computed
directly. Consider, for instance, the case of the autocorrelation of cos(φ2), which
corresponds to choosing g(z1, z2) = h(z1, z2) = (z2 + z−12 )/2 in (6). Since the
invariant density is constant the mean values obviously vanish. In order to compute
the correlation integral we introduce the shorthand

wn1n2(z1, z2) = zn1
1 zn2

2 (68)

for denoting monomials. By definition of the transfer operator, it follows that for a
function f which is analytic in D0 = {|z1| < 1, |z2| < 1} the expression Cf = f ◦ T
is also analytic in D0. An analogous property holds for functions which are analytic
in D∞ = {|z1| > 1, |z2| > 1}. Hence, the correlation integral can be written as

C(k) =
1

4

∫
T2

(
z−12 (Ckw01)(z1, z2) + z2(Ckw0−1)(z1, z2)

) dz1
2πiz1

dz2
2πiz2

. (69)

As for the action of the transfer operator on monomials, we see that

(Cw0n2
)(z1, z2) =(−λ)n2zn2

2 +O(zn2
2 z1), (n2 ≥ 0) (70)

(Cw0n2)(z1, z2) =(−λ̄)−n2zn2
2 +O(zn2

2 z−11 ), (n2 ≤ 0) (71)

(Cwn1n2)(z1, z2) =O(zn1+n2
2 zn1

1 ), (n1, n2 ≥ 0 or n1, n2 ≤ 0) (72)

where the higher order terms, as mentioned above, are analytic either in D0 or D∞.
Hence, only the leading term in (70) and (71) contributes to the integrals in (69)
and we arrive at

C(k) =
(−λ)k + (−λ̄)k

4
. (73)

As a by-product we obtain that, as expected, the upper bound given by Corol-
lary 1.2 is sharp.
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Appendix B. A lower bound

This short appendix is devoted to proving a bound required in the proof of
Lemma 2.4.

Lemma B.1. Let F : R2 → R2 be given by

F (x, y) = 2
(
|ϕx+ 1| − |ϕ−1x− 1|+ |ϕy − 1| − |ϕ−1y + 1|

)
. (74)

Then for x ≥ y, we have

F (x, y) ≥

{
x− y if |y| < 2ϕ−1,

x− y + |y|/2 if |y| ≥ 2ϕ−1,
(75)

where, as before, ϕ = (1 +
√

5)/2 denotes the golden mean.

Proof. We can write

F (x, y) = G(x)−H(y), (76)

where

G(x) =


−2x− 4 if x ∈ (−∞,−ϕ−1),

2
√

5x if x ∈ [−ϕ−1, ϕ],

2x+ 4 if x ∈ (ϕ,+∞),

(77)

H(y) =


2y − 4 if y ∈ (−∞,−ϕ),

2
√

5y if y ∈ [−ϕ,ϕ−1],

−2y + 4 if y ∈ (ϕ−1,+∞).

(78)

Let xm = −ϕ−1 denote the minimum of G and let ym = −xm denote the maximum
of H. We start by showing that for x ≥ y we have

F (x, y) ≥ 2(x− y) . (79)

In order to see this, we first observe that G(t) − H(t) ≥ 0 for all t ∈ R and that
the minimal slope in modulus of G and H is 2. Moreover, we have G(x) ≥ 2x for
x ≥ ym and H(y) ≤ 2y for y ≤ xm.

Now, for x ≥ xm we have G′(x) ≥ 2, so that

F (x, y) = (G(x)−G(y)) + (G(y)−H(y)) ≥ 2(x− y), for xm ≤ y ≤ x , (80)

while for y ≤ x ≤ ym we have H ′(y) ≥ 2 so

F (x, y) = (G(x)−H(x)) + (H(x)−H(y)) ≥ 2(x− y) . (81)

Finally, we note that if x ≥ ym and y ≤ xm then

F (x, y) = G(x)−H(y) ≥ 2x− 2y = 2(x− y) , (82)

which proves (79) and the first part of the lemma.
In order to prove the second part, observe that for x, xm ≥ y we have

G(x)−H(y) ≥ 1

2
(G(x)−H(y)) +

1

2
(G(xm)−H(y)) ≥ (x− y) + (xm − y). (83)

Thus, for 2xm ≥ y we have xm − y ≥ −y/2 = |y|/2, and hence

F (x, y) = G(x)−H(y) ≥ x− y +
|y|
2
. (84)
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Similarly, for x ≥ y ≥ 2ym we have G(x) − H(y) ≥ (x − y) + (y − ym) and
y − ym > |y|/2, hence again F (x, y) ≥ x − y + |y|/2, finishing the proof of the
lemma. �

Appendix C. A remark on general Blaschke products

For our specific example defined in (1), the asymptotic decay of eigenvalues does
not follow the generic pattern expected for two-dimensional maps (see [Nau]). It
is nevertheless quite easy to come up with solvable models exhibiting this generic
behaviour. If we recall that the cat map can be written as a composition of area
preserving orientation reversing linear automorphisms, and if we deform this auto-
morphism by introducing a Blaschke factor, that is, if we define

Sλ(z1, z2) =

(
z1 − λ
1− λ̄z1

z2, z1

)
, (85)

which is an area preserving diffeomorphism of the torus, then the composition

T = Sλ ◦ Sµ (86)

yields a two-parameter area preserving family. With the tools introduced previously
it is possible, but extremely tedious, to show that the corresponding transfer oper-
ator is compact on a suitably weighted Hilbert space. Even the spectrum, can be
evaluated in closed form consisting of simple eigenvalues 1, (−λ)n, (−λ̄)n, (−µ)n,
(−µ̄)n, (−λ)n(−µ)m, (−λ)n(−µ̄)m, (−λ̄)n(−µ)m, and (−λ̄)n(−µ̄)m where n ≥ 1
and m ≥ 1. A more conceptual proof of these assertions is possible, but requires
fairly heavy machinery, to be presented elsewhere. Here we will simply illustrate
this result by numerical means. For that purpose we compute a truncated matrix
representation of the transfer operator by using the standard Fourier basis (see
(21)), and apply a standard eigenvalue solver. The result is presented in Figure 2.
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Figure 2. Eigenvalues Λk of the transfer operator correspond-
ing to the map (86) for λ = 0.7 and µ = 0.6, ordered by size. The
numerical diagonalisation is illustrated by circles and the exact an-
alytic expression by crosses. The line indicates the generic asymp-
totic decay given by |Λk| ∼ exp(−c

√
k) with c = (lnλ lnµ/2)1/2.

For simplicity, we have so far considered area preserving maps where the explicit
expression for the invariant measure is known a priori. The invariant measures
of two-dimensional Blaschke products exhibit a richer structure (see [PS]). The
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tools introduced here allow for a detailed study of those measures. In a nutshell,
maps where the determinant of the Jacobian is not constant, may have invariant
measures exhibiting fractal properties. Toy examples based on piecewise linear
maps are well established in the literature (see, for example, [Neu]). Blaschke
products offer a systematic and analytic approach towards such features. For the
purpose of illustration consider the simple model

T (z1, z2) =

(
z21

z2 − µ
1− µ̄z2

, z1
z2 − µ
1− µ̄z2

)
. (87)

Our approach allows for a detailed investigation of the spectral structures, but
details turn out to be quite cumbersome. Hence, to visualise the properties of the
invariant measure we just compute a histogram by a suitable numerical simulation,
see Figure 3.
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Figure 3. Density plot illustrating the invariant measure of the
map given by (87) in real coordinates z` = exp(2πiφ`) for µ =
0.4. The data show a histogram with resolution 1/5000 × 1/5000
obtained from 104 time traces of length 2 × 107 with uniformly
distributed initial conditions.
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[BalG] V. Baladi and S. Gouëzel, Banach spaces for piecewise cone-hyperbolic maps, J. Mod.
Dyn. 4 (2010) 91–137.

[BalT1] V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeo-
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