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Abstract

The primary theme of this thesis is the study of recursion formulae in enumerative geometry.

In Chapter 2 we define moduli spaces of relative stable quasimaps in genus zero, and derive a

recursion formula which allows us to compute the resulting relative quasimap invariants. We

apply this formula to obtain a quantum Lefschetz theorem for quasimap invariants (this is

joint work with Luca Battistella). In Chapter 3 we present work in progress towards a recursion

formula for log Gromov–Witten invariants. Along the way, we introduce auxiliary moduli spaces

and use them to probe the geometry of the moduli space of log stable maps. Finally in Chapter 4,

we express a fundamental object in ordinary Gromov–Witten theory – Givental’s Lagrangian

cone – using relative stable maps. As a corollary, we obtain a sequence of universal relations

involving the Gromov–Witten invariants.
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CHAPTER 1

Introduction

1.1. Gromov–Witten theory

Gromov–Witten theory is a branch of enumerative geometry which studies parametrised

curves in a fixed ambient variety X (assumed to be smooth). These parametrised curves are

called stable maps, and consist of a nodal marked source curve C together with a map f : C → X

which is stable in the sense that it has only finitely many automorphisms. These objects form a

moduli space, denoted

Mg ,n(X , β )

where g ≥ 0 is the arithmetic genus of the source curve, n ≥ 0 is the number of markings on the

source curve and β = f∗[C ] ∈ H+2 (X ) is the degree of the map. This moduli space is a proper

Deligne–Mumford stack of finite type. It has a well-defined expected (or virtual) dimension,

but in general it will contain components of excess dimension. On the other hand, it admits a

natural perfect obstruction theory [BF97] [LT98] and so carries a virtual fundamental class

[Mg ,n(X , β )]virt ∈ AvdimMg ,n(X , β )

which can be thought of as the fundamental class of a suitably generic perturbation of the

moduli space. For each marked point xi ∈ {x1, . . . ,xn} there is an evaluation map

evi : Mg ,n(X , β ) → X

and if we are given cohomology classes γ1, . . . , γn ∈ H∗(X ) such that

n∑
i=1

codim(γi ) = vdimMg ,n(X , β )

then we can define the corresponding Gromov–Witten invariant:

〈γ1, . . . , γn〉
X
g ,n,β :=

∫
[Mg ,n (X ,β )]virt

n∏
i=1

ev∗i γi

6
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This should be thought of as giving a (virtual) count of the number of genus g , degree β curves

in X which pass through γi at the point xi . Good introductions to Gromov–Witten theory are

given in [FP97] [Gat03a] and [CK99, §§7-9]. The original references are [Kon95] [Beh99] [BM96].

1.2. Relative Gromov–Witten theory

Relative Gromov–Witten theory enhances the above picture by introducing a smooth hyper-

surfaceY in X . In addition to the numerical data g ,n and β we also fix a vector

α = (α1, . . . , αn)

of non-negative integers such that Σni=1αi = Y · β . We are then interested in studying stable

maps to X which have tangency αi to Y at the marked point xi . These will be called relative

stable maps.

There are a number of di�erent ways to define these objects: the intersection-theoretic ap-

proach of A. Gathmann [Gat02], the expanded degenerations approach of J. Li [Li01, Li02],

the orbifold expanded degenerations approach of D. Abramovich and B. Fantechi [AF16],

the logarithmic expanded degenerations approach of B. Kim [Kim10] and, most recently, the

logarithmic (non-expanded) approach of D. Abramovich, Q. Chen, M. Gross and B. Siebert

[GS13,Che14,AC14]. In each case, we obtain a moduli space of relative stable maps

Mg ,α(X |Y, β )

which enjoys all the good properties of the moduli space of (ordinary) stable maps: it is a proper

Deligne–Mumford stack of finite type, with a well-defined virtual dimension and accompany-

ing virtual fundamental class. In exactly the same manner as before, we obtain enumerative

invariants, called relative Gromov–Witten invariants.

Relative Gromov–Witten invariants are important for several reasons: they can be used as

a tool for calculating ordinary Gromov–Witten invariants [Gat03b] [MP06]; they can be used

to study other moduli spaces, for instance the moduli space of curves [GV05]; and they play

a fundamental role in the theory of intrinsic Mirror Symmetry [GS16], an important area of

modern algebraic geometry with close connections to theoretical physics.

1.3. Recursion formulae

The primary theme of this work is the study of recursion formulae in relative enumerative

geometry. In [Gat02], Gathmann establishes a recursion formula which allows one to compute
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relative Gromov–Witten invariants in genus zero by repeatedly “decreasing the tangencies” of

the marked points to the divisor. This formula has numerous applications, including a new

proof of the Mirror Theorem [Gat03b]. In this thesis, we extend Gathmann’s formula to other

settings, and use these extensions to obtain new results. In particular, we focus on applications

to quasimap theory and logarithmic Gromov–Witten theory.

In the quasimap setting, we define relative quasimap invariants in genus zero and obtain a

recursion formula which can be used to compute them. We then apply this recursion to prove

a quantum Lefschetz theorem for quasimap invariants; a result which, on the face of it, has

nothing to do with relative quasimaps. This is joint work with Luca Battistella.

In the logarithmic setting, we present work in progress towards obtaining a version of Gath-

mann’s formula for log Gromov–Witten invariants relative an snc divisor. In the process, we

are led to define certain auxiliary moduli spaces of stable maps to an snc divisor, and to com-

pare these to the ordinary moduli spaces of log stable maps. This leads to interesting insights

into the geometry of the latter moduli spaces. While the full recursion formula is still work in

progress, the incomplete version we currently have is su�cient to compute a large number of

log Gromov–Witten invariants, which we illustrate through a series of examples.

1.4. Relative quantisation formalism

There is a secondary theme lurking in the background here, guided by the following (some-

what vague) question: what is the overarching structure governing the relative Gromov–Witten

invariants? In the absolute setting, one answer to this question is given by A. Givental’s quan-

tisation formalism [Giv01a]. This has proven to be an extremely powerful framework for or-

ganising and proving results; see for instance [CI14] [CIJ14]. It would be of great interest to

have a similarly powerful formalism in the relative setting. The first step towards such a theory

would be a relative version of the Mirror Theorem. Since the classical Mirror Theorem can be

interpreted as a wall-crossing phenomenon between Gromov–Witten invariants and quasimap

invariants [CFK14], our work on relative quasimaps opens the way for a relative Mirror Theo-

rem.

Once a relative Mirror Theorem has been established, the next step will be to obtain a

relative version of Givental’s Lagrangian cone. In the final chapter of this thesis, we show how

the (ordinary) Lagrangian cone can be constructed using relative stable maps. This provides a

strong hint as to how one might go about constructing a Lagrangian cone in the relative setting.
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1.5. Outline

This thesis consists of three main chapters:

• Chapter 2. Here we discuss our joint work with Luca Battistella, where we define moduli

spaces of relative quasimaps (in genus zero), establish a recursion formula for them and

apply this recursion to obtain a quantum Lefschetz theorem for quasimap invariants.

• Chapter 3. Here we discuss work in progress towards a Gathmann-like recursion formula

for log Gromov–Witten invariants of snc divisors. Along the way, we define auxiliary

moduli spaces and use them to probe the geometry of the moduli space of log stable

maps. We also include an appendix, giving a brief introduction to log geometry.

• Chapter 4. Here we give an interpretation of Givental’s Lagrangian cone in terms of

relative stable maps, and apply this to obtain universal relations involving the Gromov–

Witten invariants.

Since these chapters are more or less logically independent, we have opted to provide each

chapter with its own separate introduction.

1.6. Acknowledgements

Many, many people have contributed to making this thesis a reality. First and foremost, I

would like to express my heartfelt thanks to my supervisor, Tom Coates, for years of support

and encouragement and, most of all, for believing in me when I wasn’t able to.

Second, I would like to thank Luca Battistella. My mathematical life would have been entirely

di�erent without the close and fruitful collaboration we developed together over the past year,

and for this I am eternally grateful. I have learnt a great deal from him, as I hope he has from

me.

I would also like to thank the following people for innumerable helpful discussions: Dan

Abramovich, Lawrence Barrott, Pierrick Bousseau, Francesca Carocci, Ionuţ Ciocan-Fontanine,

Alessio Corti, Barbara Fantechi, Mark Gross, Elana Kalashnikov, Bumsig Kim, CristinaManolache,

Ben Morley, Otto Overkamp, Andrea Petracci, Daniel Pomerleano, Dhruv Ranganathan, Helge

Ruddat, Mark Shoemaker, Richard Thomas, Zak Turčinović and Jonathan Wise.



CHAPTER 2

Quasimap quantum Lefschetz via relative quasimaps

The entirety of this chapter is joint work with Luca Battistella, first appearing as [BN17].

Abstract. We define moduli spaces of relative toric quasimaps in genus zero, in the spirit of

A. Gathmann. When X is a smooth toric variety and Y is a very ample hypersurface in X we

construct a virtual class on the moduli space of relative quasimaps to (X ,Y ) which can be used to

define relative quasimap invariants of the pair. We obtain a recursion formula which expresses

each relative invariant in terms of invariants of lower multiplicity. Finally we apply this formula

to derive a quantum Lefschetz theorem expressing the restricted quasimap invariants of Y in

terms of those of X . We include appendices collecting proofs of standard results in quasimap

theory.

2.1. Introduction

In this chapter we construct moduli spaces of relative quasimaps as substacks of moduli

spaces of (absolute) quasimaps. This provides a common generalisation of two di�erent theo-

ries: stable quasimaps on the one hand, and relative stable maps (in the sense of A. Gathmann)

on the other. In this introductory section we briefly recall these, putting our work in its proper

context.

2.1.1. Stable quasimaps. The moduli space of stable toric quasimaps Qg ,n(X , β ) was constructed

by I. Ciocan-Fontanine and B. Kim [CFK10] as a compactification of the moduli space of smooth

curves in a smooth and complete toric variety X . Roughly speaking, the objects are rational

maps C d X where C is a nodal curve, subject to a stability condition; the precise definition

depends on the description of X as a GIT quotient. The space Qg ,n(X , β ) is a proper Deligne–

Mumford stack of finite type. It admits a virtual fundamental class, which is used to define

curve-counting invariants for X called quasimap invariants.

This theory agrees with that of stable quotients [MOP11] when both are defined, namely

when X is a projective space. There is a common generalisation given by the theory of stable
10
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quasimaps to GIT quotients [CFKM14]. For simplicity, however, we will work mostly in the

toric setting1. Thus in this chapter when we say “quasimaps” we are implicitly talking about

toric quasimaps. Quasimap invariants provide an alternative system of curve counts to the more

well-known Gromov–Witten invariants. These latter invariants are defined via moduli spaces of

stable maps, and as such we will often refer to them as stable map invariants.

For X su�ciently positive, the quasimap invariants coincide with the Gromov–Witten invari-

ants, in all genera. This has been proven in the following cases:

• X a projective space or a Grassmannian: see [MOP11, Theorems 3 and 4], and [Man14]

for an alternative proof.

• X a projective complete intersection of Fano index at least 2: see [CFK16, Corollary 1.7],

and [CZ14] for an earlier approach.

• X a projective toric Fano variety: see [CFK17, Corollary 1.3].

In general, however, the invariants di�er, the di�erence being encoded by certain wall-crossing

formulae, which can be interpreted in the context of toric mirror symmetry [CFK14] [CFK16].

2.1.2. Relative stable maps. LetY be a smooth very ample hypersurface in a smooth projec-

tive variety X . In [Gat02] A. Gathmann constructs a moduli space of relative stable maps to

the pair (X ,Y ) as a closed substack of the moduli space of (absolute) stable maps to X :

M0,α(X |Y, β ) ↪→M0,n(X , β )

The relative moduli space parametrises stable maps with prescribed tangencies to Y at the

marked points. Unfortunately this space does not admit a natural perfect obstruction theory.

Nevertheless, becauseY is very ample it is still possible to construct a virtual fundamental class

by intersection-theoretic methods, and hence one can define relative stable map invariants.

Gathmann establishes a recursion formula for these virtual classes which allows one to express

any relative invariant of (X ,Y ) in terms of absolute invariants ofY and relative invariants with

lower contact multiplicities. By successively increasing the contact multiplicites from zero to

the maximum possible value, this gives an algorithm expressing the (restricted) invariants ofY

in terms of those of X : see [Gat02, Corollary 5.7]. In [Gat03b] this result is applied to give an

alternative proof of the mirror theorem for projective hypersurfaces [Giv96].

1This restriction is not essential for our arguments; the case of GIT quotients will be addressed in forthcoming

work.
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2.1.3. Relative stable quasimaps. In this chapter we construct moduli spaces of relative quasimaps

in genus zero. We prove a recursion relation similar to Gathmann’s formula, and use this to

derive a quantum Lefschetz formula for quasimap invariants. Our construction carries over to

the setting of ε -stable quasimaps [CFK10]; since for ε > 1 these moduli spaces agree with the

space of stable maps, one can view our construction as giving a common generalisation of the

two stories outlined above.

The plan of the chapter is as follows. In §§2.2.1 and 2.2.2 we provide a brief review of the

theories of stable quasimaps and relative stable maps. Then in §2.2.3 we define the moduli

space of relative quasimaps as a substack of the moduli space of (absolute) quasimaps:

Q0,α(X |Y, β ) ↪→ Q0,n(X , β ).

Here X is a smooth toric variety, Y is a smooth very ample hypersurface and α = (α1, . . . , αn)

encodes the orders of tangency of the marked points toY . Note that we do not requireY to be

toric.

In §2.3 we examine the special case of a hyperplane H ⊆ PN . We find that the moduli space

is irreducible of the expected dimension (in fact, more than this: it is the closure of the so-called

“nice locus” consisting of maps from a P1 whose image is not contained in H ). Thus it has

an actual fundamental class, which we can use to define relative quasimap invariants. Another

useful fact about this special case is that there exists a birational comparison morphism:

χ : M0,n(P
N ,d ) → Q0,n(P

N ,d )

This restricts to a birational morphism between the relative spaces, which we use to push down

Gathmann’s formula to obtain a recursion formula for relative stable quasimaps.

In §2.4 we turn to the case of an arbitrary pair (X ,Y ) with Y very ample. We use the

embedding X ↪→ PN defined by OX (Y ) to construct a virtual class [Q0,α(X |Y, β )]virt. We then

prove the recursion formula for (X ,Y ) by pulling back the formula for (PN ,H ). This requires

several comparison theorems for virtual classes, extending results in Gromov–Witten theory to

the setting of quasimaps. The full statement of the recursion formula is:

Theorem 2.4.1. Let X be a smooth and proper toric variety and let Y ⊆ X be a very ample

hypersurface (not necessarily toric). Then

(αkψk + ev
∗
k [Y ]) ∩ [Q0,α(X |Y, β )]virt = [Q0,α+ek (X |Y, β )]

virt + [DQ
α,k (X |Y, β )]

virt
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in the Chow group of Q0,α(X |Y, β ).

Here DQ
α,k (X |Y, β ) is a certain quasimap comb locus sitting inside the boundary of the relative

space (see §2.4.3); its virtual class should be thought of as a correction term. Such terms

also appear in Gathmann’s stable map recursion formula; however, in our setting the stronger

stability condition for quasimaps considerably reduces the number of such contributions.

Finally in §2.5 we apply the recursion formula of §2.4 to obtain a quantum Lefschetz theorem

for quasimap invariants. This takes two forms: first we have a general result which holds without

any special restrictions onY .

Theorem 2.5.1. Let X be a smooth projective toric variety and Y ⊆ X a smooth very ample

hypersurface. Then there is an explicit algorithm to recover the (restricted) quasimap invariants

ofY from the quasimap invariants of X .

If, however, we are willing to impose some (semi)positivity assumptions, we can do better

and actually obtain a closed formula (rather than just an algorithm) for this relationship.

Theorem 2.5.2. Let X be a smooth toric Fano variety and let i : Y ↪→ X be a very ample

hypersurface. Assume that −KY is nef and thatY contains all curve classes (see §2.5.3). Then∑
β ≥0 q

β ∏Y ·β
j=0 (Y + j z )S

X
0 (z, β )

P X0 (q )
= S̃Y0 (z,q )

where SX0 (z, β ) and S̃
Y
0 (z,q ) are the following generating functions for 2-pointed quasimap in-

variants

SX0 (z, β ) = (ev1)∗

(
1

z − ψ1
[Q0,2(X , β )]virt

)
S̃Y0 (z,q ) = i∗

∑
β ≥0

q β (ev1)∗

(
1

z − ψ1
[Q0,2(Y, β )]virt

)
and P X0 (q ) is given by:

P X0 (q ) = 1 +
∑
β>0

KY ·β=0

q β (Y · β )!〈[ptX ]ψ
Y ·β−1
1 ,1X 〉

X
0,2,β

The argument is similar in spirit to the one given in [Gat03b], however the stronger stability

condition considerably simplifies both the proof and the final result. This formula can also be

obtained as a consequence of [CFK14, Corollary 5.5.1]; see §2.5.6.
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We also include two appendices, collecting together results which are well-known to experts

but absent from the literature. Appendix 2.6 contains foundational results in quasimap the-

ory, including functoriality and the splitting axiom, while Appendix 2.7 contains a number of

intersection-theoretic lemmas used in the main body.

2.1.4. Acknowledgements. We thank Tom Coates and Cristina Manolache for carefully read-

ing this manuscript and for their helpful advice with both exposition and subject matter. We

are grateful to Ionuţ Ciocan-Fontanine for thoroughly examining a preliminary version of this

manuscript and providing several clarifications and corrections. We would also like to thank

Fabio Bernasconi, Andrea Petracci and Richard Thomas for useful conversations.

L.B. is supported by a Royal Society 1st Year URF and DHF Research Grant Scheme and

N.N. by an EPSRC Standard DTP Scholarship. This work was supported by the Engineering

and Physical Sciences Research Council grant EP/L015234/1: the EPSRC Centre for Doctoral

Training in Geometry and Number Theory at the Interface.

2.1.5. Table of notation. We will use the following notation, most of which is introduced in

the main body of the chapter.

X a smooth projective toric variety

Y a smooth very ample hypersurface in X

Σ the fan of X

Σ(1) the set of 1-dimensional cones of Σ

ρ an element of Σ(1)

Dρ the toric divisor in X corresponding to ρ

Mg ,n(X , β ) the moduli space of stable maps to X

M0,α(X |Y, β ) the moduli space of relative stable maps to (X ,Y ); see §2.2.2

Qg ,n(X , β ) the moduli space of toric quasimaps to X ; see §2.2.1

Q◦0,α(X |Y, β ) the nice locus of relative quasimaps to (X ,Y ); see §2.3.1

Q0,α(X |Y, β ) the moduli space of relative quasimaps to (X ,Y ); see §2.2.3

DQ
α,k (X |Y, β ) the quasimap comb locus; see §2.3.2

DQ(X |Y,A,B,M ) (a component of) the comb locus; see §2.3.2

EQ(X |Y,A,B,M ) the total product for the comb locus; see §2.4.3

DQ(X ,A,B) the quasimap centipede locus; see Appendix 2.6.3

EQ(X ,A,B) the total product for the centipede locus; see Appendix 2.6.3
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Mwt
g ,n the moduli stack of weighted prestable curves; see Appendix 2.6.3

Pic
d,st
g ,n an open substack of the relative Picard stack of the universal curve overMg ,n

Bun
g ,n
G the moduli stack of principal G -bundles on the universal curve over Mg ,n ;

see Appendix 2.6.4

Q(f ) the push-forward morphism between quasimap spaces; see Appendix 2.6.1

χ the comparison morphism from stable maps to quasimaps; see §2.3.1

f ! Gysin morphism for f a regular embedding

f !v virtual pull-back for f virtually smooth; see Appendix 2.7

f !
∆

diagonal pull-back; see Appendix 2.7

2.2. Relative stable quasimaps

2.2.1. Review of absolute stable quasimaps. We briefly recall the definition and basic prop-

erties of the moduli space of toric quasimaps; see [CFK10] for more details.

De�nition 2.2.1. [CFK10, Definition 3.1.1] Let N be a lattice, let Σ ⊆ NQ be a fan, and

let X = XΣ be the corresponding toric variety. Suppose that X is smooth and projective. Let

M = N ∨ = Hom(N ,Z) and letOXΣ (1) be a fixed polarisation, which we can write (non-uniquely)

in terms of the torus-invariant divisors as:

OXΣ (1) = ⊗ρ∈Σ(1)OXΣ (Dρ)
⊗αρ

for some αρ ∈ Z. We fix the following numerical invariants: a genus g ≥ 0, a number of marked

points n ≥ 0, and an e�ective curve class β ∈ H+2 (X ). A stable (toric) quasimap is given by the

data (
(C,x1, . . . ,xn), (Lρ,uρ)ρ∈Σ(1), (ϕm)m∈M

)
where:

(1) (C,x1, . . . ,xn) is a prestable curve of genus g with n marked points;

(2) the Lρ are line bundles on C of degree dρ = Dρ · β ;

(3) the uρ are global sections of Lρ;

(4) ϕm :
⊗

ρ∈Σ(1) L
⊗〈ρ,m 〉
ρ → OC are isomorphisms, such that ϕm ⊗ ϕm′ = ϕm+m′ for all

m,m ′ ∈ M .

These are required to satisfy the following two conditions:
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(1) nondegeneracy: there is a finite (possibly empty) set of smooth and non-marked points

B ⊆ C , called the basepoints of the quasimap, such that for all x ∈ C \ B there exists a

maximal cone σ ∈ Σmax with uρ(x) , 0 for all ρ 1 σ;

(2) stability: if we let L = ⊗ρL
⊗αρ
ρ then the following Q-divisor is ample

ωC (x1 + . . . + xn) ⊗ L
⊗ε

for every rational ε > 0. This does not depend on the choice of polarisation. Note that

necessarily 2g − 2 + n ≥ 0.

Remark 2.2.2. This definition is motivated by D. A. Cox’s description of the functor of points

of a toric variety in terms of Σ-collections [Cox95a]; see also Appendix 2.6.1. A quasimap

defines2 a rational map C d X with base locus equal to B . In particular a quasimap without

any basepoints defines a morphism C → X . Thus maps with basepoints appear in the (virtual)

boundary of the moduli space of quasimaps, in much the same way as maps with rational tails

appear in the boundary of the moduli space of stable maps. This is something more than just

a vague analogy; these loci correspond to each other under the comparison morphism when

X = PN ; see §2.3.1.

More generally, one can define the notion of a family of quasimaps over a base scheme S ,

and what it means for two such families to be isomorphic; one thus obtains a moduli stack

Qg ,n(X , β )

of stable (toric) quasimaps toX , which is a proper Deligne–Mumford stack of finite type [CFK10,

§3].

As with the case of stable maps, there is a combinatorial characterisation of stability which is

easy to check in practice; a prestable quasimap is stable if and only if the following conditions

hold:

(1) the line bundle L = ⊗ρL
⊗αρ
ρ must have strictly positive degree on any rational compo-

nent with fewer than three special points, and on any elliptic component with no special

points;

2This can be expressed in a more generalisable manner as follows: a quasimap is a map to the stack quotient[
AΣ(1)/Grm

]
such that B is the preimage of the unstable locus.
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(2) C cannot have any rational components with fewer than two special points (that is, no

rational tails).

Condition (1) is analogous to the ordinary stability condition for stable maps. Condition (2)

is new, however, and gives quasimaps a distinctly di�erent flavour to stable maps; we shall

sometimes refer to it as the strong stability condition.

Remark 2.2.3. Unlike in Gromov–Witten theory, Qg ,n+1(X , β ) is not the universal curve over

Qg ,n(X , β ) since markings cannot be basepoints. In fact there is not even a morphism between

these spaces in general.

The moduli space Qg ,n(X , β ) admits a perfect obstruction theory relative to the moduli space

Mg ,n of source curves [CFK10, §5], and hence one can construct a virtual class

[Qg ,n(X , β )]virt ∈ AvdimQg ,n (X ,β )
(
Qg ,n(X , β )

)
where the virtual dimension is the same as for stable maps:

vdimQg ,n(X , β ) = (dimX − 3)(1 − g ) − (KX · β ) + n

Since the markings are not basepoints there exist evaluation maps

evi : Qg ,n(X , β ) → X

and there are ψ-classes defined in the usual way by pulling back the relative dualising sheaf of

the universal curve

ψi = c1(x∗i ωC/Q)

where C → Q = Qg ,n(X , β ) is the universal curve and xi : Q→ C is the section defining the i th

marked point. Putting all these pieces together, we can define quasimap invariants:

〈γ1ψ
k1
1 , . . . , γnψ

kn
n 〉

X
g ,n,β =

∫
[Qg ,n (X ,β )]virt

n∏
i=1

ev∗i (γi ) · ψ
ki
i

We use the same correlator notation as in Gromov–Witten theory; this should not cause any

confusion.

Example 2.2.4. Consider Q0,2(P
2,1). What are its objects? By the strong stability condition

(2) above, we see that the source curve must be irreducible. On the other hand since P2 has

Picard rank 1 we may exploit the isomorphisms ϕm to reduce ourselves to considering one line



18

bundle equipped with three sections. Thus the data of the quasimap is ((C,x1,x2),L,u0,u1,u2)

where (C,L) � (P1,OP1(1)).

Pick coordinates [s : t ] on P1 such that the marked points are [1 : 0] and [0 : 1]. We can

express the sections as ui = ai s +bi t ; the requirement that the markings are not basepoints then

translates into the following stability condition:

(a0,a1,a2) , (0,0,0) and (b0,b1,b2) , (0,0,0).

The group Aut(C ; x1,x2) � Gm acts by rotation λ : [s : t ] 7→ [s : λt ], while Aut(L) � Gm acts

by scalar multiplication on a and b . Thus the G2
m action on A6

a,b is encoded by the following

weight matrix: 
1 1 1 1 1 1

0 0 0 1 1 1


It is now clear that the quotient is P2 × P2; in fact, we see that the evaluation map

(ev1, ev2) : Q0,2(P
2,1) → P2 × P2

is an isomorphism. It is given in the above notation by:

((P1; [1 : 0], [0 : 1]);OP1(1);u0,u1,u2) 7→ ([a0 : a1 : a2], [b0 : b1 : b2])

Notice that the locus where (a0,a1,a2) = µ(b0,b1,b2), i.e. the diagonal in P2 × P2 is precisely

the locus of quasimaps which have a basepoint. The point [a0 : a1 : a2] = [b0 : b1 : b2] ∈ P2 is

the image of the underlying “residual map” of degree 0, obtained by dividing all the sections

by a local equation of the basepoint (equivalently, by extending the rational map C d P2 to a

morphism C → P2).

On the other hand, (ev1, ev2) : M0,2(P
2,1) → P2×P2 is not an isomorphism. O� the diagonal,

the images of the two marked points determine uniquely the image of the stable map, i.e. the

line through them. On the diagonal however, the following maps with a rational tail appear:

d=1

d=0

The image of the degree 1 component under f can be any line passing through the point

of P2 to which the other component is contracted. Hence M0,2(P
2,1) � Bl∆(P2 × P2). The
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comparison morphism χ (see §2.3.1) can be interpreted as the blow-down map, and it induces

an isomorphism of the rational tail-free locus with the basepoint-free locus.

Remark 2.2.5. There is a more general notion of ε -stable quasimap [CFKM14, §7.1]. Here the

stability condition, namely that the line bundle

ωC (x1 + . . . + xn) ⊗ L
⊗ε

is ample, is only required to hold for a fixed ε ∈ Q>0 (instead of for arbitrary ε , as was the case

with ordinary quasimaps).

This has the e�ect of allowing some rational tails to appear, as long as their degree is high

enough with respect to ε . In order to keep the moduli space Deligne–Mumford and seperated,

one also has to bound the multiplicity of the basepoints that can occur.

By boundedness and the fact that the degree is an integer-valued function, there exist finitely

many critical values of ε which divide Q>0 into chambers inside which the moduli spaces

Qε
g ,n(X , β ) do not change. For ε su�ciently small we recover the space of (ordinary) quasimaps,

and for ε su�ciently large we obtain the moduli space of stable maps. Thus one can view

the spaces of ε -stable quasimaps as interpolating between these two extremes, and they have

proven successful as a tool for comparing quasimap invariants to stable map invariants [Tod11]

[CFK14].

Another variant of the theory, which will play a role in later sections, is that of parametrised

quasimaps [CFK10, §7]. A parametrised quasimap comes with a preferred rational component,

which is equipped with the extra data of an isomorphism with P1, and the stability condition

is imposed on all but the preferred component. This mimics the construction of graph spaces

in Gromov-Witten theory – for example, there is a Gm-action on QG g ,n(X , β ) by rotating the

preferred component, which plays the role of the Gm-action that rotates the graph. The fixed loci

and their equivariant normal bundles are well-understood, at least in the toric setting [CFK10,

§7]. In the parametrised case we no longer require 2g − 2 + n ≥ 0, due to the modified stability

condition. In particular it makes sense, and turns out to be very useful, to consider unmarked

parametrised quasimaps QG0,0(X , β ). In this case the source curve is necessarily irreducible.

Example 2.2.6. QG0,0(P
N ,d ) = Pk with k = (N + 1)(d + 1) − 1. Indeed, the curve and line

bundle must be (P1,OP1(d )) and we are left with choosing N + 1 sections of OP1(d ) (not all
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zero) up to automorphisms of OP1(d ), i.e. up to scaling. For early appearances of such spaces,

see for instance [Giv98] [MP95] [Ber00].

2.2.2. Review of relative stable maps. Given a smooth projective variety X and a smooth

very ample divisor Y , Gathmann’s moduli space of relative stable maps parametrises stable

maps to X with specified tangencies toY at the marked points.

De�nition 2.2.7. [Gat02, Definition 1.1] Let X be a smooth projective variety and Y ⊆ X

a smooth very ample divisor. Fix a number n ≥ 0 of marked points, an e�ective curve class

β ∈ H+2 (X ) and an n-tuple α = (α1, . . . , αn) of non-negative integers such that Σiαi ≤ Y · β . The

moduli space

M0,α(X |Y, β )

of relative stable maps to (X ,Y ) is defined to be the locus in M0,n(X , β ) of stable maps (C →

S, (xi : S → C )ni=1, f : C → X ) satisfying the following two conditions:

(1) if xi is a marked point such that αi > 0 then f (xi ) ∈Y ;

(2) if we consider the class f ∗[Y ] ∈ A0(f −1Y → S ) then the di�erence f ∗[Y ] −
∑
i αi [xi ] is

an e�ective class.

These conditions define a closed substack of M0,n(X , β ). Condition (1) is required in order for

the class
∑
i αi [xi ] to make sense in A0(f −1Y → S ).

Remark 2.2.8. The notation in (2) comes from bivariant intersection theory: see [Ful98, §17].

Fibrewise, the condition is that the class f ∗[Y ]−
∑
i αi [xi ] ∈ A0(f −1Y ) is required to be e�ective.

The definition given above works in families; however there is an equivalent, more combi-

natorial definition for individual maps which is more useful in practice (see [Gat02, Remark

1.4]): a stable map (C,x1, . . . ,xn, f ) is a relative stable map if and only if, for each connected

component Z of f −1(Y ) ⊆ C :

(1) if Z is a point and is equal to a marked point xi , then the multiplicity of f toY at xi is

greater than or equal to αi ;

(2) if Z is one-dimensional (hence a union of irreducible components of C ) and if we let

C (i ) for 1 ≤ i ≤ r denote the irreducible components of C adjacent to Z and m(i ) denote

the multiplicity of f |C (i ) toY at the node Z ∩C (i ), then:

(*) Y · f∗[Z ] +
r∑
i=1

m(i ) ≥
∑
xi ∈Z

αi
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Remark 2.2.9. In case (2) above we call Z an internal component and the C (i ) external com-

ponents. Note that Z is not necessarily irreducible.

Remark 2.2.10. When α = (0, . . . ,0), condition (2) becomesY · β ≥ 0, so M0,(0,...,0)(X |Y, β ) =

M0,n(X , β ) as long asY is nef.

Remark 2.2.11. In the case of maximal multiplicity Σiαi = Y · β , all the inequalities in the

above definition must be equalities.

In the case X = PN andY = H a hyperplane, Gathmann showed [Gat03b, Proposition 1.14]

that M0,α(P
N |H ,d ) is irreducible with dimension equal to the expected dimension:

vdimM0,α(X |Y, β ) = vdimM0,n(X , β ) −
n∑
i=1

αi

Hence it has a fundamental class from which one can define relative Gromov–Witten invariants.

More generally ifY ⊆ X is very ample one can use the embedding X ↪→ PN given by |OX (Y )|

to obtain a cartesian diagram:

M0,α(X |Y, β ) M0,α(P
N |H ,d )

M0,n(X , β ) M0,n(P
N ,d )

�

ϕ

Then the fact that M0,n(P
N ,d ) is smooth allows one to define a virtual class on M0,α(X |Y, β )

by diagonal pull-back (see Appendix 2.7 of the current chapter):

[M0,α(X |Y, β )]virt := ϕ![M0,α(P
N |H ,d )]

Thus one can define relative Gromov–Witten invariants in the usual way, by capping the virtual

class with products of evaluation classes and psi classes.

In [Gat02] Gathmann establishes a recursion formula inside the Chow group ofM0,α(X |Y, β ).

Since this formula forms the primary motivation for the work presented in this chapter, as well

in Chapter 3, we will spend some time unpacking the key ideas. Full details and a more in-depth

discussion can be found in [Gat02, §§2-4].

Consider therefore a smooth pair (X ,Y ) with Y very ample as above, and let α be a vector

of tangency conditions with respect to Y . Choose a marking xk ∈ {x1, . . . ,xn} and let ek =

(0, . . . ,1, . . . ,0). There is a closed embedding of virtual codimension one

M0,α+ek (X |Y, β ) ⊆M0,α(X |Y, β )
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which we think of as “increasing the tangency” at xk by 1. Gathmann’s recursion gives a formula

for the class

[M0,α+ek (X |Y, β )]
virt ∈ A∗

(
M0,α(X |Y, β )

)
in terms of boundary strata and tautological classes. To be more precise:

Theorem 2.2.12 ( [Gat02, Theorem 2.6]). There is an equality

[M0,α+ek (X |Y, β )]
virt =

(
αkψk + ev

∗
kY

)
∩ [M0,α(X |Y, β )]virt − [Dα,k (X |Y, β )]

virt

in the Chow group of M0,α(X |Y, β ).

The final termDα,k (X |Y, β ) will be explained momentarily. The idea of the proof is as follows:

one constructs a line bundle L on M0,α(X |Y, β ), together with a global section s of L which

gives, at each point of the moduli space, the αk th derivative in the normal direction to Y of

the stable map f , evaluated at the point xk . Intuitively, the vanishing locus of s is precisely

M0,α+ek (X |Y, β ), whereas on the other hand one can compute directly that:

c1(L) = αkψk + ev∗kY

This explains the first two terms in Theorem 2.2.12. What about the final term? This appears

because the “intuition” given above for the vanishing locus of s is not quite correct: the vanishing

locus actually consists of strictly more than M0,α+ek (X |Y, β ). This is because it contains any

stable map for which xk belongs to an internal component (i.e. a component mapped inside

Y ), but not all such stable maps live inside M0,α+ek (X |Y, β ).

Thus we find that the generic point of Dα,k (X |Y, β ) consists of stable maps in the complement

M0,α(X |Y, β ) \M0,α+ek (X |Y, β )

and such that xk belongs to an internal component of the source curve. Such a stable map

(C,x1, . . . ,xn, f ) takes the form

C = C0 ∪C1 ∪ . . . ∪Cr

where C0 is a subcurve containing xk and mapping inside Y , and each Ci for i ∈ {1, . . . , r } is

a subcurve which is not mapped inside Y , which intersects C0 at a single node qi , and which

does not intersect any other C j . Note that r = 0 is allowed, in which case the entire curve is

mapped intoY .

Motivated by this picture, the locus Dα,k (X |Y, β ) is called the comb locus (C0 being the handle

of the comb and C1, . . . ,Cr being the teeth). It splits as a union of components (which we will
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also call comb loci), indexed by certain discrete data arising from the shape of the comb. To

be more precise, the discrete data consists of quadruples (r,A,B,M ) where:

• r ≥ 0 is the number of teeth of the comb (from now on we will supress this in the

notation);

• A = (A0, . . . ,Ar ) is a partition of the set of markings

{x1, . . . ,xn} = A0 t A1 t . . . t Ar

such that xk ∈ A0;

• B = (β0, . . . , βr ) is a splitting of the curve class

β = β0 + β1 + . . . + βr

with βi > 0 for i ∈ {1, . . . , r };

• M = (m1, . . . ,mr ) is a choice, for each i ∈ {1, . . . , r }, of the tangency order mi > 0 of Ci

withY at qi = C0 ∩Ci . Note that mi ≤ Y · βi .

The associated component of Dα,k (X |Y, β ) is then isomorphic to

D(X |Y,A,B,M ) :=M0,A0∪{q1,...,qr }(Y, β0) ×Y r

r∏
i=1

M0,(α |Ai )∪(mi )(X |Y, βi )

where the fibre product is over the evaluation maps at the points q1, . . . ,qr . The notation α |Ai

indicates that we take the tangency vector (α j : x j ∈ Ai ).

The discrete data (A,B,M ) must be stable, in the sense that all the moduli spaces appearing

in the above product are well-defined. Furthermore it must satisfy the following equation

Y · β0 +
r∑
i=1

mi =
∑
x j ∈A0

α j

which ensures that

D(X |Y,A,B,M ) ⊆M0,α(X |Y, β )

D(X |Y,A,B,M ) * M0,α+ek (X |Y, β )
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and that the first inclusion has virtual codimension 1. The virtual class on each comb locus is

defined as a certain multiple of the class induced by the various factors

[D(X |Y,A,B,M )]virt =(m1 · · ·mr
r !

)
∆
!
r

(
[M0,A0∪{q1,...,qr }(Y, β0)]

virt ×

r∏
i=1

[MGat
0,(α |Ai )∪(mi )

(X |Y, βi )]virt
)

where ∆r : Y r ↪→ Y r ×Y r is the diagonal embedding. The total comb locus is the union of

these loci

Dα,k (X |Y, β ) =
∐
(A,B,M )

D(X |Y,A,B,M )

with virtual class inherited from the components:

[Dα,k (X |Y, β )]
virt =

∑
(A,B,M )

[D(X |Y,A,B,M )]virt

This is the class appearing in the statement of Theorem 2.2.12.

Example 2.2.13. Take X = P3 and Y = H a hyperplane, and consider the following moduli

space:

M0,(1,0,4)(P
3 |H ,6)

Take xk = x3, so we are looking for comb loci for which xk ∈ C0. One possible object of the

comb locus is given by the following picture:

C0 x1 x3

C1

x2

C2

f

Y

β0 = 3x1

x3

β1 = 1

x2

1

β3 = 2

1

This gives a generic element of D(X |Y,A,B,M ), where the discrete data A,B,M is given by:

• r = 2;

• A0 = {x1,x3},A1 = {x2},A2 = ∅;

• β0 = 3, β1 = 1, β2 = 2;

• m1 = 1,m2 = 1.
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Notice that the all-important equation

Y · β0 +
r∑
i=1

mi =
∑
x j ∈C0

α j

is satisfied.

This completes the description of Gathmann’s recursion. The important thing to notice here

is the following: the definition of the virtual class on the comb locus means that any integral

over it can be expressed in terms of the absolute invariants of Y and the relative invariants

of (X ,Y ). Furthermore the relative invariants which appear in this way all have strictly lower

tangency than the α + ek appearing on the left-hand side of Theorem 2.2.12. Therefore one can

apply this theorem recursively, until all of the tangencies have been reduced to zero. Since a

relative invariant of tangency zero is the same thing as an absolute invariant, this provides an

algorithm for expressing any relative invariant of (X ,Y ) in terms of the absolute invariants of

X and of Y . The absolute invariants of Y which occur can then be expressed in terms of the

absolute invariants of X via the quantum Lefschetz hyperplane principle. Thus, one obtains an

algorithm for computing any relative invariant of (X ,Y ) in terms of the absolute invariants of

X . For more details on this, see [Gat02, §5].

Remark 2.2.14. There are many other approaches to defining relative stable maps besides

Gathmann’s: the moduli space of maps to expanded degenerations of J. Li [Li01] [Li02], the

twisted stable maps of D. Abramovich and B. Fantechi [AF16], the logarithmic stable maps

with expansions of B. Kim [Kim10] and the logarithmic stable maps (without expansions) of

M. Gross and B. Siebert [GS13], Q. Chen [Che14] and D. Abramovich and Q. Chen [AC14].

However, the invariants defined via these theories are all known to coincide [AMW14] [Gat03a],

so the choice of which moduli space to work with mainly depends on one’s intended application.

2.2.3. De�nition of relative stable quasimaps. We now give the main definition of this chap-

ter. From here on X will denote a smooth projective toric variety and Y ⊆ X a very ample

hypersurface. We do not require thatY is toric. Consider the line bundle OX (Y ) and the section

sY cutting outY . By [Cox95b] we have a natural isomorphism of C-vector spaces

H0(X ,OX (Y )) =

〈∏
ρ

z
aρ
ρ : Σρaρ[Dρ] = [Y ]

〉
C
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where the zρ for ρ ∈ Σ(1) are the generators of the Cox ring of X and the aρ are non-negative

integers. We can therefore write sY as

sY =
∑
a=(aρ)

λa
∏
ρ

z
aρ
ρ

for some scalars λa ∈ C. The idea is that a quasimap(
(C,x1, . . . ,xn), (Lρ,uρ)ρ∈Σ(1), (ϕm)m∈M

)
should “map” a point x ∈ C intoY if and only if the section

(2.2.1) uY :=
∑
a

λa
∏
ρ

u
aρ
ρ

vanishes at x . We now explain how to make sense of expression (2.2.1). For each a we have a

well-defined section

ua := λa
∏
ρ

u
aρ
ρ ∈ H

0(C,⊗ρL
⊗aρ
ρ )

and if we have a and b such that
∑
ρ aρ[Dρ] = [Y ] =

∑
ρ bρ[Dρ] then these divisors di�er by an

element m of M . Thus the isomorphism ϕm allows us to view the sections ua and ub as sections

of the same bundle, which we denote by LY . Then we can sum these together to obtain uY .

There is a choice involved here, but up to isomorphism it does not matter; see the proof of

functoriality in Appendix 2.6.1 for more details.

The upshot is that we obtain a line bundle LY on C , which plays the role of the “pull-back”

of OX (Y ) along the “map” C → X , and a global section

uY ∈ H0(C,LY )

which plays the role of the “pull-back” of sY .

De�nition 2.2.15. With notation as above, let n ≥ 2 be a number of marked points, β ∈ H+2 (X )

be an e�ective curve class and α = (α1, . . . , αn) be a collection of non-negative integers such

that Σiαi ≤ Y · β . The moduli space of relative stable quasimaps

Q0,α(X |Y, β ) ⊆ Q0,n(X , β )

is defined to be the locus of quasimaps(
(C → S, (xi : S → C )ni=1), (Lρ,uρ)ρ∈Σ(1), (ϕm)m∈M

)
such that:
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(1) if xi is a marking such that αi > 0, then x∗i uY = 0;

(2) if we let u∗Y (0) ∈ A
0(u−1Y (0) → S ) denote the class defined by the Gysin map for LY , then

the di�erence u∗Y (0) − Σiαi [xi ] is an e�ective class.

The class u∗Y (0) is defined as follows. Consider the cartesian diagram

u−1Y (0) C

C LY

� uY

0Y

where 0Y is the zero section. There is a Gysin map [Ful98, §2.6]

0!Y : A∗(C ) → A∗(u−1Y (0))

and we define u∗Y (0) := 0!Y ([C ]).

Remark 2.2.16. As in the case of relative stable maps (see §2.2.2) there is an equivalent defini-

tion which is more useful in practice: a quasimap is a relative quasimap if and only if for every

connected component Z of u−1Y (0) we have that:

(1) if Z is a point and is equal to a marked point xi , then the order of vanishing of uY at xi

is greater than or equal to αi ;

(2) if Z is one-dimensional (hence a union of irreducible components) and if we let C (i ) for

1 ≤ i ≤ r denote the irreducible components of C adjacent to Z and m(i ) the order of

vanishing of uY at the node Z ∩C (i ), then:

(**) degLY |Z +
r∑
i=1

m(i ) ≥
∑
xi ∈Z

αi

Remark 2.2.17. The above disussion also makes sense for ε -stable quasimaps where ε > 0 is an

arbitrary rational number. We therefore have a notion of ε -stable relative quasimap. For ε = 0+

we recover relative quasimaps as above, whereas for ε > 1 we recover relative stable maps in

the sense of Gathmann.

For simplicity we restrict ourselves to the case ε = 0+. However, all of the arguments can

be adapted to the general case. As ε increases, the recursion formula (see §2.4) becomes

progressively more complicated due to the presence of rational tails of lower and lower degree.

Consequently the quantum Lefschetz theorem (see §2.5) also becomes more complicated.
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2.3. Recursion formula for PN relative a hyperplane

At this stage we do not know much about the moduli space of relative quasimaps. In this

section we will examine the case X = PN andY = H a hyperplane in detail.

2.3.1. Basic properties of the moduli space. We now show that the moduli space

Q0,α(P
N |H ,d )

is irreducible of the expected dimension, and thus admits a fundamental class. We then prove

a recursion formula for these fundamental classes by pushing forward Gathmann’s recursion

formula along the comparison morphism:

χ : M0,n(P
N ,d ) → Q0,n(P

N ,d )

Let us briefly recall what this morphism does. Every stable map defines a quasimap which is

stable except for the fact that it may have rational tails. χ has the e�ect of contracting these

rational tails and introducing a basepoint at the corresponding node, with multiplicity equal to

the degree of the rational tail.

For the remainder of this section we set X = PN , denote the projective co-ordinates on X by

[z0 : · · · : zN ] and setY = H = {z0 = 0}. Given a quasimap(
(C,x1, . . . ,xn),L,u0, . . . ,uN

)
∈ Q0,n(P

N ,d )

the line bundle LY of the previous section is equal to L and the section uY is equal to u0.

Lemma 2.3.1. The comparison morphism restricts to a morphism

χ : M0,α(P
N |H ,d ) → Q0,α(P

N |H ,d )

Proof. We need to verify that a relative stable map is sent to a relative stable quasimap by χ.

Since the contraction of a rational tail R always occurs away from the markings, we only need

to examine the internal components Z of the quasimap. To be more precise, we have to show

that the inequality (**) is satisfied, using the fact that the inequality (*) is satisfied by the stable

map that we started with. Let us describe this stable map around Z . For each basepoint x on Z

there is a rational tail R of the stable map attached to Z at x . This is either internal (mapped

into H ) or external (not mapped entirely into H ).

If R is internal then both R and Z live inside the same connected component Z ′ of f −1(H ).

Applying χ has the e�ect of contracting R and increasing the degree of the line bundle on Z by
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H · f∗[R]. Thus the left hand side of inequality (*) is left unchanged, and since the right hand

side is also unaltered we obtain inequality (**).

On the other hand if R is external then the multiplicity m(R) of R ∩ Z satisfies:

m(R) ≤ H · f∗[R]

Since applying χ has the e�ect of replacing m(R) by H · f∗[R] in the left hand side of (*),

inequality (**) holds a fortiori for the quasimap. Thus we obtain a morphism from the relative

stable map space to the relative quasimap space, as claimed. �

Let us denote by

Q◦0,α(P
N |H ,d ) ⊆ Q0,α(P

N |H ,d )

the nice locus, consisting of those quasimaps with irreducible source curve C � P1 and no

basepoints (so that we have an actual map u : C → PN ) such that the curve is not mapped

inside H and u has tangency at least αi to H at the marking xi .

This is an irreducible, locally closed substack of Q0,n(P
N ,d ) of codimension Σiαi , by essen-

tially the same argument as in [Gat02, Lemma 1.8]. In fact it is isomorphic to the nice locus

inside the stable map space, denoted M0,α(P
N |H ,d ) by Gathmann (see [Gat02, Def. 1.6]); the

stricter stability condition has no e�ect when the source curve is irreducible.

Lemma 2.3.2. Q0,α(P
N |H ,d ) is equal to the closure of the nice locus Q◦0,α(P

N |H ,d ) inside

Q0,n(P
N ,d ).

Proof. Q0,α(P
N |H ,d ) ⊆ Q◦0,α(PN |H ,d ): we show that any relative stable quasimap can be in-

finitesimally deformed to a relative stable quasimap with no basepoints. This is in particular a

relative stable map; we then appeal to [Gat02, Prop. 1.14] to deform this stable map and obtain

a point in the nice locus. Since this deformation does not introduce any rational tails, this is

also a deformation of quasimaps, and the statement follows.

We induct on the number of components containing at least one base-point. Suppose this

number is non-zero (otherwise there is nothing to prove) and pick such a component C0, with

base-points y1, . . . , yk . Recall that this means that ui (y j ) = 0 for all i and j . We will deform the

section uN |C0 to a new section u ′N |C0 in such a way that u ′N |C0(y j ) , 0 and in such a way that we

do not introduce any new basepoints. Notice that since the relative condition only depends on

u0, the resulting deformed quasimap will still be a relative quasimap.
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Now, by nondegeneracy and the fact that there exists a basepoint, we must have deg(L |C0) > 0,

and since C0 � P1 we can find a section w0 of L |C0 � OP1(d0) not vanishing at any of the base-

points yi . We then set

u ′N |C0 := uN |C0 + εw0

and u ′i |C0 = ui |C0 for all other i . Notice that u ′N |C0(y j ) , 0 for all j as claimed. It is also clear

that we do not introduce any new basepoints, since u ′N |C0(y) = 0 implies uN |C0(y) = 0 (put

di�erently: being a basepoint is a closed condition).

It remains to extend the section u ′N |C0 to a section u ′N on the whole curve. Let C1, . . . ,Cr be

the components of C adjacent to C0 and let qi = C0 ∩Ci . We need to modify the sections uN |Ci

in such a way that u ′N |Ci (qi ) = u
′
N |C0(qi ).

By nondegeneracy, we can choose a section wi of L |Ci such that wi (qi ) , 0. Then set:

u ′N |Ci := uN |Ci + ε
(
w0(qi )
wi (qi )

)
·wi

Then indeed we have:

u ′N |Ci (qi ) = uN (qi ) + ε
(
w0(qi )
wi (qi )

)
·wi (qi ) = uN (qi ) + εw0(qi ) = u ′N |C0(qi )

We can continue this process, replacing C0 by Ci ; since the genus of the curve is zero there are

no cycles in the dual intersection graph, and so we will never come to the same component

twice. In this way we obtain a new quasimap(
(C,x1, . . . ,xn),L,u0, . . . ,uN −1,u ′N

)
over SpecC[ε ]/(ε2) which has no basepoints on C0. We can repeat this process for all the

components of C (using higher powers of ε each time in order to ensure that we never introduce

additional basepoints) and thus we obtain an infinitesimal deformation of our original quasimap

which has no basepoints, as required.

Q◦0,α(PN |H ,d ) ⊆ Q0,α(P
N |H ,d ): consider a family of stable quasimaps over a smooth curve

S , such that the generic fibre lies in the nice locus. We may blow-up the source curve (a fibered

surface over S ) in the locus of basepoints (which consists of finitely many smooth points of

the central fiber) and repeat this process a finite number of times in order to obtain an actual

morphism to PN . This has the e�ect of adding rational tails at the basepoints in the central

fibre. If the morphism is constant on any of these rational tails we may contract them, and

thus we obtain a family of stable maps which pushes down along χ to our original family of

quasimaps.
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The general fibre is not modified at all, and so is still in the nice locus. By [Gat02, Lemma 1.9]

it follows that the central fibre is a relative stable map, and then by applying χ and appealing to

Lemma 2.3.1 it follows that the same is true for the central fibre of the family of quasimaps. �

Corollary 2.3.3. The moduli space Q0,α(P
N |H ,d ) is irreducible of the expected dimension.

Hence it has a fundamental class.

Proof. This holds because the moduli space is equal to the closure of the nice locus, which is

irreducible of the expected dimension. �

Since the moduli space of relative quasimaps has a fundamental class, we can define relative

quasimap invariants for the pair (PN ,H ):〈
γ1ψ

k1
1 , . . . , γnψ

kn
n

〉PN |H
0,α,d

:=
∫
[Q0,α(PN |H ,d )]

n∏
i=1

ev∗i γi · ψ
ki
i

We will now establish a number of properties of the fundamental class.

Corollary 2.3.4. The comparison morphism from relative stable maps to relative quasimaps is

birational. In particular it sends the fundamental class to the fundamental class, and thus the

invariants coincide.

Proof. This follows because the comparison morphism restricts to an isomorphism on the nice

locus, which by Lemma 2.3.2 is a dense open subset of both spaces. �

2.3.2. Proof of the recursion formula. We wish to obtain a recursion formula relating the

quasimap invariants of multiplicity α with the quasimap invariants of multiplicity α + ek , as

in [Gat02, Theorem 2.6]. For m = αk +1 the following section (of the pull-back of the jet bundle

of the universal line bundle)

σmk := x∗kd
m
C/Q(u0) ∈ H

0(Q,x∗kP
m
C/Q
(L))

vanishes along Q0,α+ek (P
N |H ,d ) inside Q = Q0,α(P

N |H ,d ), and also along a number of comb

loci. The latter parametrise quasimaps for which xk belongs to an internal component Z ⊆ C

(a connected component of the vanishing locus of u0), such that:

deg(L |Z ) +
r∑
i=1

m(i ) =
∑
xi ∈Z

αi

The strong stability condition means that quasimaps in the comb loci cannot contain any ra-

tional tails; this is really the only di�erence with the case of stable maps.
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Indeed, we can push forward Gathmann’s recursion formula for stable maps along the com-

parison morphism

χ : M0,α(P
N |H ,d ) → Q0,α(P

N |H ,d )

and, due to Corollary 2.3.4 above, the only terms which change are the comb loci containing

rational tails. In fact these disappear, since the restriction of the comparison map to these loci

has positive-dimensional fibres:

Lemma 2.3.5. Consider a rational tail component in the comb locus of the moduli space of

stable maps, i.e. a moduli space of the form:

M0,(m(i ))(P
N |H ,d )

and assume that N d > 1. Then

dim
(
[M0,(m(i ))(P

N |H ,d )] ∩ ev∗1(ptH )
)
> 0

where ptH ∈ A
N −1(H ) is a point class. Thus the pushforward along χ of any comb locus with

a rational tail is zero.

Proof. This is a simple dimension count. We have

dim
(
[M0,(m(i ))(P

N |H ,d )] ∩ ev∗1(ptH )
)
= (N − 3) + d (N + 1) + (1 −m(i )) − (N − 1)

= (N d − 1) + (d −m(i ))

from which the lemma follows because m(i ) ≤ d . �

Remark 2.3.6. With an eye to the future, we remark that these rational tail components con-

tribute nontrivially to the Gromov–Witten invariants of a Calabi–Yau hypersurface in projective

space, and so their absence from the quasimap recursion formula accounts for the divergence

between Gromov–Witten and quasimap invariants in the Calabi–Yau case [Gat03b, Rmk. 1.6].

Since we wish to apply the projection formula to Gathmann’s recursion relation, we should

express the cohomological terms which appear as pull-backs:

Lemma 2.3.7. We have:

χ∗(ψk ) = ψk

χ∗(ev∗k H ) = ev∗k H
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Proof. It su�ces to show that:

χ∗x∗kωC/Q = x
∗
kωC/M

χ∗x∗kL = ev∗k OPN (H )

This follows by considering the following diagram:

PN

CM χ∗CQ CQ

M0,α(P
N |H ,d ) Q0,α(P

N |H ,d )

σss

f

�

χxk

xk xk

where σss is the strong stabilisation map which contracts the rational tails. Note that σss is an

isomorphism near the markings. �

Proposition 2.3.8. Define the quasimap comb locus DQ
α,k (P

N |H ,d ) as the union of the moduli

spaces

DQ(PN |H ,A,B,M ) := Q0,A(0)∪{q 01 ,...,q
0
r }
(H ,d0) ×H r

r∏
i=1

Q0,α(i )∪(m(i ))(P
N |H ,di )

where the union runs over all splittings A = (A(0), . . . ,A(r )) of the markings (inducing a splitting

(α(0), . . . , α(r )) of the corresponding tangency conditions), B = (d0, . . . ,dr ) of the degree and

all valid multiplicites M = (m(1), . . . ,m(r )) such that the above spaces are all well-defined (in

particular we require that |A(0) | + r and |A(i ) | + 1 are all ≥ 2) and such that

d0 +
r∑
i=1

m(i ) =
∑

α(0)

Write [DQ
α,k (P

N |H ,d )] for the sum of the (product) fundamental classes, where each term is

weighted by:
m(1) · · ·m(r )

r !

Then

(αkψk + ev
∗
k H ) · [Q0,α(P

N |H ,d )] = [Q0,α+ek (P
N |H ,d )] + [DQ

α,k (P
N |H ,d )].

Proof. This follows from [Gat02, Thm. 2.6] by pushing forward along χ, using the projection

fomula and Lemmas 2.3.4, 2.3.5 and 2.3.7 . �
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Remark 2.3.9. In the discussion above we have implicitly used the fact that there exists a

commuting diagram of comb loci:

DM(PN |H ,A,B,M ) M0,α(P
N |H ,d )

DQ(PN |H ,A,B,M ) Q0,α(P
N |H ,d )

The vertical arrow on the left is a product of comparison morphisms (notice that H ' Pr−1).

The horizontal arrow at the top is the glueing morphism which glues together the various

pieces of the comb to produce a single relative stable map. Here we explain how to define the

corresponding glueing morphism for quasimaps, that is, the bottom horizontal arrow.

Suppose for simplicity that r = 1 and consider an element of the quasimap comb locus,

consisting of two quasimaps:

(
(C 0,x01, . . . ,x

0
n0,q

0),L0,u00, . . . ,u
0
N

)
(
(C 1,x11, . . . ,x

1
n1,q

1),L1,u10, . . . ,u
1
N

)
such that u0(q 0) = u1(q 1) in PN . We want to glue these quasimaps together at q 0, q 1. The

definition of the curve is obvious; we simply take:

C = C 0
q 0tq 1 C

1

On the other hand, glueing together the line bundles L0 and L1 to obtain a line bundle L over

C requires a choice of scalar λ ∈ Gm, in order to match up the fibres over q i . Furthermore if

the sections are to extend as well then this scalar must be chosen in such a way that it takes

(u00(q
0), . . . ,u0N (q

0)) ∈ (L0
q 0
)⊕(N +1) to (u10(q

1), . . . ,u1N (q
1)) ∈ (L1

q 1
)⊕(N +1). Since neither q 0 nor q 1

are basepoints (because they are markings), these tuples are nonzero, and so λ is unique if it

exists. Furthermore it exists if and only if these tuples belong to the same Gm-orbit in AN +1.

This is precisely the statement that u0(q 0) = u1(q 1) ∈ PN .

Similar arguments apply for r > 1, and for more general toric varieties.

2.4. Recursion formula in the general case

In this section we prove the main result of this chapter: a recursion formula for relative

quasimap invariants of a general pair (X ,Y ).
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Theorem 2.4.1. Let X be a smooth and proper toric variety and let Y ⊆ X be a very ample

hypersurface (not necessarily toric). Then

(αkψk + ev
∗
k [Y ]) ∩ [Q0,α(X |Y, β )]virt = [Q0,α+ek (X |Y, β )]

virt + [DQ
α,k (X |Y, β )]

virt

in the Chow group of Q0,α(X |Y, β ).

We begin by defining the terms that appear in the statement.

2.4.1. The virtual class on the space of relative quasimaps. Let X andY be as in the state-

ment of Theorem 2.4.1. The complete linear system associated to OX (Y ) defines an embedding

i : X ↪→ PN such that i−1(H ) =Y for a certain hyperplane H . By the functoriality property of

quasimap spaces (see Appendix 2.6.1) we have a map:

k := Q(i ) : Q0,n(X , β ) → Q0,n(P
N ,d )

where d = i∗β . BecauseQ0,n(P
N ,d ) is smooth, k admits a compatible perfect obstruction theory

(see Appendix 2.6.2), so we have a notion of virtual pull-back along k .

Remark 2.4.1. I. Ciocan-Fontanine has kindly pointed out that, contrary to the case of stable

maps, k might not be a closed embedding, even though i is. Consider the Segre embedding:

P1 × P1 i
↪−→ P3

([x : y], [z : w]) 7→ [xz : xw : yz : yw]

Consider the induced morphism between quasimap spaces

k : Q0,3(P
1 × P1, (2,2)) → Q0,3(P

3,4)

and the following two objects of Q0,3(P
1 × P1, (2,2)):((

P1
[s :t ],0,1,∞

)
,
(
L1 = OP1(2),u1 = s 2,v1 = s t

)
,
(
L2 = OP1(2),u2 = s t,v2 = t2

))
((
P1
[s :t ],0,1,∞

)
,
(
L1 = OP1(2),u1 = s t,v1 = t2

)
,
(
L2 = OP1(2),u2 = s 2,v2 = s t

))
These two quasimaps are non-isomorphic, but they both map to the same object under k ,

namely: ((
P1
[s :t ],0,1,∞

)
,
(
L = OP1(4), z0 = s 3t, z1 = s 2t2, z2 = s 2t2, z3 = s t3

))
Notice that this only happens on the locus of quasimaps with basepoints.
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It is easy to show that k restricts to a morphism between moduli space of relative quasimaps,

and thus we have a diagram

Q0,α(X |Y, β ) Q0,α(P
N |H ,d )

Q0,n(X , β ) Q0,n(P
N ,d )

f

g

� j

k

which one can show is cartesian. As such we can define a virtual class on Q0,α(X |Y, β ) by

pullback along k :

[Q0,α(X |Y, β )]virt := k ![Q0,α(P
N |H ,d )]

We use this class to define relative quasimap invariants in general:

〈γ1ψ
k1
1 , . . . , γnψ

kn
n 〉

X |Y
0,α,β :=

∫
[Q0,α(X |Y,β )]virt

n∏
i=1

ev∗i (γi ) · ψ
ki
i

These invariants will play a role in our proof of the quasimap Lefschetz formula in §2.5.

2.4.2. Relative spaces pull back. The idea is to prove the recursion formula for general (X ,Y )

by pulling back the formula for (PN ,H ) along k . In order to do this, we need to understand

how the various virtual classes involved in the formula pull back along this map. The first two

terms pull back by the very definition of the virtual class:

Lemma 2.4.2. k ![Q0,α(P
N |H ,d )] = [Q0,α(X |Y, β )]virt

It thus remains to consider the third term, namely the virtual class of the comb locus. This is

the technical heart of the proof.

2.4.3. Comb loci pull back. As in the previous section, we define DQ
α,k (X |Y, β ) to be the union

of the moduli spaces

DQ(X |Y,A,B,M ) := Q0,A(0)∪{q1,...,qr }(Y, β
(0)) ×Y r

r∏
i=1

Q0,α(i )∪(mi )(X |Y, β
(i ))

where the union runs over all splittings A = (A(0), . . . ,A(r )) of the markings (inducing a splitting

(α(0), . . . , α(r )) of the corresponding tangency requirements), B = (β (0), . . . , β (r )) of the curve

class β and all valid multiplicities M = (m(1), . . . ,m(r )) such that the above spaces are non-

empty and such that:

Y · β (0) +
r∑
i=1

m(i ) =
∑

α(0)

We refer to the DQ(X |Y,A,B,M ) as comb loci.
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Remark 2.4.3. Note thatY is not in general toric, and so we should clarify what we mean by:

Q(Y ) = Q0,A(0)∪{q1,...,qn }(Y, β
(0))

There are two possibilities here: one is to de�ne this space as the cartesian product

Q(Y ) Q(H )

Q(X ) Q(PN )

�

k

and equip it with the virtual class pulled back along k :

[Q(Y )]virt := k ![Q(H )]

Using this definition, Q(Y ) consists of those quasimaps in Q(X ) for which uY ≡ 0. This has

obvious advantages from the point of view of our computations, but is conceptually unsatisfying.

On the other hand, X is a GIT quotient AΣX (1) � Grm, and Y ⊆ X defines a Grm-invariant

subvariety C (Y ) of AΣX (1), which we call the cone over Y. ThenY is equal to the GIT quotient

Y = C (Y ) � Grm

and so we may use the more general theory of quasimaps to GIT quotients [CFKM14] to define

Q(Y ) and its virtual class.

In fact these two definitions ofQ(Y ) agree: there exists an isomorphism between these moduli

spaces which preserves the virtual classes. We show this in Appendix 2.6.4.

We now construct a virtual class on the comb locus DQ(X |Y,A,B,M ). Consider the product

(not the fibre product overY r )

EQ(X |Y,A,B,M ) := Q0,A(0)∪{q1,...,qr }(Y, β
(0)) ×

r∏
i=1

Q0,α(i )∪(mi )(X |Y, β
(i ))

which we may endow with the product virtual class (with weighting as before):

[EQ(X |Y,A,B,M )]virt :=(
m(1) · · ·m(r )

r !

)
·

(
[Q0,A(0)∪{q1,...,qr }(Y, β

(0))]virt ×

r∏
i=1

[Q0,α(i )∪(mi )(X |Y, β
(i ))]virt

)
We have the following cartesian diagram

DQ(X |Y,A,B,M ) EQ(X |Y,A,B,M )

X r X r × X r

�
∆X r
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and we can use this to define a virtual class on the comb locus:

[DQ(X |Y,A,B,M )]virt := ∆!
X r [EQ(X |Y,A,B,M )]virt

The virtual class on the union DQ
α,k (X |Y, β ) of the comb loci is defined to be the sum of the

virtual classes [DQ(X |Y,A,B,M )]virt.

Remark 2.4.4. This is the same definition of the virtual class of the comb locus that we gave

in §2.3.2 in the case (X ,Y ) = (PN ,H ).

On the other hand, there is another cartesian diagram:∐
B : i∗B=B ′

DQ(X |Y,A,B,M ) DQ(PN |H ,A,B ′,M )

Q0,n(X , β ) Q0,n(P
N ,d )

�

k

Recall that we are trying to show that the virtual class of the comb locus pulls back nicely along

k . The result that we need is:

Lemma 2.4.5. k ![DQ(PN |H ,A,B ′,M )]virt =
∑

B :i∗B=B ′
[DQ(X |Y,A,B,M )]virt

For the proof of Lemma 2.4.5, let us introduce the following shorthand notation. We fix the

the data of A, B ′, M and set:

D(X |Y ) :=
∐
B : i∗B=B ′ D

Q(X |Y,A,B,M ) D(PN |H ) := DQ(PN |H ,A,B ′,M )

E(X |Y ) :=
∐
B : i∗B=B ′ E

Q(X |Y,A,B,M ) E(PN |H ) := EQ(PN |H ,A,B ′,M )

D(X ) :=
∐
B : i∗B=B ′ D

Q(X ,A,B) D(PN ) := DQ(PN ,A,B ′)

E(X ) :=
∐
B : i∗B=B ′ E

Q(X ,A,B) E(PN ) := EQ(PN ,A,B ′)

Q(X ) := Q0,n(X , β ) Q(PN ) := Q0,n(P
N , i∗β )

Here D(X ) and E(X ) are the centipede loci introduced in Appendix 2.6.3; they are defined in

the same way as the comb loci, except that we replace both the quasimaps toY and the relative

quasimaps to (X ,Y ) by quasimaps to X . There is a cartesian diagram

E(X |Y ) E(PN |H )

E(X ) E(PN )

� θ
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and, since E(PN ) is smooth and there is a natural fundamental class on E(PN |H ), we have a

diagonal pull-back morphism θ! = θ!
∆
(see Appendix 2.7).

Lemma 2.4.6. [E(X |Y )]virt = θ![E(X )]virt

Proof. It su�ces to check that in the following cartesian diagram

Q(Y ) Q(H )

Q(X ) Q(PN )

� θ

we have θ![Q(X )]virt = [Q(Y )]virt. Depending on one’s definition of Q(Y ) (see Remark 2.4.3

above) this is either true by definition or is proved in Appendix 2.6.4. �

Now consider the following cartesian diagram

D(X ) D(PN ) Mwt
A,B

Q(X ) Q(PN ) Mwt
0,n,β

ϕX � ϕ
PN � ψ

k

where Mwt
0,n,β is the moduli space of prestable curves weighted by the class β [Cos06, §2] and:

M
wt
A,B := Mwt

0,A(0)∪{q 01 ,...,q
0
r },β

(0) ×

r∏
i=1

M
wt
0,A(i )∪{q 1i },β

(i )

The maps D(X ) → Mwt
A,B and Q(X ) → Mwt

0,n,β admit relative perfect obstruction theories which

are the same as the usual perfect obstruction theories relative to the moduli spaces of unweighted

curves. Furthermore the morphism ψ admits a perfect obstruction theory; see Appendix 2.6.3

for details. Thus there are virtual pull-back morphisms ψ!, and by the splitting axiom (see

Lemma 2.6.5) we have

[D(X )]virt := ∆!
X r [E(X )]virt = ψ![Q(X )]virt

Commutativity of virtual pull-backs then implies that:

(2.4.1) [D(X )]virt = ψ![Q(X )]virt = ψ!k ![Q(PN )] = k !ψ![Q(PN )] = k ![D(PN )]

Proof of Lemma 2.4.5. Putting all the preceding results together, we consider the cartesian dia-

gram:
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D(X |Y ) E(X |Y ) E(PN |H )

D(X ) E(X ) E(PN )

X r X r × X r

� � θ

�
∆X r

We then have:

[D(X |Y )]virt = ∆!
X r [E(X |Y )]virt by definition

= ∆!
X r θ

![E(X )]virt by Lemma 2.4.6

= θ!∆!
X r [E(X )]virt by commutativity

= θ![D(X )]virt by definition

= θ!k ![D(PN )] by formula (2.4.1) above

= θ!k !∆!
(PN )r
[E(PN )] by definition

= k !∆!
(PN )r

θ![E(PN )] by commutativity

= k !∆!
PN

r [E(PN |H )] by Lemma 2.4.6

= k ![D(PN |H )] by definition

Summing over all the components of DQ
α,k (P

N |H ,d ) we obtain the result. �

Proof of Theorem 2.4.1. Apply k ! to Proposition 2.3.8, using Lemmas 2.4.2 and 2.4.5. �

2.5. Quasimap quantum Lefschetz

The recursion formula shows that the relative quasimap invariants of (X ,Y ) are completely

determined, in an algorithmic way, from the absolute invariants of X and Y ; by repeatedly

applying the recursion formula, we can remove all the tangency conditions, leaving us with an

expression which only involves the invariants of X andY .

However, we can do much more than this. In this section we will prove (two variations of) a

quantum Lefschetz theorem for quasimap invariants, that is, a result which expresses the quasimap

invariants ofY in terms of those of X . This is the quasimap analogue of the quantum Lefschetz

hyperplane principle in Gromov–Witten theory and, on the face of it, has nothing to do with

relative invariants.
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2.5.1. General quasimap Lefschetz theorem. First we state the most general form of the

theorem, without any additional assumptions on X andY .

Theorem 2.5.1 (Quasimap quantum Lefschetz). Let X be a smooth projective toric variety

and Y ⊆ X a smooth very ample hypersurface. Then there is an explicit algorithm to recover

the (restricted) absolute quasimap invariants of Y , as well as the relative quasimap invariants

of (X ,Y ), from the absolute quasimap invariants of X .

The corresponding result in Gromov–Witten theory is due to Gathmann [Gat03a, Corollary

2.5.6]; the proof we present in the quasimap setting is very similar to his. The term “restricted”

here means that we only integrate against cohomology classes pulled back from H∗(X ), rather

than allowing arbitrary classes from H∗(Y ).

Proof. The idea, of course, is to repeatedly apply the recursion formula. The proof is by induc-

tion, and in order for the argument to work it is essential that we determine simultaneously the

absolute invariants ofY and the relative invariants of (X ,Y ).

We induct on: the intersection number d = Y · β , the number of marked points n, and the

total tangency Σiαi , in that order. This means that when we come to compute an absolute or

relative invariant, we assume that all of the absolute and relative invariants with

(1) smaller d , or

(2) the same d , but smaller n, or

(3) the same d , the same n, but smaller Σiαi

are known. For the purposes of this ordering, we set Σiαi = d + 1 for any absolute invariant of

Y . This means that when we come to compute such an invariant, we assume that all the relative

invariants with the same d and n are known.

We first prove the induction step for the relative invariants; suppose then that we want to

compute some invariant:

〈γ1ψ
k1
1 , . . . , γnψ

kn
n 〉

X |Y
0,α,β

We assume Σiαi > 0, since otherwise this is just an absolute invariant of X . Pick some k ∈

{1, . . . ,n} with αk > 0, and apply Theorem 2.4.1 to obtain:

((αk − 1)ψk + ev
∗
k [Y ]) ∩ [Q0,α−ek (X |Y, β )]

virt = [Q0,α(X |Y, β )]virt + [DQ
α−ek ,k

(X |Y, β )]virt

Capping this with the appropriate product of evaluation and psi classes, we obtain from the

first term on the right-hand side the invariant that we are looking for.
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It remains to show that the other terms are known by the induction hypothesis. Clearly,

this is true for the term on the left-hand side, which has the same d , the same n, but smaller

Σiαi . Consider on the other hand a component of the comb locus. This contributes a product

of an absolute invariant of Y (corresponding to the internal component) with a number of

relative invariants of (X ,Y ) (corresponding to the external components). One can check that

each of these invariants either has smaller d , or the same d and smaller n. Thus, they are also

determined. Therefore the relative invariant is determined inductively.

Now we prove the induction step for the absolute invariants ofY . Suppose then that we want

to compute a restricted invariant:

〈γ1ψ
k1
1 , . . . , γnψ

kn
n 〉

Y
0,n,β

If we apply Theorem 2.4.1 with α = (d + 1,0, . . . ,0) we obtain

(dψ1 + ev∗1[Y ]) ∩ [Q0,α−e1(X |Y, β )]
virt = [DQ

α,1(X |Y, β )]
virt

where the comb locus on the right-hand side has a connected component isomorphic to the

moduli space

Q0,n(Y, β )

(corresponding to a “comb with no teeth”). Capping as before with an appropriate class, we

obtain the invariant that we are looking for. The term on the left-hand side is known since Σiαi

is smaller, while any other terms coming from the comb locus either involve invariants with

smaller d or with the same d but smaller n, and so are also known inductively. This completes

the proof. �

Remark 2.5.1. There is a subtle but extremely important point which we have ignored in

the proof above. While the statement of Theorem 2.5.1 only concerns the restricted quasimap

invariants, i.e. those with insertions from H∗(X ), when we calculate contributions from the

comb loci we are forced to consider unrestricted invariants, due to classes in the diagonal in

H∗(Y ×Y ) which do not come from H∗(X × X ). This is problematic, since in general these

terms cannot be computed inductively.

However, a careful analysis of the recursion formula shows that any term which appears in

this way must in fact be zero. The argument is the same as the one given for Gromov–Witten

invariants in [Gat03a, §2.5]; the details are left to the reader. The key idea is to show that

any absolute or relative quasimap invariant which has precisely one insertion from outside of
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H∗(X ) must be zero, and then to show that any term arising from the comb locus and involving

unrestricted classes is equal to a product of invariants, at least one of which takes this form.

2.5.2. A mirror theorem for quasimap invariants. Although the algorithm presented in the

previous section is completely explicit, it is in general quite involved, since the combinatorics

can become arbitrarily complicated. We would like to be able to find a closed formula which

expresses the quasimap invariants of Y in terms of those of X . This is our goal over the next

few sections, culminating in Theorem 2.5.2, which provides such a closed formula, under some

additional restrictions.

In [Gat03b] Gathmann applies the stable map recursion formula to obtain a new proof of the

mirror theorem for hypersurfaces [Giv96]. This can be viewed as a partial quantum Lefschetz

formula, expressing certain stable map invariants ofY in terms of those of X .

In this section we carry out a similar computation in the quasimap setting. We work with

generating functions for 2-pointed quasimap invariants (the minimal number of markings, due

to the strong stability condition). The absence of rational tails in the quasimap moduli space

makes the quasimap recursion much simpler than Gathmann’s.

Our formula can be viewed as a special case of [CFK14, Corollary 5.5.1], and thus as a relation

between certain residues of the Gm-action on spaces of 0-pointed and 1-pointed parametrised

quasimaps to Y . Some of the consequences of this formula are explored in [CFK14, Section

5.5]; for instance, it follows in the semipositive case that all primary ε -quasimap invariants with

a fundamental class insertion can be expressed in terms of 2-pointed invariants.

2.5.3. Setup. As before, we let X = XΣ be a smooth projective toric variety and i : Y ↪→ X a

smooth very ample hypersurface. We also make the following two assumptions:

(1) Y is semi-positive: −KY is nef;

(2) Y contains all curve classes: the map i∗ : A1(Y ) → A1(X ) is surjective.

By adjunction, −KX pairs strictly positively with every curve class coming from Y , hence with

every curve class by Assumption (2). Thus −KX is ample, or in other words, X is Fano3.

3Kleiman’s criterion says that a divisor D is ample if and only if D ·C > 0 for every curve class C in the closure

of the e�ective cone. But since X is a toric variety the e�ective cone is finitely generated in A1(X ), hence is closed

in A1(X )R as it is a finite intersection of half-spaces. So we only need to check D · C > 0 for every e�ective curve

class.
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Also note that if dimX ≥ 3 then Assumption (2) always holds, due to the classical Lefschetz

hyperplane theorem; on the other hand if dimX = 2 then Assumption (2) forces X to be P2.

We fix a homogeneous basis η0, . . . , ηk for H∗(X ) = H∗(X ,Q) and let η0, . . . , ηk denote the

dual basis with respect to the Poincaré pairing. Without loss of generality we may suppose that

η0 = 1X and η1 = [Y ]. We get an induced basis ρ1 = i ∗η1, . . . , ρk = i ∗ηk for i ∗H∗(X ). Notice

that ρ0 = i ∗η0 = i ∗[ptX ] = 0, ρ1 = i ∗η1 = [ptY ]. We can extend the ρi to a basis ρ1, . . . , ρl for

H∗(Y ) by adding ρk+1 . . . , ρl . Let ρ1, . . . , ρl denote the dual basis; notice that ρi is not equal to

i ∗ηi (they do not even have the same degree!). Note also that ρ1 = 1Y .

2.5.4. Generating functions for quasimap invariants. As with many results in enumerative

geometry, the quasimap Lefchetz formula is most conveniently stated in terms of generating

functions. Here we define several such generating functions for the absolute quasimap invariants

of X and Y . We work with two marked points since this is the minimum number required in

order for the quasimap space to be nonempty. However since we only take insertions at the first

marking we would like to think of these, morally speaking, as 1-pointed invariants (in Gromov–

Witten theory the corresponding statement is literally true, due to the string equation).

For any smooth projective toric variety4 X and any e�ective curve class β ∈ H+2 (X ), we define

SX0 (z, β ) = (ev1)∗

(
1

z − ψ1
[Q0,2(X , β )]virt

)
and

SX0 (z,q ) =
∑
β ≥0

q βSX0 (z, β )

where by convention SX0 (z, β ) = 1X for β = 0, and q is a Novikov variable. These are generating

functions for quasimap invariants of X which take values in H∗(X ).

The same definition applies to Y . However, sometimes we may wish to consider only in-

sertions of cohomology classes coming from X . These are the so-called restricted quasimap

invariants, and the corresponding generating function is defined as

S̃Y0 (z, β ) = (ev1)∗

(
1

z − ψ1
[Q0,2(Y, β )]virt

)
where crucially ev1 is viewed as mapping to X instead of to Y . Thus S̃Y0 (z, β ) takes values in

H∗(X ) and involves only quasimap invariants of Y with insertions coming from i ∗H∗(X ); this

4Or more generally any space for which the quasimap invariants are defined, for instance a smooth hypersurface

in a toric variety.
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is in contrast to SY0 (z, β ), which takes values in H∗(Y ) and involves quasimap invariants of Y

with arbitrary insertions. As earlier, we can also define S̃Y0 (z,q ).

Now, since X andY are smooth, we may use Poincaré duality to define a push-forward map

on cohomology, i∗ : Hk (Y ) → Hk+2(X ).

Lemma 2.5.2. i∗SY0 (z, β ) = S̃
Y
0 (z, β ).

Proof. This follows from functoriality of cohomological push-forwards and the fact that we have

a commuting triangle:

Q0,2(Y, β ) Y

X

ev1

ev1 i

Let us spell this out explicitly, in order to help familiarise the reader with the generating func-

tions involved. First, it is easy to see from the projection formula that:

i∗ρi =


ηi for i = 1, . . . ,k

0 for i = k + 1, . . . , l

Now, we can write SY0 (z, β ) as:

SY0 (z, β ) =
l∑
i=1

〈
ρi

z − ψ1
,1Y

〉Y
0,2,β

ρi

Thus applying i∗ gives

i∗SY0 (z, β ) =
l∑
i=1

〈
ρi

z − ψ1
,1Y

〉Y
0,2,β

i∗ρi =
k∑
i=1

〈
ηi

z − ψ1
,1X

〉Y
0,2,β

ηi = S̃Y0 (z, β )

as claimed. �

2.5.5. Quasimap Lefschetz formula. We now turn to our main result: a formula expressing

the generating function S̃Y0 (z,q ) for restricted quasimap invariants ofY in terms of the quasimap

invariants of X .

Theorem 2.5.2. Let X andY be as above. Then

(2.5.1)

∑
β ≥0 q

β ∏Y ·β
j=0 (Y + j z )S

X
0 (z, β )

P X0 (q )
= S̃Y0 (z,q )
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where:

P X0 (q ) = 1 +
∑
β>0

KY ·β=0

q β (Y · β )!〈[ptX ]ψ
Y ·β−1
1 ,1X 〉

X
0,2,β

Notice that P X0 (q ) depends not only on X but also on the divisor class ofY in X ; the superscript

is supposed to indicate that the definition only involves quasimap invariants of X .

Proof. For m = 0, . . . ,Y · β , define the following generating function for 2-pointed relative

quasimap invariants

SX |Y0,(m)(z, β ) = (ev1)∗

(
1

z − ψ1
[Q0,(m,0)(X |Y, β )]

virt
)

where we view ev1 as mapping to X . Note that SX |Y0,(0) (z, β ) = S
X
0 (z, β ). Also define the following

generating function for “comb loci invariants”

T X |Y
0,(m) (z, β ) = (ev1)∗

(
m[Q0,(m,0)(X |Y, β )]

virt +
1

z − ψ1
[DQ
(m,0),1(X |Y, β )]

virt
)

where again we view ev1 as mapping to X . As in [Gat03b, Lemma 1.2], it follows from Theorem

2.4.1 that

(2.5.2) (Y +mz )SX |Y0,(m)(z, β ) = S
X |Y
0,(m+1)(z, β ) +T

X |Y
0,(m) (z, β )

and we can apply this repeatedly to obtain:

(2.5.3)
Y ·β∏
j=0

(Y + j z )SX0 (z, β ) =
Y ·β∑
m=0

Y ·β∏
j=m+1

(Y + j z )T X |Y
0,(m) (z, β )

We now examine the right-hand side in detail. By definition, T X |Y
0,(m) (z, β ) splits into two parts:

those terms coming from the relative space and those terms coming from the comb loci.

Let us first consider the contribution of the comb loci. Since there are only two marked points

and the first is required to lie on the internal component of the comb, it follows from the strong

stability condition that there are only two options: a comb with zero teeth or a comb with one

tooth.

First consider the case of a comb with zero teeth. The moduli space is then Q0,2(Y, β ) and we

require that Y · β = m. Thus this piece only contributes to T X |Y
0,(Y ·β )(z, β ), and the contribution

is:
k∑
i=1

〈
ρi

z − ψ1
,1Y

〉Y
0,2,β

ηi
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Next consider the case of a comb with one tooth. Let β (0) and β (1) denote the curve classes

of the internal and external components, respectively, and let m(1) be the contact order of the

external component withY . The picture is as follows

x2

x1

m(1)

and the invariants which contribute take the form〈
ρi

z − ψ1
, ρh

〉Y
0,2,β (0)

〈
ρh,1X

〉X |Y
0,(m(1),0),β (1)

for i = 1, . . . ,k and h = 1, . . . , l . By computing dimensions, we find

0 ≤ codim ρh = dimY − codim ρh

= dimY − vdimQ0,(m(1),0)(X |Y, β
(1))

= dimY − (dimX − 3 − KX · β (1) + 2 −m(1))

= KY · β (1) −Y · β (1) +m(1)

≤ 0

where the final equality follows from adjunction and the final inequality holds because −KY

is nef and m(1) ≤ Y · β1. This shows that the only non-trivial contributions come from curve

classes β (1) such that KY · β (1) = 0, and that in this case the order of tangency must be maximal,

i.e. m(1) =Y · β (1). Furthermore we must have codim ρh = 0 and so ρh = ρ1 = 1Y which implies

ρh = ρ1 = [ptY ]. Finally since m(1) =Y · β (1) we have

m =Y · β (0) +m(1) =Y · (β (0) + β (1)) =Y · β

and so again this piece only contributes to T X |Y
0,(Y ·β )(z, β ), and the contribution is:

k∑
i=1

©­­­­«
∑

0<β (1)<β
KY ·β (1)=0

(Y · β (1))
〈

ρi
z − ψ1

,1Y

〉Y
0,2,β−β (1)

〈
ρ1,1X

〉X |Y
0,(Y ·β (1),0),β (1)

ª®®®®¬
ηi
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where theY · β (1) factor comes from the weighting on the virtual class of the comb locus. Finally,

we must examine the terms of T X |Y
0,(m) (z, β ) coming from:

ev1∗(m[Q0,(m,0)(X |Y, β )]
virt)

Notice that we only have insertions from i ∗H∗(X ) ⊆ H∗(Y ), since ev1 is viewed as mapping to

X . On the other hand

vdimQ0,(m,0)(X |Y, β ) = dimX − 3 − KX · β + 2 −m

= dimX − 1 − KY · β +Y · β −m by adjunction

≥ dimX − 1 +Y · β −m since −KY is nef

≥ dimX − 1 since m ≤ Y · β

where in the second line we have applied the projection formula to i , and thus have implicitly

used Assumption (2), discussed in §2.5.3; namely that every curve class on X comes from a

class onY .

Consequently the only insertions that can appear are those of dimension 0 and 1. However,

the restriction of the 0-dimensional class η0 = [ptX ] to Y vanishes, as do the restrictions of all

1-dimensional classes except for η1 (by the definition of the dual basis, since η1 = Y ). Thus

the only insertion is i ∗η1 = ρ1 = [ptY ], and since η1 has dimension 1 all the inequalities above

must actually be equalities. Thus we only have a contribution if −KY · β = 0 and m = Y · β .

The contribution to T X |Y
0,(Y ·β )(z, β ) in this case is:

(Y · β )〈ρ1,1X 〉
X |Y
0,(Y ·β,0),βη

1

Thus we have calculated T X |Y
0,(m) (z, β ) for all m; substituting into equation (2.5.3) we obtain

Y ·β∏
j=0

(Y + j z )SX0 (z, β ) = T
X |Y
0,(Y ·β )(z, β )

=

k∑
i=1

〈
ρi

z − ψ1
,1Y

〉Y
0,2,β

ηi+

k∑
i=1

©­­­­«
∑

0<β (1)<β
KY ·β (1)=0

(Y · β (1))
〈

ρi
z − ψ1

,1Y

〉Y
0,2,β−β (1)

〈
ρ1,1X

〉X |Y
0,(Y ·β (1),0),β (1)

ª®®®®¬
ηi+

(Y · β )〈ρ1,1X 〉
X |Y
0,(Y ·β,0),βη

1
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where the third term only appears if KY · β = 0. We can rewrite this as:

Y ·β∏
j=0

(Y + j z )SX0 (z, β )

= S̃Y0 (z, β ) +
∑

0<β (1)≤β
KY ·β (1)=0

(
(Y · β (1))

〈
ρ1,1X

〉X |Y
0,(Y ·β (1),0),β (1)

)
S̃Y0 (z, β − β

(1))

It is now clear from the expression above that equation (2.5.1) in the statement of Theorem

2.5.2 holds, with:

P X0 (q ) = 1 +
∑
β>0

KY ·β=0

q β (Y · β )〈ρ1,1X 〉
X |Y
0,(Y ·β,0),β

To complete the proof it thus remains to show that:

P X0 (q ) = 1 +
∑
β>0

KY ·β=0

q β (Y · β )!〈ψY ·β−11 [ptX ],1X 〉
X
0,2,β

The aim therefore is to express the relative invariants

〈ρ1,1X 〉
X |Y
0,(Y ·β,0),β

in terms of absolute invariants of X . Unsurprisingly, we once again do this by applying Theorem

2.4.1. We have:

[Q0,(Y ·β,0)(X |Y, β )]
virt = ((Y · β − 1)ψ1 + ev∗1Y )[Q0,(Y ·β−1,0)(X |Y, β )]

virt −

[DQ
(Y ·β−1,0),1(X |Y, β )]

virt

We begin by examining the contributions from the comb loci. As before, we have only contri-

butions coming from combs with 0 teeth and combs with 1 tooth. The former contributions

take the form

〈ρ1,1Y 〉
Y
0,2,β

which vanish because vdimQ0,2(Y, β ) = dimY − 1 − KY · β = dimY − 1 whereas the insertion

has codimension dimY . The latter contributions take the form

〈ρ1, ρ
h〉Y0,2,β (0) 〈ρh,1X 〉

X |Y
0,(Y ·(β−β (0))−1,0),β−β (0)
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and these must also vanish since:

codim ρh = dimY − codim ρh

= dimY − vdimQ0,(Y ·(β−β (0))−1,0)(X |Y, β − β
(0))

= dimY − (dimX − 3 − KX · (β − β (0)) + 2 −Y · (β − β (0)) + 1)

= −1 + KX · (β − β (0)) +Y · (β − β (0))

= −1 + KY · (β − β (0))

≤ −1

Thus the comb loci do not contribute at all. Applying this recursively (the same argument as

above shows that we never get comb loci contributions), we find that

(Y · β )〈ρ1,1X 〉
X |Y
0,(Y ·β,0),β = (Y · β )〈η1

Y ·β−1∏
j=0

(Y + jψ1),1X 〉
X
0,2,β

= (Y · β )!〈[ptX ]ψ
Y ·β−1
1 ,1X 〉

X
0,2,β

where the second equality holds becauseY ·η1 = η1 ·η1 = [ptX ] andY
2 ·η1 = 0. This completes

the proof of Theorem 2.5.2. �

Corollary 2.5.3. IfY is Fano then there is no correction term:∑
β ≥0

q β
Y ·β∏
j=0

(Y + j z )SX0 (z, β ) = S̃
Y
0 (z,q )

Corollary 2.5.4. LetY =Y5 ⊆ X = P4 be the quintic three-fold. Then

S̃Y50 (z,q ) =
IY5sm(z,q )
P (q )

where

IY5sm(z,q ) = 5H +
∑
d>0

∏5d
j=0(H + j z )∏d
j=0(H + j z )

5
q d

and:

P (q ) = 1 +
∑
d>0

(5d )!
(d !)5

q d

Proof. Apply Theorem 2.5.2 and use the fact that the quasimap invariants of P4 coincide with

the Gromov–Witten invariants, which are well-known from mirror symmetry. �

Remark 2.5.5. Theorem 2.5.2 agrees with [CZ14, Theorem 1] when X is a projective space.
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2.5.6. Comparison with the work of Ciocan-Fontanine and Kim. Here we briefly explain

how to compare our Theorem 2.5.2 to a formula obtained by Ciocan-Fontanine and Kim. We

assume that the reader is familiar with [CFK14], in particular §4 and §5 thereof. There they

introduce (in the more general context of ε -stable quasimaps) the following generating functions

for quasimap invariants ofY :

(1) The J ε -function

J ε (t, z ) =
∑

m≥0,β ≥0

q β

m!
(ev•)∗

(
m∏
i=1

ev∗i (t) ∩ ResF0[QG
ε
0,m(Y, β )]

virt

)
for t ∈ H∗(Y ). Here QG ε

0,m(Y, β ) is the moduli space of ε -stable quasimaps with a

parametrised component, F0 is a certain fixed locus of the natural Gm-action on this

space, and ev• is the evaluation at the point ∞ ∈ P1 on the parametrised component.

ResF0 is the residue of the virtual class, i.e. the virtual class of the fixed locus divided

by the Euler class of the virtual normal bundle (see [GP99] for details on virtual locali-

sation). The variable z is the Gm-equivariant parameter.

(2) The S ε -operator

S ε (t, z )(γ) =
∑

m≥0,β ≥0

q β

m!
(ev1)∗

(
ev∗2(γ) ·

∏2+m
j=3 ev∗j (t)

z − ψ1
∩ [Qε

0,2+m(Y, β )]
virt

)
where t, γ ∈ H∗(X ) and z is a formal variable. This is the quasimap analogue of the

fundamental solution matrix; see §4.2.3.

(3) The P ε -series

P ε (t, z ) =
k∑
h=1

ρh
∑

m≥0,β ≥0

q β

m!

(
ev∗1(ρh � p∞) ∩ [QG

ε
0,1+m(Y, β )]

virt
)

where t ∈ H∗(X ) and z is the Gm-equivariant parameter. Here we view ev1 as mapping

to Y × P1, and p∞ ∈ H∗Gm
(P1) is the equivariant cohomology class defined by setting

p∞ |0 = 0 and p∞ |∞ = −z . If we present the equivariant cohomology ring as H∗Gm
(P1) =

k[H , z ]/(H 2 − z 2), then p∞ = (H − z )/2.

Given these definitions, Ciocan-Fontanine and Kim use localisation with respect to the Gm-

action on the parametrised space to prove the following formula [CFK14, Theorem 5.4.1]:

J ε (t, z ) = S ε (t, z )(P ε (t, z ))
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They observe (via a dimension count) that if we set t = 0 and restrict to semi-positive targets,

then the only class that matches non-trivially with P ε |t=0 is [ptY ]. Hence the above formula

takes the simple form

(2.5.4)
J ε |t=0

〈[ptY ],P
ε |t=0〉

= S ε (1Y )|t=0 = 1Y +
k∑
h=1

ρh
©­«
∑
β>0

q β
〈
ρh
z − ψ

,1Y

〉Y,ε
0,2,β

ª®¬
see [CFK14, Corollary 5.5.1]. In our setting, ε = 0+ andY embeds as a very ample hypersurface

in a toric Fano variety X . Our Theorem 2.5.2 makes explicit a consequence of formula (2.5.4).

More precisely:

Lemma 2.5.6. We have the following relations between our generating functions and the gen-

erating functions of Ciocan-Fontanine and Kim:

i∗ J 0+ |t=0 =
∑
β ≥0

q β
Y ·β∏
j=0

(Y + j z )SX0 (z, β )(2.5.5)

〈[ptY ],P
0+ |t=0〉 = P X0 (q )(2.5.6)

i∗S 0+(1Y )|t=0 = S̃Y0 (z,q )(2.5.7)

Proof. (2.5.7) is clear from the second equality of (2.5.4) and the definition of S̃Y0 (z,q ). To show

(2.5.5), let us look more closely at the left-hand side:

J 0+ |t=0 =
∑
β ≥0

q β (ev•)∗
(
ResF0[QG0,0(Y, β )]virt

)
We have a diagram of fixed loci and evaluation maps

QG0,0(Y, β ) FY0 Y

QG0,0(X , β ) F X0 X

i � i

ev•

i

ev•

and by a mild generalisation of [CFKM14, Propositions 6.2.2 and 6.2.3], we have an equality of

Gm-equivariant classes

i∗[QG0,0(Y, β )]virt = e (π∗EY0,0,β ) ∩ [QG0,0(X , β )]virt

where π is the universal curve on QG0,0(X , β ) and EY0,0,β is the equivariant line bundle5 on this

curve associated to OX (Y ).

5This is the parametrised analogue of the bundle LY constructed in the definition of relative quasimaps; see

§2.2.3.
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We would like to pull back this equation to the fixed locus F X0 in order to obtain an equation

involving the residues. Let us first briefly recall the definition of F X0 . Since there are no markings,

any quasimap in QG0,0(X , β ) has irreducible source curve. For such a quasimap to be Gm-fixed

we need that the induced rational map is constant; this means that the degree of the quasimap is

concentrated at the basepoints (i.e. the sum of the lengths of the basepoints should be equal to

the degree). Furthermore only the points 0 and ∞ of the parametrised component are allowed

to be basepoints. The fixed loci are thus indexed by ordered partitions of the degree which

record the length of the basepoints at 0 and ∞. F X0 is the locus on which all the degree is

concentrated at 0. This means that ∞ is not a basepoint and we have an evaluation map ev∞

(denoted ev• earlier). See [CFK14, §4] for more details: our F X0 is there denoted F 0,0,0
0,0,β .

Since the fibres of π are irreducible and rational, the degree of the universal line bundle on

the parametrised component is constant; therefore we have for 0 < j ≤ Y · β + 1 an exact

sequence:

0→ π∗(EY0,0,β (− jσ∞)) → π∗EY0,0,β → σ∗∞P j−1(EY0,0,β ) → 0

where P j−1 denotes the bundle of ( j −1)-jets, and σ∞ is the section given by the point∞ ∈ P1 of

the parametrised component. The right-hand map is given by evaluating a section of EY0,0,β (as

well as its derivatives up to order j − 1) at the point ∞. The left-hand term consists of sections

of EY0,0,β which vanish at σ∞ to order j . If we set j =Y · β + 1 then this term vanishes and we

have:

π∗EY0,0,β = σ
∗
∞PY ·β (EY0,0,β )

On the other hand, we have

0→ EY0,0,β ⊗ ω
⊗ j
π → P j (EY0,0,β ) → P j−1(EY0,0,β ) → 0

see [Gat02, §2]. Pulling back along σ∞ and taking Euler classes, we can compute recursively

from j =Y · β to 0 and obtain a splitting

e (π∗EY0,0,β ) =
Y ·β∏
j=0

c1(σ∗∞E
Y
0,0,β ⊗ ω

⊗ j
∞ )

whereω∞ = σ∗∞ωπ gives the cotangent space at the point∞. The bundleω∞ is (non-equivariantly)

trivial since the source curves in F X0 are rigid; on the other hand the weight of the Gm-action
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on the cotangent space at ∞ is z . We thus obtain:

i∗[FY0 ]
virt =

Y ·β∏
j=0

(ev∗∞Y + j z ) ∩ [F
X
0 ]

virt

Furthermore, the Euler classes of the virtual normal bundles match under i . Substituting into

i∗ J 0+ |t=0 we find that:

i∗ J 0+ |t=0 =
∑
β ≥0

q β (i ◦ ev•)∗
(
ResFY0 [QG0,0(Y, β )]virt

)
=

∑
β ≥0

q β
Y ·β∏
j=0

(Y + j z )(ev•)∗
(
ResF X0 [QG0,0(X , β )]virt

)
On the other hand, if we apply (2.5.4) with X instead of Y , then the denominator on the

left-hand side vanishes since X is Fano. Comparing coe�cients of q β we thus obtain

(ev•)∗ ResF X0 [QG0,0(X , β )]virt = SX0 (z, β )

from which it follows that:

i∗ J 0+ |t=0 =
∑
β ≥0

q β
Y ·β∏
j=0

(Y + j z )SX0 (z, β )

This proves (2.5.5). It remains to show (2.5.6). According to Ciocan-Fontanine and Kim, if we

write the 1/z -expansion of J ε |t=0 as

J ε |t=0 = J ε0 (q )1Y +O (1/z )

then 〈[ptY ],P
ε |t=0〉 = J ε0 (q ). It thus remains to prove that J 0+0 (q ) = P

X
0 (q ).

Since X is a toric Fano variety, we have the following calculation of residues due to Givental

[Giv98] (see also [CFK10, Definition 7.2.8]):

SX0 (z, β ) =
∏

ρ∈ΣX (1)

∏0
j=−∞(Dρ + j z )∏Dρ ·β
j=−∞(Dρ + j z )

=

∏
ρ : Dρ ·β ≤0

∏0
j=Dρ ·β

(Dρ + j z )∏
ρ : Dρ ·β>0

∏Dρ ·β

j=1 (Dρ + j z )

We can then apply equation (2.5.5) to find i∗ J 0+ |t=0, and hence also to find J 0+0 (q ). In the end

we obtain:

J 0+0 (q ) =
∑
β ≥0

q β (Y · β )!

∏
ρ : Dρ ·β<0(−1)

−Dρ ·β (−Dρ · β )!∏
ρ : Dρ ·β>0(Dρ · β )!

On the other hand the coe�cient

〈[ptX ]ψ
Y ·β−1
1 ,1X 〉

X
0,2,β
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which appears in our P X0 (q )-series also appears in S
X
0 (z, β ). So again we can find it by appealing

to Givental’s calculation of SX0 (z,q ).

〈[ptX ]ψ
Y ·β−1
1 ,1X 〉

X
0,2,β = coe�q β z−Y ·β 〈[ptX ],S

X
0 (z,q )〉

=

∏
ρ : Dρ ·β<0(−1)

−Dρ ·β (−Dρ · β )!∏
ρ : Dρ ·β>0(Dρ · β )!

which proves (2.5.6). We thus conclude that (2.5.4) implies our Theorem 2.5.2. �

Appendix 2.6: Notes on quasimaps

In this appendix we collect several foundational results in quasimap theory, including:

(1) Functoriality (§2.6.1): given a morphism f : Y → X we describe the induced map:

Q(f ) : Qg ,n(Y, β ) → Qg ,n(X , f∗β )

We also discuss (§2.6.2) when Q(f ) admits a compatible perfect obstruction theory.

(2) Splitting axiom (§2.6.3): this gives an equality between two natural virtual classes on

boundary strata (i.e. loci where the underlying curve is reducible of a prescribed type).

(3) Comparison with the GIT construction (§2.6.4): we show that for a (not necessarily toric)

hypersurfaceY ↪→ X , our definition of Q(Y ) as a substack of Q(X ) coincides with the

definition of Q(Y ) given by the description ofY as a GIT quotient (see [CFKM14]).

2.6.1. Functoriality. In the case of stable maps, a morphism f :Y → X induces a morphism

between the corresponding moduli spaces

M(f ) : Mg ,n(Y, β ) →Mg ,n(X , f∗β )

given by post-composition with f and (if necessary) stabilisation of the source curve. Because

of this, we may say that the construction of the moduli space of stable maps is functorial.

It is natural to ask whether the same holds for the moduli space of quasimaps, i.e. whether

we have a morphism:

Q(f ) : Qg ,n(Y, β ) → Qg ,n(X , f∗β )

Since here the objects of the moduli space are not maps, we cannot simply compose with

f . Nevertheless, our definition should be equivalent to composing with f when applied to a

quasimap without any basepoints. In [CFK14, Section 3.1] a definition (in the GIT context) is

given when f is an embedding into a projective space; we shall discuss the general situation of

a morphism between toric varieties f : Y → X .
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Our approach uses the language of Σ–collections introduced by D. A. Cox. This approach

is natural insofar as a quasimap is a generalisation of a Σ–collection. We will refer extensively

to [Cox95b] and [Cox95a].

Let X andY be smooth and proper toric varieties with fans ΣX ⊆ NX and ΣY ⊆ NY . Suppose

we are given f :Y → X , which we do not assume to be a toric morphism. By [Cox95a, Theorem

1.1] the data of such a map is equivalent to a ΣX –collection onY :

((Lρ,uρ)ρ∈ΣX (1), (ϕmx )mx ∈MX )

In addition, [Cox95b] allows us to describe line bundles onY and their global sections in terms

of the homogeneous coordinates (zτ)τ∈ΣY (1). All of these observations are combined into the

following theorem, which is so useful that we will state it here in its entirety:

Theorem 2.6.1. [Cox95a, Theorem 3.2] The data of a morphism f : Y → X is the same as

the data of homogeneous polynomials

Pρ ∈ SYβ ρ

for ρ = f ∗OX (Dρ) ∈ ΣX (1), where β ρ ∈ PicY and SYβ ρ is the corresponding graded piece of the

Cox ring:

SY = C[zτ : τ ∈ ΣY (1)]

These data are required to satisfy the following two conditions:

(1)
∑
ρ∈ΣX (1) β ρ ⊗ nρ = 0 in PicY ⊗ NX , where nρ is the principal generator of the ray ρ.

(2) (Pρ(zτ)) < Z (ΣX ) ⊆ AΣX (1) whenever (zτ) < Z (ΣY ) ⊆ AΣY (1).

Furthermore, two such sets of data (Pρ) and (P ′ρ) correspond to the same morphism if and only

if there exists a λ ∈ HomZ(PicX ,Gm) such that

λ(Dρ) · Pρ = P ′ρ

for all ρ ∈ ΣX (1). Finally, if we define f̃ (zτ) = (Pρ(zτ)) then this defines a lift of f to the

prequotients:

AΣY (1) \ Z (ΣY ) AΣX (1) \ Z (ΣX )

Y X

f̃

qY qX

f

Aside 2.6.1. Throughout this section we will stick to the notation established above; in partic-

ular we will use ρ to denote a ray in ΣX (1) and τ to denote a ray in ΣY (1).
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Recall our goal: given a map f : Y → X we wish to define a “push-forward” map:

Q(f ) : Qg ,n(Y, β ) → Qg ,n(X , f∗β )

Consider therefore a quasimap

((C,x1, . . . ,xn), (Lτ,uτ)τ∈ΣY (1), (ϕmY )mY ∈MY ) ∈ Qg ,n(Y, β )

over an arbitrary base. Pick data (Pρ)ρ∈ΣX (1) corresponding to the map f , as in the theorem

above; we will later see that our construction does not depend on this choice.

The idea of the construction is as follows. Locally around a point x ∈ Ux ⊆ C we can

trivialise the Lτ to obtain a morphism to the prequotient

(uτ)τ : Ux → AΣY (1)

which lifts the induced rational map to Y . On the other hand the data of (Pρ)ρ gives a lifting

of f : Y → X to a morphism between the prequotients

(Pρ)ρ : AΣY (1) → AΣX (1)

and so the composed map to the prequotient of X is given by:

(Pρ((uτ)τ))ρ : Ux → AΣX (1)

In order to define the pushed-forward quasimap, we thus need to make sense of Pρ((uτ)τ) as a

section of a certain line bundle L̃ρ on the curve.

We now make this precise. The first issue to address is the stabilisation of the source curve.

The procedure is the same as in the case of stable maps: if C0 ⊆ C is a rational component

with 2 special points (hence with curve class β0 > 0) and such that f∗β0 = 0, then C0 should be

contracted when we pass to X . The possibilities are:

β1

β0

f∗β1

β0

β1

β2

f∗β1

f∗β2
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To perform the contraction we need to construct a line bundle on C that is trivial on the compo-

nents which we wish to contract and ample (relative to the base) on all the other components.

Fix a polarisation OX (1) on X and express f ∗OX (1) in terms of the toric divisors ofY :

f ∗OX (1) =
⊗
τ

OY (Dτ)
⊗cτ

Then the line bundle

ωπ(x1 + . . . + xn) ⊗
⊗
τ

L⊗aττ

gives the required contraction by taking relative Proj. We thus obtain a curve C̃ and a morphism

φ : C → C̃ which contracts the unstable components.

Recall that for ρ ∈ ΣX (1), Pρ is a polynomial in the zτ . We can thus write it as

(2.6.1) Pρ(zτ) =
∑
a

P
a
ρ (zτ) =

∑
a

µa
∏
τ

zaττ

where the sum is over a finite number of multindices a = (aτ) ∈ NΣY (1) and the µa are nonzero

scalars. Observe that, for each a, the line bundle ⊗τL
⊗aτ
τ on C is trivial on the components con-

tracted by φ (which are always rational). Hence, by cohomology and base-change, it descends

to a line bundle on C̃ :

L̃
a
ρ := φ∗

⊗
τ

L⊗aττ

We may then take the following section of L̃aρ:

ũ
a
ρ = P

a
ρ (uτ) := µa

∏
τ

uaττ ;

A priori this is really a section of ⊗τL
⊗aτ
τ on C ; but since it is constant on the components

contracted by φ, it descends to a section of L̃aρ on C̃ .

Thus, each of the terms P aρ of Pρ defines a section ũaρ of a line bundle L̃aρ on C̃ . What we

want, however is a single section ũρ of a single line bundle L̃ρ. This is where the isomorphisms

ϕmY come in.

Recall that we have a short exact sequence:

(2.6.2) 0 −→ MY
θ
−→ ZΣY (1) −→ PicY −→ 0

Let a and b be multindices appearing in the sum (2.6.1) above. By the homogeneity of Pρ we

have ∑
τ

aτ[Dτ] = β ρ =
∑
τ

bτ[Dτ]
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which is precisely the statement that in the above sequence a and b map to the same element

of PicY (namely β ρ). Hence there exists a unique mY ∈ MY such that:

θ(mY ) = a − b

Now, the isomorphism ϕmY (contained in the data of our original quasimap) is a map:

ϕmY :
⊗
τ

L⊗〈mY ,nτ 〉τ � OC

By definition, θ(mY ) = (〈mY ,nτ〉)τ∈ΣY (1). But also θ(mY ) = (aτ − bτ)τ∈ΣY (1). Hence we have:

ϕmY :
⊗
τ

L⊗aττ �
⊗
τ

L⊗bττ

This descends to give canonical isomorphisms

L̃
a
ρ � L̃

b
ρ

for all a and b . Let us choose one such a (it doesn’t matter which); call it aρ. We define:

L̃ρ := L̃
aρ

ρ

Then for all b we can use the above isomorphisms to view ũ
b
ρ as a section of L̃ρ. Summing all

of these together we thus obtain a section ũρ of L̃ρ, which we can write (with abuse of notation)

as:

ũρ =
∑
a

µa
∏
τ

uaττ

Note that if we had made a di�erent choice of aρ above the result would have been isomorphic.

Thus far we have constructed line bundles and sections (L̃ρ, ũρ)ρ∈ΣX (1) on C̃. It remains to

define the isomorphisms

ϕ̃mX : ⊗ρL̃
⊗〈mX ,nρ 〉
ρ � OC̃

for all mX ∈ MX . The left hand side is:

⊗ρL̃
⊗〈mX ,nρ 〉
ρ = ⊗ρ

(
φ∗ ⊗τ L

⊗aρτ
τ

) ⊗〈mX ,nρ 〉
= φ∗ ⊗τ L

⊗(
∑
ρ a

ρ
τ 〈mX ,nρ 〉)

τ

Now, for mY ∈ MY we have isomorphisms ϕmY : ⊗τL
⊗〈mY ,nτ 〉
τ � OC . In order to construct ϕ̃mX

it is therefore tempting to look for an mY such that

〈mY ,nτ〉 =
∑
ρ

aρτ 〈mX ,nρ〉
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for all τ ∈ ΣY (1) (we will then set ϕ̃mX = ϕmY ). Consider therefore the short exact sequence

(2.6.2). Recall that θ(mY ) = (〈mY ,nτ〉)τ∈ΣY (1). Hence we need to show that(∑
ρ

aρτ 〈mX ,nρ〉

)
τ∈ΣY (1)

belongs to the image of θ, i.e. that it belongs to the kernel of the second map (notice that mY

is then unique because θ is injective). This is equivalent to saying that∑
τ

∑
ρ

aρτ 〈mX ,nρ〉[Dτ] = 0 ∈ PicY

Now, we have ∑
τ

aρτ [Dτ] = β ρ

so that the above sum becomes∑
ρ

〈mX ,nρ〉β ρ =

〈
mX ,

∑
ρ

β ρ ⊗ nρ

〉
= 〈mX ,0〉 = 0

where
∑
ρ β ρ ⊗ nρ = 0 by Condition (1) in Theorem 2.6.1. So there does indeed exist a (unique)

mY ∈ MY such that 〈mY ,nτ〉 =
∑
ρ a

ρ
τ 〈mX ,nρ〉, and we can set:

ϕ̃mX = ϕmY :
⊗
ρ

L̃
⊗〈mX ,nρ 〉
ρ � OC

Thus we have produced a quasimap with target X and class f∗β on the base Qg ,n(Y, β ):

((C̃, x̃1, . . . , x̃n), (L̃ρ, ũρ)ρ∈ΣX (1), (ϕ̃mX )mX ∈MX )

The proof that this construction does not depend on the choice of (Pρ) is straightforward and

is left to the reader.

It remains to demonstrate that the quasimap thus constructed is nondegenerate and stable.

Nondegeneracy follows immediately from Condition (2) in Theorem 2.6.1. Put di�erently: the

original quasimap defined a rational map C d Y , whereas the new quasimap defines a rational

map which is simply the composition C d Y → X (up to contracting unstable components).

Therefore the set of basepoints is exactly the same.

Stability follows precisely from the construction of φ: if we write the polarisation of X as

OX (1) =
⊗

ρO(Dρ)
⊗bρ then

ωπ̃(x̄1 + . . . x̄n) ⊗
⊗
ρ

L̃
⊗bρ
ρ
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will be π̃-ample on C̃ , since we have contracted all the components on which f ∗OX (1) was trivial

without introducing any rational tail.

To summarise, we have explained how to canonically associate, to any family of quasimaps

with targetY , a family of quasimaps with target X . This completes the proof of the following:

Theorem 2.6.2. Let X and Y be smooth proper toric varieties and f : Y → X a morphism.

Then there exists a natural push-forward map:

Q(f ) : Qg ,n(Y, β ) → Qg ,n(X , f∗β )

Remark 2.6.2. Theorem 2.6.1 tells us that we can lift any morphism between toric varieties to

an equivariant morphism between the prequotients

AΣY (1) \ Z (ΣY ) AΣX (1) \ Z (ΣX )

Y X

f̃

qY qX

f

where the torus homomorphism

GY = HomZ(Pic(Y ),Gm) → GX = HomZ(Pic(Y ),Gm)

is induced in the obvious way by f : Y → X . Now, thinking of quasimaps as maps to the

quotient stack, functoriality is again clear by postcomposition with f̃ (notice that the preimage

of the unstable locus of X is the unstable locus ofY ).

Finally, let us describe how this push-forward morphism behaves when f is a nonconstant

map Pr → PN . Write f in homogeneous coordinates as:

f [z0, . . . , zr ] = [f0(z0, . . . , zr ), . . . , fN (z0, . . . , zr )]

where the fi are all homogeneous of degree a > 0. Then given a quasimap with target Pr

(C,L,uo, . . . ,ur )

the pushed-forward quasimap with target PN is:

(C,L⊗a, f0(u0, . . . ,ur ), . . . , fN (u0, . . . ,ur ))
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2.6.2. Relative obstruction theories for Q(Y ) → Q(X ). Assume now that f : Y → X is a

morphism (between projective varieties) satisfying any of the following three equivalent condi-

tions:

(1) f is finite;

(2) for any ample line bundle OX (1) on X , f ∗OX (1) is ample onY ;

(3) for every e�ective curve class β ∈ H+2 (Y ), f∗β , 0.

These conditions are in particular satisfied when f is a closed embedding, which is the case of

most interest to us.

Observe then that the induced morphism

k = Q(f ) : Qg ,n(Y, β ) → Qg ,n(X , f∗β )

commutes with the projections to Mg ,n , i.e. there is no need to stabilise the underlying curve.

We would like to have a pull-back morphism k ! between Chow groups. However, even in the

easiest possible case when f : Y ↪→ X is a regular embedding, k itself is not necessarily a

regular embedding, and so the Gysin map in the sense of [Ful98] is not guaranteed to exist.

However, when Qg ,n(X , f∗β ) is unobstructed (for instance when X = PN and g = 0 or

(g ,n) = (1,0)) there is a way around this. In [Man12] a generalisation of the Gysin map called

the virtual pull-back is defined for morphisms endowed with a relative perfect obstruction theory.

Moreover, a su�cient condition is given [Man12, Corollary 4.9] for this map to respect the virtual

classes.

Lemma 2.6.3. For a �nite morphism of smooth toric varieties f : Y → X , there exists a relative

obstruction theory Ek for the morphism

k : Qg ,n(Y, β ) → Qg ,n(X , f∗β )

which fits into a compatible triple with the standard obstruction theories for the quasimap

spaces over Mg ,n . Furthermore, Ek is perfect if Qg ,n(X , f∗β ) is unobstructed, so that:

k !v[Qg ,n(X , f∗β )] = [Qg ,n(Y, β )]virt

Proof. Note first that, since k does not change the source curve of a quasimap, we indeed have

a commuting triangle:
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Qg ,n(Y, β ) Qg ,n(X , f∗β )

Mg ,n

k

We have perfect obstruction theories EQ(Y )/M and EQ(X )/M and we want to find a perfect ob-

struction theory Ek . Consider the diagram of universal curves

CY CX

Qg ,n(Y, β ) Qg ,n(X , f∗β )

α

π � ρ

k

which is cartesian because k does not alter the source curve of any quasimap. We have sheaves

FY and FX on CY and CX respectively such that:

E∨Q(Y )/M = R•π∗FY

E∨Q(X )/M = R•ρ∗FX

It follows (by flatness of ρ) that when we pull back the latter obstruction theory to Q(Y ) we

obtain:

k ∗E∨Q(X )/M = R•π∗α∗FX

To construct a compatible triple, we require a morphism k ∗EQ(X )/M → EQ(Y )/M. Dually, it is

therefore enough to construct a morphism of sheaves on CY

FY → α∗FX

and then applyR•π∗. This is analogous to the morphism u∗TY → u∗ f ∗TX |Y which is used in the

stable maps setting. However the construction for quasimaps requires a little more ingenuity,

because we do not have access to a universal map f .

The sheaf FY is defined on CY by the short exact sequence

0→ O⊕rYCY → ⊕τLτ → FY → 0

where rY = rk PicY (implicitly we have chosen a basis for PicY ). Similarly FX is defined on

CX by:

0→ O⊕rXCX → ⊕ρLρ → FX → 0

We will construct the map FY → α∗FX by first constructing a morphism:

⊕τLτ → α∗(⊕ρLρ)
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Recall that f : Y → X is given by homogeneous polynomials

Pρ ∈ SYβ ρ ⊂ S
Y = C[zτ : τ ∈ ΣY (1)]

in the Cox ring ofY , where β ρ = f ∗[Dρ] ∈ PicY . For all monomials appearing in Pρ, if we look

at their exponents (aτ)τ∈ΣY (1), we have
∑
τ∈ΣY (1) aτ[Dτ] = β ρ by homogeneity; hence we can use

the isomorphisms parametrised by MY as in the proof of Proposition 2.6.2 above in order to

interpret the (Pρ) as a morphism

(Pρ)ρ∈ΣX (1) :
⊕
τ

Lτ →
⊕
ρ

⊗
τ

L⊗a
ρ
τ

τ =
⊕
ρ

L̃ρ = α
∗

(⊕
ρ

Lρ

)
where the notation is as in the proof of functoriality in §2.6.1. Thus we have constructed a

morphism ⊕τLτ → α∗(⊕ρLρ).

On the other hand, f : Y → X induces a pullback map on line bundles Pic(X ) → Pic(Y ).

Since we have implicitly chosen bases for these Z-modules, this gives rise to a matrix, whose

transpose we denote by:

Q ∈ MatrX ×rY (Z)

It is now clear by the functoriality construction that the left-hand square in the following diagram

is commutative; hence it induces the (dashed) map of sheaves that we were after:

(2.6.3)

0 O⊕rYCY
⊕τLτ FY 0

0 O⊕rXCY α∗
(
⊕ρLρ

)
α∗FX 0

Q (Pρ)

Applying R•π∗ and dualising we obtain a morphism between the obstruction theories for the

quasimap spaces, and we can complete this to obtain an exact triangle

k ∗EQ(X )/M → EQ(Y )/M → Ek
[1]
−−→

on Q(Y ). The axioms of a triangulated category then give a morphism of exact triangles:

k ∗EQ(X )/M EQ(Y )/M Ek

k ∗LQ(X )/M LQ(Y )/M Lk

[1]

[1]



65

It follows from a simple diagram chase that Ek → Lk is a relative obstruction theory supported

in [−2,0]. On the other hand, assuming that Qg ,n(X , f∗β ) is unobstructed, we may look at the

long exact sequence in cohomology and find:

0→ H−2(Ek ) → H−1(k ∗EQ(X )/M) = 0

Hence H−2(Ek ) = 0 and so Ek is perfect. �

Remark 2.6.4. The short exact sequence defining FX should be thought of as the pull-back of

the Euler sequence

0→ O⊕rXX →
⊕

ρ∈ΣX (1)

OX (Dρ) → TX → 0

along the map C → X , if such a map existed. In particular, if we work away from the locus of

basepoints then FX = u∗ TX .

In particular, for every smooth projective variety i : X ↪→ PN , we have a virtual pull-back

morphism

k !v : A∗(Q0,n(P
N ,d )) → A∗(Q0,n(X , β ))

where d = i∗β , and more generally for any cartesian diagram

F G

Q0,n(X , β ) Q0,n(P
N ,d )

�

k

we get an associated virtual pull-back morphism:

k !v : A∗(G ) → A∗(F )

This is used in §2.4 to pull-back the recursion formula for the pair (PN ,H ) and obtain a recursion

formula in the general case.

2.6.3. Splitting axiom. In this section we consider certain boundary strata of the moduli space

of quasimaps, called centipede loci. These are the analogues in the absolute setting of the comb

loci which appear in the relative setting (§2.3.2). The general element of such a locus has a

source curve with r +1 irreducible components, one “trunk” of the centipede and r “legs.” Each

of these components has a prescribed genus, curve class and set of marked points.

Given such a locus, there are two natural virtual classes with which it can be equipped. One

is the product virtual class induced by the absolute product of the r + 1 quasimap spaces, and

the other is the class pulled back from the ambient moduli space. In this section we show that
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these classes coincide. This is the quasimap version of the splitting axiom from Gromov–Witten

theory, called the cutting edges axiom in [Beh99]. The fact that this extends to the quasimap

setting has been discussed in [CFK17, §2.3.3]; here we spell out the details.

We first establish notation. Fix a smooth projective toric variety X and numerical invariants

g ,n, β such that the corresponding quasimap space is defined. Now fix partitionsG = (g0, . . . , gr )

of the genus, A = (A0, . . . ,Ar ) of the marked points and B = (β0, . . . , βr ) of the curve class and

consider the following space (which we call the centipede locus):

DQ(X ,G ,A,B) := Qg0,A0∪{q 01 ,...,q
0
r }
(X , β0) ×X r

r∏
i=1

Qgi ,Ai∪{q 1i }
(X , βi )

Of course we assume that every element of the partition is in the stable range, so that every

factor in the above product makes sense. See Remark 2.3.9 for a justification of why these are

the correct boundary strata to consider. We can equip the centipede locus with the product

virtual class in the following way. Set

EQ(X ,G ,A,B) := Qg0,A0∪{q 01 ,...,q
0
r }
(X , β0) ×

r∏
i=1

Qgi ,Ai∪{q 1i }
(X , βi )

which we endow with the product class:

[EQ(X ,G ,A,B)]virt := [Qg0,A0∪{q 01 ,...,q
0
r }
(X , β0)]virt ×

r∏
i=1

[Qgi ,Ai∪{q 1i }
(X , βi )]virt

We then consider the cartesian diagram:

(2.6.4)
DQ(X ,G ,A,B) EQ(X ,G ,A,B)

X r X r × X r

h

evq � evq

∆X r

Since X is smooth ∆X r is a regular embedding, so we have a Gysin map which we use to define:

[DQ(X ,G ,A,B)]virt := ∆!
X r [EQ(X ,G ,A,B)]virt

Notice that if we set

M
wt
G ,A,B := Mwt

g0,A0∪{q 01 ,...,q
0
r },β0
×

r∏
i=1

M
wt
gi ,Ai∪{q 1i },βi

then there is a morphism given by forgetting everything except the source curves and their

classes

ρE : EQ(X ,G ,A,B) → M
wt
G ,A,B



67

and the virtual class on EQ(X ,G ,A,B) is induced by a perfect obstruction theory EρE → LρE

given by the product of the standard obstruction theories for each factor:

Qgi ,Ai∪{qi }(X , βi ) → M
wt
gi ,Ai ,βi

On the other hand, we have the following cartesian diagram

(2.6.5)

DQ(X ,G ,A,B) Qg ,n(X , β )

Mwt
G ,A,B Mwt

g ,n,β

ϕ

ρD � ρQ

ψ

The bottom horizontal map is not a closed embedding: due to the existence of degree zero

rational components, there may be many possible equally valid ways of breaking up a nodal

curve. For instance, the following two elements of Mwt
G ,A,B

(g1,d1) (g ,d ) = (0,0) (g2,d2) (g1,d1)

(g ,d ) = (0,0) (g2,d2)

map to the same weighted curve under ψ, namely:

(g1,d1)

(g2,d2)

Nevertheless ψ has a natural perfect obstruction theory, given by Lψ : we only need to show that

it is supported in [−1,0]. Consider the exact triangle:

ψ∗LMwt
g ,n,β
→ LMwt

G ,A,B
→ Lψ

[1]
−−→

The first two terms are concentrated in degrees [0,1], because they are the cotangent complexes

of smooth Artin stacks. Therefore Lψ is concentrated in degrees [−1,1]. Furthermore, if we

examine the long exact cohomology sequence near H1(Lψ) we find

H1(ψ∗LMwt
g ,n,β
) → H1(LMwt

G ,A,B
) → H1(Lψ) → 0

and hence wemust show that the first map is surjective. But this is dual to the map which takes an

infinitesimal automorphism of the disconnected curve to an infinitesimal automorphism of the
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corresponding connected curve (obtained by glueing together the “nodal” marked points). The

space of infinitesimal automorphisms of a nodal curve splits into a direct sum of infinitesimal

automorphisms of each component; since the glueing does not a�ect the components, we see

that this map is an isomorphism. Hence H1(Lψ) = 0 as claimed; morally this follows from the

fact that the fibres of ψ are Deligne–Mumford.

Hence there is a virtual pull-back map ψ! which defines a class

ψ![Qg ,n(X , β )]virt

onDQ(X ,G ,A,B). This is the same class as the one induced by the following perfect obstruction

theory

ϕ∗EρQ → LρD

by functoriality of virtual pull-backs.

Finally if we look at (2.6.4) we see that ev∗q L∆X r → Lh is a perfect obstruction theory for the

map h. To summarise, we have a triangle

(2.6.6)

DQ(X ,G ,A,B) EQ(X ,G ,A,B)

Mwt
G ,A,B

ρD

h

ρE

where all three morphisms are equipped with perfect obstruction theories. We simply need to

check that these fit together in a compatible triple.

Lemma 2.6.5. There is a compatible triple

(h∗EρE , ϕ
∗EρQ , ev

∗
q L∆X r )

for the triangle (2.6.6). Hence by functoriality of virtual pull-backs we have:

ψ![Qg ,n(X , β )]virt = ∆!
X r [EQ(X ,G ,A,B)]virt = [DQ(X ,G ,A,B)]virt

Proof. We need to construct a morphism of triangles

h∗EρE ϕ∗EρQ ev∗q L∆X r

h∗LρE LρD Lh

[1]

[1]

Consider the following diagram:
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h∗C̃ ϕ∗C C

DQ(X ,G ,A,B) Qg ,n(X , β )

ν

η � π

ϕ

Here C̃ is the universal (disconnected) curve over EQ(X ,G ,A,B), which we have pulled back

to DQ(X ,G ,A,B), while ϕ∗C is the universal curve over DQ(X ,G ,A,B). Therefore the map

ν : h∗C̃ → ϕ∗C is (fiberwise) a partial normalisation map given by normalising the nodes which

connect the “trunk” of the centipede to the “legs.”

There are natural sheaves F and F̃ on C and h∗C̃ respectively, such that

ϕ∗E∨ρQ = R•π∗F

h∗E∨ρE = R•η∗F̃

Furthermore ν∗F ' F̃ , hence by tensoring the partial normalisation short exact sequence

0→ Oϕ∗C → ν∗Oh∗C̃ → Oq → 0

with F and applying the projection formula, we obtain

0→ F → ν∗F̃ → Fq → 0

on ϕ∗C, where q is the locus of nodes connecting the trunk to the spine. (The fact that the

morphism on the left is injective follows by applying the Snake Lemma to the short exact

sequence defining F .) To this we can apply R•π∗ to obtain an exact triangle

(2.6.7) R•π∗F → R•η∗F̃ → R•π∗Fq
[1]
−−→

Finally, notice that, since quasimaps are required not to have base-points at the nodes, the fibre

of the sheaf F at each of the nodes q can actually be identified with the tangent to the toric

variety X at the image of the node itself, i.e. R•π∗Fq � ev∗q TX r = ev∗q T∆X r [−1]. Dualising

sequence (2.6.7) we obtain

h∗EρE → ϕ∗EρQ → ev∗q E∆X r
[1]
−−→

as required. �
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2.6.4. Comparison with the GIT construction. Let X be a smooth projective toric variety

andY ↪→ X a smooth very ample hypersurface. The complete linear system |OX (Y )| gives an

embedding i : X ↪→ PN which expresses Y as the intersection inside PN of X and a certain

hyperplane H : Y = X ∩H = i−1(H ). We can de�ne the moduli space of quasimaps toY via the

following cartesian diagram:

Qg ,n(Y, β ) Qg ,n(H ,d )

Qg ,n(X , β ) Qg ,n(P
N ,d )

�

k

where d = i∗β . This moduli space is easy to describe: let sY denote the section ofOX (Y ) cutting

outY inside X . Recall from §2.2.3 that for any quasimap

((C,x1, . . . ,xn), (Lρ,uρ)ρ∈ΣX (1), (ϕm)m∈MX ) ∈ Qg ,n(X , β )

we can construct a section uY of a line bundle LY on C , which plays the role of the pull-back

of sY to C . Then

Qg ,n(Y, β ) ⊆ Qg ,n(X , β )

consists of those quasimaps such that uY ≡ 0.

The cartesian diagram above can also be used to endow Qg ,n(Y, β ) with a virtual class via

virtual (or diagonal) pull-back along k . Thus we can define quasimap invariants forY .

On the other hand,Y has the natural structure of a GIT quotient

Y = C (Y ) �G

where C (Y ) ⊆ AΣX (1) is the a�ne cone overY and G = HomZ(Pic(X ),Gm) � G
rX
m acts on C (Y )

via the natural inclusion

GrXm ↪→ G
ΣX (1)
m

(here C (Y ) ⊆ AΣX (1) is preserved by G because it is cut out by a homogeneous equation).

In [CFKM14] moduli spaces of quasimaps are constructed for GIT quotient targets (satisfying

a number of conditions, all of which hold forY ). There is thus a moduli space

QGIT
g ,n (Y, β )

which admits a virtual class. Hence we have two moduli spaces of quasimaps to Y , each

equipped with a virtual class, and we want to check that these definitions agree.

Objects of QGIT
g ,n (Y, β ) are diagrams of the form
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P C (Y )

C

G

whereC is a prestable curve, P is a principalG -bundle and the map P → C (Y ) isG -equivariant.

Equivalently, an object consists of a prestable curve C , a principal G -bundle P and a section u

of the associated C (Y )-bundle:

P ×G C (Y )

C

p u

The obstruction theory on this space is defined relative to the stack Bung ,nG parametrising prin-

cipal G -bundles on the universal curve:

CMg ,n → Mg ,n

It is given by

E∨Q/BunG = R•π∗(u∗ Tp )

where π is the universal curve over Q = QGIT
g ,n (Y, β ) and Tp is the relative tangent complex.

There is a natural isomorphism

Bun
g ,n
G � ×rX

Mg ,n
Picg,n

given by sending P to the rX individual factors of the a�ne bundle P ×G ArX . Furthermore

there is a G -equivariant embedding

P ×G C (Y ) P ×G AΣX (1) �
⊕

ρ∈ΣX (1)
Lρ

C

j

p u

which expresses P ×G C (Y ) as the vanishing locus of uY in ⊕ρ∈ΣX (1)Lρ. This shows that the two

definitions of the moduli space agree.

Finally we must compare the virtual classes. Using the normal sheaf sequence for the inclusion

j (relative to the base C ) we obtain a short exact sequence on C :

0→ u∗ Tp →
⊕

ρ∈ΣX (1)

Lρ → u∗NP×GC (Y )/⊕ρ∈ΣX (1)Lρ → 0
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Since P ×G C (Y ) is defined by the vanishing of uY , we see that the final term is isomorphic to

the line bundle LY discussed above. Thus as elements of the derived category

u∗ Tp =


⊕

ρ∈ΣX (1)

Lρ → LY


Applying R•π∗ we obtain on the left hand side the obstruction theory for the GIT moduli space

relativeBung ,nG . On the other hand, the first term on the right hand side is the obstruction theory

for Q(X ) relative the product of the Picard stacks (isomorphic to Bung ,nG via the discussion

above) whereas the second term is the relative obstruction theory for Q(Y ) inside Q(X ). Thus

the virtual classes agree, as claimed.

Appendix 2.7: Intersection-theoretic lemmas

In this appendix we explicitly define the diagonal pull-back along a morphism whose target is

unobstructed (used in [Gat02]) and verify that this agrees with the virtual pull-back of [Man12]

when both are defined. We also check that it satisfies some expected compatibility properties.

Consider a morphism of DM stacks f : Y → X over a smooth baseM, such that X is smooth

overM andY carries a virtual class given by a perfect obstruction theory EY /M. Then, for every

Cartesian diagram

G F

Y X

g

q � p

f

and every class α ∈ A∗(F ), we may define

f !
∆
(α) = ∆!

X ([Y ]
vir × α) ∈ A∗(G )

which we call the diagonal pull-back. We first show that it coincides with the usual virtual pull-

back along f in the presence of a compatible perfect obstruction theory for f .

Lemma 2.7.1. Assume that there exists a relative obstruction theory Ef compatible with EY /M

and the standard (unobstructed) obstruction theory for X , i.e:

f ∗LX /M EY /M Ef

f ∗LX /M LY /M Lf

Id

[1]

[1]

Then for every Cartesian diagram and every class α ∈ A∗(F ) as above,

f !v (α) = f
!
∆
(α).
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Proof. Consider the following cartesian diagram:

G Y ×M F Y

F X ×M F X

X X ×M X

q×g

g �

pr1

f ×Id � f

p×Id

p �

pr1

Id×p

∆X

Then, by commutativity of (virtual) pull-backs, we have

∆
!
X ([Y ]

vir × α) = ∆!((f !v [X ]) × α)

= ∆!
X (f

!
v ([X ] × α))

= f !v (∆
!
X ([X ] × α))

= f !v (α)

as required. �

Secondly, we show that the diagonal pull-back behaves similarly to an ordinary virtual pull-

back (e.g. commutes with other virtual pull-backs) even in the absence of a compatible perfect

obstruction theory.

Lemma 2.7.2. The diagonal pull-back morphism as defined above commutes with ordinary

Gysin maps and with virtual pull-backs.

Proof. First consider the case of ordinary Gysin maps. We must consider a cartesian diagram:

Y ′′ X ′′ S

Y ′ X ′ T

Y X

� � k

�
f

with k a regular embedding and f : Y → X as before. We need to show that for all α ∈ A∗(X ′):

k ! f !
∆
(α) = f !

∆
k !(α)

We form the cartesian diagram
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Y ′′ Y × X ′′ S

Y ′ Y × X ′ T

X X × X

� � k

�
∆X

and apply commutativity of usual Gysin morphisms. In the case where k is not a regular

embedding but rather is equipped with a relative perfect obstruction theory, the same argument

works with k ! replaced by k !v. �



CHAPTER 3

Towards a recursive formula for log Gromov–Witten invariants of

hyperplane arrangements

This represents work in progress, and will appear in the form of an article once complete.

Abstract: We describe work in progress towards obtaining a Gathmann-like recursion formula

for log Gromov–Witten invariants in genus zero. Along the way, we introduce auxiliary moduli

spaces of log stable maps and compare them to the ordinary moduli spaces, providing some

insights into the geometry of the latter. We present several example applications of our proposed

formula.

3.1. Introduction

3.1.1. Relative Gromov–Witten theory. The theory of relative Gromov–Witten invariants has

had a profound impact on enumerative geometry over the past two decades. Besides its intrinsic

interest, it has found applications to numerous other areas, including ordinary Gromov–Witten

theory [MP06] [Gat03b], intersection theory on the moduli space of curves [GV05] [JPPZ17] and

the study of open string invariants [LLLZ09].

We start with a brief overview of the subject. Given X a smooth projective variety andY ⊆ X

a smooth hypersurface, the relative Gromov–Witten invariants of the pair (X ,Y ) are defined as

(virtual) counts of stable maps to X with fixed orders of tangency toY at the marked points.

To be more precise: fix a genus g ≥ 0, a number of marked points n ≥ 0, a curve class

β ∈ H+2 (X ) and a vector of tangency orders α = (α1, . . . , αn). Each αi is a non-negative integer

which will record the tangency order of the stable map f to Y at the marked point xi ∈ C .

Given such data, one wishes to construct a suitable moduli space

Mg ,α(X |Y, β )

of relative stable maps to (X ,Y ) with tangency orders α. This should be a proper Deligne–

Mumford stack of finite type, with a virtual fundamental class of dimension equal to the virtual
75
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dimension:

vdimMg ,α(X |Y, β ) = vdimMg ,n(X , β ) −
n∑
i=1

αi

It turns out that there are many di�erent ways to define such a space [Gat02] [Li01,Li02] [AF16]

[Kim10] [GS13, Che14, AC14], though the resulting invariants are always the same [AMW14].

The choice of which moduli space to work with largely depends on one’s intended application,

since each approach comes with its own particular advantages and limitations.

Here we will discuss the approach pursued by A. Gathmann in genus zero [Gat02], since

it is the most relevant to our work. Fix a smooth projective variety X , a smooth very ample

hypersurfaceY ⊆ X , and the numerical data n, β, α described above. Then a stable map

(C,x1, . . . ,xn, f ) ∈M0,n(X , β )

is said to be a relative stable map (of tangency α) if and only if the following two conditions are

satisfied:

(1) f (xi ) ∈Y whenever αi > 0;

(2) the class f ∗[Y ] −
∑n
i=1 αixi ∈ A0(f −1(Y )) is e�ective.

Notice that by Condition (1), each αixi does indeed define a class in f −1(Y ), so Condition (2)

makes sense. This definition can be reformulated more explicitly as follows (see [Gat02, Remark

1.4]): a stable map is a relative stable map (of tangency α) if and only if, for every connected

component Z of f −1(Y ) ⊆ C :

(1) if Z = xi consists of an isolated marked point, then the tangency order of f at xi with

respect toY must be at least αi (if Z consists of an isolated unmarked point then there

is no condition);

(2) if Z is one-dimensional (hence a union of irreducible components of C ), then if we let

C1, . . . ,Cr denote the components of C adjacent to Z and q1, . . . ,qr the corresponding

connecting nodes, then we must have

Y · f∗[Z ] +
r∑
i=1

mi ≥
∑
xi ∈Z

αi

where mi denotes the tangency order of f |Ci at qi with respect toY .

Obviously, in order for there to be any relative stable maps at all, the following inequality

must be satisfied:

Y · β ≥
n∑
i=1

αi
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It is important to note that one does not require equality here (in contrast to other approaches

to relative Gromov–Witten theory). As such, each αi should be thought of only as a lower bound

for the tangency at xi .

These conditions define the moduli space of relative stable maps as a closed substack of the

moduli space of absolute stable maps:

MGat
0,α (X |Y, β ) ⊆M0,n(X , β )

In particular, it is a proper Deligne–Mumford stack of finite type [Gat02, Definition 1.18]. It

does not carry a natural perfect obstruction theory, but nevertheless it is possible to endow it

with a virtual fundamental class with the desired properties (this is where the genus zero and

very ample hypotheses are used). One can then define relative Gromov–Witten invariants in the

usual way, by integrating this virtual class against evaluation and psi classes.

The obvious question which arises is: how do we compute these numbers? In [Gat02, §§2-

3] Gathmann proves a formula, which expresses any relative invariant of (X ,Y ) in terms of

absolute invariants ofY and relative invariants of (X ,Y ) with strictly lower tangency. This has

been discussed in detail in §2.2.2.

Applying this formula recursively to the relative invariants of lower tangency which appear,

we eventually remove all the tangencies and arrive at an expression involving only the absolute

invariants of Y and X . (With some more work, it is actually possible to obtain an expression

involving only the invariants of X ; see [Gat02, Corollary 5.7].) This gives an e�ective algorithm

for computing relative Gromov–Witten invariants. For low degree invariants it is possible to

carry out this computation by hand; moreover, the algorithm is simple to implement on a

computer (for the case of projective space, see [Gat]).

3.1.2. Logarithmic Gromov–Witten theory. So far, we have restricted ourselves to imposing

tangencies along a single smooth hypersurface. But there are many interesting enumerative

questions involving tangencies to multiple hypersurfaces.

From a Gromov–Witten theorist’s perspective, what is needed in order to address such ques-

tions is a theory of relative Gromov–Witten invariants with respect to (certain) reducible divi-

sors. The specific class of divisors we are interested in is the snc divisors; a divisor D ⊆ X is snc

if all of its components are smooth and their intersections locally look like the intersection of a

collection of co-ordinate hyperplanes in a�ne space.
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Given an snc divisor D ⊆ X , we want to be able to define relative Gromov–Witten invariants

of (X ,D). Logarithmic Gromov–Witten theory provides such a definition [GS13,Che14,AC14].

The basic idea is as follows: the snc divisor D defines a certain structure on X , called a log

structure. A log stable map, roughly speaking, is a stable map f : C → X where C is also

equipped with a log structure and f is enhanced to a morphism of log schemes. There is, of

course, much more to be said on this subject; full details can be found in the above references.

Remark 3.1.1. Logarithmic Gromov–Witten invariants are defined more generally than dis-

cussed above; in fact, they make sense for arbitrary log smooth targets. In particular this allows

one to define the Gromov–Witten invariants of a singular variety appearing as the central fi-

bre of a toric degeneration. This demonstrates that log Gromov–Witten theory is the correct

general context in which to discuss the degeneration formula [ACGS17] [KLR18]. Moreover,

log Gromov–Witten theory has intimate connections to Mirror Symmetry via the Gross-Siebert

program [GS16].

Despite the theory’s tremendous importance, there have been relatively few explicit calcula-

tions of log Gromov–Witten invariants (notable exceptions include [MR16] and [ACGS17, §6]).

Mostly this is due to the youth of the subject, but it also reflects the fact that the moduli spaces

are somewhat di�cult to describe explicitly, since moduli of log structures can be complicated

in general.

3.1.3. Outline. In this chapter we present work in progress towards a Gathmann-style recursion

formula for log Gromov–Witten invariants. To fix ideas and simplify some arguments, we work

with X = PN and D some subset of the toric boundary (though we believe our methods can be

applied in greater generality than this).

We will describe two attempts at obtaining a recursion formula. The first, described in §§3.2–

3.3, is via a study of an alternative system of moduli spaces, called the snc moduli spaces of relative

stable maps. While ultimately this approach was not successful in producing a recursion formula,

we believe it is still of interest, since the comparison results described in §3.3 yield a surprising

amount of insight into the geometry of the moduli spaces of log stable maps.

The second attempt, described in §3.4, involves carrying out the recursion directly on the

moduli space of log stable masp. This requires an understanding of the recursive structure

of the boundary of this space, and in particular of how to glue log stable maps. As proof of
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concept, we provide a number of example computations. However, it should be clear that the

full details of the recursion, and its proof, are still work in progress.

3.1.4. Background. We assume that the reader is somewhat familiar with Gathmann’s moduli

spaces of relative stable maps and his recursion formula [Gat02]; these are discussed in detail in

§2.2.2. We also assume that the reader is familiar with the rudiments of logarithmic Gromov–

Witten theory [GS13,Che14,AC14].
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Lawrence Barrott, Pierrick Bousseau, Tom Coates, Ben Morley, Otto Overkamp, Daniel Pomer-

leano, Dhruv Ranganathan and Helge Ruddat for helpful log-geometric discussions. Special

thanks are due to Barbara Fantechi and Cristina Manolache for pointing out an error in an

earlier version of this work.

The author is supported by an EPSRC Standard DTP Scholarship and by the Engineering

and Physical Sciences Research Council grant EP/L015234/1: the EPSRC Centre for Doctoral

Training in Geometry and Number Theory at the Interface.

3.2. First attempt: auxiliary moduli spaces

3.2.1. Setup. Throughout we will consider X = PN and D some collection of co-ordinate

hyperplanes, which without loss of generality we may take to be

D =
r∑
i=0

Hi

for some 0 ≤ r ≤ N (as mentioned before, we believe our results should apply in greater

generality than this, but in the first instance we will concern ourselves with this case). Given

such a target geometry, we fix the following discrete data: a degree d ≥ 0, a number of marked

points n and a matrix α of tangency orders. Here α is an (r + 1) × n matrix of non-negative

integers: the entry αik for i ∈ {0, . . . , r } and k ∈ {1, . . . ,n} records the tangency order of the

marking xk to the hyperplane Hi .
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We will define log Gromov–Witten invariants with non-maximal tangency. This means that

for each i ∈ {0, . . . , r } we only require that:
n∑
k=1

αik ≤ d

This is in contrast to [GS13,Che14,AC14], which require the above to be an equality.

3.2.2. De�nition of the moduli space. Given the data above, we will define moduli spaces of

relative stable maps to (PN ,D) in the spirit of Gathmann. This means that we will define the

moduli space as a closed substack of the moduli space of absolute stable maps:

Msnc
0,α (P

N |D,d ) ⊆M0,n(P
N ,d )

The definition is as follows. For a fixed i ∈ {0, . . . , r }, the i th row of the matrix α defines a

vector of tangency conditions for the hypersurface Hi . We write αi = (αik )
n
k=1 for this vector.

Then Gathmann defines in [Gat02] a moduli space of relative stable maps to Hi

MGat
0,αi (P

N |Hi ,d ) ⊆M0,n(P
N ,d )

and proves that this space is irreducible, with dimension equal to the expected dimension:

dimM0,n(P
N ,d ) −

n∑
k=1

αik

Thus it has a natural fundamental class, which can be used to define relative Gromov–Witten

invariants. The space is virtually birational to the other well-known moduli spaces of relative

stable maps (see [Gat03a, Lemma 5.1.12] for a comparison to the space of maps to expanded de-

generations), so we can compute the usual relative/log Gromov–Witten invariants of the smooth

pair (PN ,Hi ) by integrating against the fundamental class of the Gathmann space. (We note,

however, that although the Gathmann space is irreducible, it is not in general smooth, and does

not carry a natural perfect obstruction theory.)

De�nition 3.2.1. Given (PN ,D) as above, the snc moduli space of relative stable maps is defined

as the intersection of the Gathmann spaces with respect to each of the Hi :

Msnc
0,α (P

N |D,d ) :=
r⋂
i=0

MGat
0,αi (P

N |Hi ,d ) ⊆M0,n(P
N ,d )

This is a closed substack of M0,n(P
N ,d ), with expected dimension:

vdimM0,n(P
N ,d ) −

r∑
i=0

n∑
k=1

αik
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We will see (Example 3.2.3 below) that, unlike with the case of a smooth divisor, this space is

not necessarily irreducible or of the correct dimension. However, we can still define a virtual

fundamental class as follows. By definition we have a Cartesian diagram:

Msnc
0,α (P

N |D,d )
∏r
i=0M

Gat
0,αi (P

N |Hi ,d )

M0,n(P
N ,d )

∏r
i=0M0,n(P

N ,d )

�

∆

Since PN is convexM0,n(P
N ,d ) is smooth, and so the diagonal ∆ is a regular embedding. Hence

there exists a Gysin map ∆! [Ful98, §6]. We define

[Msnc
0,α (P

N |D,d )]virt := ∆!

(
r∏
i=0

[MGat
0,αi (P

N |Hi ,d )]

)

and a quick check shows that this indeed has the correct dimension.

Example 3.2.2. Consider degree 2 maps to (P2, (H0 +H1 +H2)) with 4 marked points and the

following 3 × 4 matrix of tangency orders:

α =

©­­­­«
1 0 1 0

0 1 1 0

0 0 0 2

ª®®®®¬
A generic element of Msnc

0,α (P
2 |(H0 +H1 +H2),2) can be drawn schematically as follows:

H0

H2

H1

x4

x1

x3
x2

Note that this is also a perfectly valid (though no longer generic) element of any moduli space

with strictly smaller tangencies than α (remember that, in the case of non-maximal tangency,

the αik only serve as lower bounds for the actual tangency orders). For instance, it belongs to the
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moduli space with the following tangency matrix:

α′ =

©­­­­«
1 0 0 0

0 1 1 0

0 0 0 0

ª®®®®¬
= α − e 03 − 2e

2
4

This illustrates a general phenomenon: if α′ ≤ α entrywise, then there is an inclusion

Msnc
0,α (P

N |D,d ) ⊆Msnc
0,α′(P

N |D,d )

which has virtual codimension:
r∑
i=0

n∑
k=1

(
αik − (α

′)ik

)
Of course, the picture above is only of a generic element. As we move towards the boundary it

can happen that entire components of the source curve are mapped into the divisor. In this case

the condition to belong to the snc space is somewhat more complicated, though still entirely

numerical (a consequence of the fact that we are working in genus zero). This was discussed in

§3.1.1.

Example 3.2.3. When D = H consists of a single hyperplane, the snc space is irreducible of

the expected dimension [Gat02, Proposition 1.14], but this is no longer true if there is more

than one hyperplane. To see why, let D = Σri=0Hi and consider the nice locus

M◦
0,α(P

N |D,d ) ⊆Msnc
0,α (P

N |D,d )

consisting of relative stable maps whose source curve is irreducible and not mapped inside

D . This is a locally closed substack of M0,n(P
N ,d ), and it is not hard to show (using a mild

generalisation of [Gat02, Lemma 1.8]) that it is irreducible of the correct dimension. If we take

its closure inside the moduli space of ordinary stable maps, then the fact that the snc space is

proper means that we have an inclusion of a closed subspace:

M◦
0,α(P

N |D,d ) ⊆Msnc
0,α (P

N |D,d )

This is in fact an irreducible component of the snc space, which we call the main component. We

then observe that if the main component is not equal to all of Msnc
0,α (P

N |D,d ), then the latter is

reducible.

Thus it remains to give an example in which the main component is not equal to the whole

snc space; this amounts to finding a relative stable map which does not admit an infinitesimal
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deformation to an element of the nice locus. Consider P2 relative two hyperplanes H0 and H1,

and consider a degree d stable map whose source curve is of the form

C0

C1 C2

x0

x1 x2

q1 q2

with C0 mapped into H0 ∩H1 and C1 and C2 external components. We work in the situation of

maximal tangency, and with α0
0 = α

1
0 = α0 (these are the tangency conditions of x0 with respect

to H0 and H1). For i ∈ {0,1} and j ∈ {1,2} let mij be the intersection multiplicity of C j with Hi

at q j = C j ∩C0. Then the condition to belong to the snc space is:

m0
1 +m

0
2 = α

0
0 = α0

m1
1 +m

1
2 = α

1
0 = α0

(There is also a condition on the marked points x1 and x2, but this is not so important for our

discussion.) Now, suppose for a contradiction that this stable map belongs to the closure of the

nice locus. This means that there exists a smoothing

C P2

SpecR

f

over a valuation ring R, with central fibre isomorphic to the stable map described above, and

general fibre isomorphic to a stable map in the nice locus. For i ∈ {0,1,2} let x̃i denote the

section xi on C, viewed as a Cartier divisor. If we consider the Cartier divisors H0 and H1 on

P2, then we find

f ∗H0 = λ0C0 + α0x̃0 + α0
1x̃1 + α

0
2x̃2

f ∗H1 = λ1C0 + α0x̃0 + α1
1x̃1 + α

1
2x̃2

for some λ0, λ1 > 0. Since the x̃i are Cartier, we see that C0 is Q-Cartier; then, since the central

fibre is linearly trivial, it follows that C1 +C2 is Q-Cartier. But since C1 and C2 are disjoint, this

implies that C1 and C2 are each Q-Cartier. In particular, we can make sense of the intersection

numbers Ci · C j ∈ Q for any two components of the central fibre. Let r j = C0 · C j ∈ Q for
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j ∈ {1,2}. Then for i ∈ {0,1} and j ∈ {1,2} we have:

αij x j +m
i
j q j = f

∗(Hi ) ·C j = αij x j + (λ ir j )q j

Thus we obtain four equations

λ0r1 = m0
1 λ1r1 = m1

1

λ0r2 = m0
2 λ1r2 = m1

2

all involving positive rational numbers. Cross-multiplying, we obtain:

m0
1m

1
2 = m

1
1m

0
2

But this is not always satisfied; remember that the only restriction we had was that

m0
1 +m

0
2 = m

1
1 +m

1
2 = α0

so, for example, we can take:

m0
1 = 1, m0

2 = 3, m1
1 = 2, m1

2 = 2

This results in a degree 5 relative stable map, where C1 has degree 2 and C2 has degree 3, and

with tangency matrix

α =
©­«
4 1 0

4 0 1

ª®¬
which does not admit a smoothing. Thus, the corresponding moduli space is not irreducible.

Example 3.2.4. We can also show that the above moduli space is reducible via a dimension

count. The expected dimension is

vdimM0,3(P
2,5) − Σ1i=0Σ

3
k=1α

i
k = (2 − 3 + 5 · 3 + 3) − (4 + 1 + 4 + 1) = 7

which is also equal to the actual dimension of the main component (the closure of the nice

locus). On the other hand, the locus of maps we have identified above is a product of moduli

spaces corresponding to C0,C1 and C2:

M0,3 ×M0,α(1)(P
2 |(H0 +H1),2) ×M0,α(2)(P

2 |(H0 +H1),3)

where the tangency matrices α(1) and α(2) are given by:

α(1) =
©­«
1 1

0 2

ª®¬ α(2) =
©­«
0 3

1 2

ª®¬
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The expected dimension of this locus is then

vdimM0,3+ vdimM0,α(1)(P
2 |(H0 +H1),2) + vdimM0,α(2)(P

2 |(H0 +H1),3)

= 0 + [(2 − 3 + 2 · 3 + 2) − (1 + 1 + 2)] + [(2 − 3 + 3 · 3 + 2) − (3 + 1 + 2)]

= 7

and so the actual dimension of this locus is at least 7, which means in particular that it belongs

to a component other than the main component.

3.3. Comparison of the moduli spaces

Having defined the snc moduli space in the previous section, it is natural to try and compare

it to the moduli space of log stable maps. In this section we construct a natural morphism

between these spaces, which we then use to probe their geometry. We will also see that the

enumerative invariants defined using these spaces do not, in general agree. The main results

can be summarised as follows:

Theorem 3.3.1. Consider a target geometry (PN ,D) as above, with discrete data d,n and α.

Suppose that Σnk=1α
i
k = d for all i ∈ {0, . . . , r }, so that the corresponding moduli space of log

stable maps is well-defined [GS13]. Then the map which forgets the log structures

Mlog
0,α(P

N |D,d ) →M0,n(P
N ,d )

factors through the snc space, i.e. we have a map:

τ : Mlog
0,α(P

N |D,d ) →Msnc
0,α (P

N |D,d )

This can be interpreted as a logarithmic desingularisation of the main component of the snc

space, and coincides (up to a morphism which is bijective on geometric points) with an inte-

gralisation and saturation map. The map τ does not in general perserve the virtual classes (see

Example 3.3.5).

3.3.1. Factorisation through the snc space. The first part of Theorem 3.3.1 is an easy con-

sequence of the log stable map machinery.

Lemma 3.3.2. The map forgetting the log structures factors through the snc space.

Proof. This follows from the modified balancing condition for log maps [GS13, §1.4]. To be

more precise: if i ∈ {0, . . . , r } and Z is an internal component with respect to Hi (i.e. Z is
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a maximal subcurve of f −1(Hi ) ⊆ C ), then each irreducible component C ′ of Z produces an

equation involving the tangency orders with respect to Hi (by projecting the modified balancing

condition onto the factor of the monoid Γ(C ′, f ∗M(PN ,D)) corresponding to Hi ); if we sum these

all together the contributions from the internal nodes cancel out, and we end up with precisely

the condition that the stable map belongs to the Gathmann space wth respect to Hi . �

3.3.2. Describing the forgetful morphism. Thus we do indeed have a map

τ : Mlog
0,α(X |D, β ) →Msnc

0,α (X |D, β )

and we would like to study its geometry. Note that these spaces have the same virtual dimension.

Now, for each i ∈ {0, . . . , r } there is a natural inclusion of monoid sheaves on PN :

M(PN ,Hi ) ↪→M(PN ,D)

Hence, there is a natural morphism of log schemes (PN ,D) → (PN ,Hi ) which is the identity on

the underlying scheme. By functoriality we obtain morphisms of moduli spaces

Mlog
0,α(P

N |D,d ) →Mlog
0,αi (P

N |Hi ,d )

which fit into a commuting diagram:

Mlog
0,α(P

N |D,d )
∏r
i=0M

log
0,αi (P

N |Hi ,d )

Msnc
0,α (P

N |D,d )
∏r
i=0M

Gat
0,αi (P

N |Hi ,d )

M0,n(P
N ,d )

∏r
i=0M0,n(P

N ,d )

τ
∏r
i=0 τi

�

∆

We would very much like to say that the outer rectangle in this diagram is Cartesian. In fact

this is not true, but for a rather subtle reason. The subtlety has to do with the formation of fibre

products in di�erent categories of log schemes. For the following discussion, we assume that

the reader is familiar with Appendix 3.5.3, where these issues are discussed at length.

It is easy to show that the following diagram of log schemes is Cartesian

(PN ,D)
∏r
i=0(P

N ,Hi )

PN
∏r
i=0 P

N

�
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where the log schemes in the bottom row are given the trivial log structure, i.e. MPN = O∗
PN

.

This diagram is Cartesian in any of the following categories:

LogSchfs ↪→ LogSchf ↪→ LogSchcoh

In particular, the fact that it is Cartesian in LogSchfs means that we can apply [AC14, Theorem

2.6] and conclude that the corresponding diagram of moduli stacks

Mlog
0,α(P

N |D,d )
∏r
i=0M

log
0,αi (P

N |Hi ,d )

M0,n(P
N ,d )

∏r
i=0M0,n(P

N ,d )

τ �
∏r
i=0 τi

∆

is Cartesian in the category of fs log stacks. The crucial point, however, is that the forgetful functor

LogStacksfs → Stacks

does not preserve fibre products. To say it another way: the underlying stack of a fibre product

of fs log stacks does not (in general) agree with the fibre product of the underlying stacks.

Rather, the former is obtained from the latter by passing to a closed substack and then taking

a finite cover (see Appendix 3.5.3).

In order to understand this, let us denote byMnot-fs
0,α (P

N |D,d ) the fibre product in the category

Stacks of ordinary stacks:

Mnot-fs
0,α (P

N |D,d )
∏r
i=0M

log
0,αi (P

N |Hi ,d )

M0,n(P
N ,d )

∏r
i=0M0,n(P

N ,d )

τ �
∏r
i=0 τi

∆

The notation is supposed to indicate that Mnot-fs
0,α (P

N |D,d ) should be thought of as a moduli

space of log stable maps where the base is no longer required to be fine or saturated. This has

a natural log structure, which is not fs, and the integralisation and saturation process produces

a map of log stacks

ρ : Mlog
0,α(P

N |D,d ) →Mnot-fs
0,α (P

N |D,d )

which on the underlying stacks is a finite cover of a closed substack. If we now forget about the

log structures on the moduli spaces, we obtain a diagram of stacks:
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Mlog
0,α(P

N |D,d )

Mnot-fs
0,α (P

N |D,d )
∏r
i=0M

log
0,αi (P

N |Hi ,d )

Msnc
0,α (P

N |D,d )
∏r
i=0M

Gat
0,αi (P

N |Hi ,d )

M0,n(P
N ,d )

∏r
i=0M0,n(P

N ,d )

ρ

τ

σ �
∏r
i=0 τi

�

∆

This diagram will allow us to understand the morphism τ, and as such to compare the geometry

of the snc space with the log space. First of all, it is known that the map
∏r
i=0 τi is finite [Che14,

Proposition 3.7.5] (in fact, it is a bijection on geometric points [Ran17, Proof of Theorem A,

Step III]). Therefore, the pulled-back map

σ : Mnot-fs
0,α (P

N |D,d ) →Msnc
0,α (P

N |D,d )

is also finite. Thus, the geometry of these two spaces are not so di�erent. In particular, their

irreducible components are in bijection and so (see Example 3.2.3) both spaces will typically

have components of excess dimension.

On the other hand, we claim that the space Mlog
0,α(P

N |D,d ) in the top left is log smooth and

irreducible of the correct dimension. Indeed, it has an obstruction theory [GS13, §5] over the

moduli stack M̃log
0,n of not-necessarily basic log smooth curves, given by

(R•π∗ f ∗ T
log
PN |D
)∨

and in this case the logarithmic tangent bundle fits into a logarithimic Euler sequence [Ang14,

Theorem 4.3] [Dol07]:

0→ OPN →

r⊕
i=0

OPN

N⊕
i=r+1

OPN (1) → Tlog
(PN ,D)

→ 0

Pulling back along f and passing to the long exact cohomology sequence, we obtain

H1(C, f ∗ Tlog
(PN ,D)

) = 0

and so the moduli space is unobstructed over M̃log
0,n . This latter space is not smooth, but it is

log smooth since the natural map

M̃
log
0,n = Log(M0,n) → M0,n
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is log étale [ACGS17, Lemma 3.3.2] and M0,n is log smooth. Since it is log smooth, the locus

where the log structure is trivial forms a dense open subset [Niz06, Proposition 2.6], and in this

case it is easy to see that this coincides with the image of the open embedding:

M0,n ↪→ M0,n ↪→ M̃
log
0,n

Thus M̃log
0,n is irreducible (since M0,n is), and has dimension equal to dimM0,n = n − 3. Since

the map

Mlog
0,α(P

N |D,d ) → M̃
log
0,n

is smooth, it follows that Mlog
0,α(P

N |D,d ) is irreducible of the expected dimension. Moreover

since the map is smooth and strict it is also log smooth, from which it follows thatMlog
0,α(P

N |D,d )

is log smooth (note, however, that it is not in general smooth, since M̃log
0,n has singularities).

Bringing these observations together, we see that we have a morphism

τ : Mlog
0,α(P

N |D,d ) →Msnc
0,α (P

N |D,d )

whose source is log smooth and whose target contains many components of excess dimension.

Furthermore, τ is an isomorphism over the nice locus, where the log structure on C is simply

obtained by pulling back the log structure from the target. Therefore the image of τ is equal to

the main component ofMsnc
0,α (P

N |D,d ), and τ itself can be interpreted as a log desingularisation

of this main component.

Here we see the true power of the logarithmic approach. We knew from the beginning that

the snc space had a main component, but we did not know how to identify it. The logarithmic

machinery not only identifies this component, but also logarithmically desingularises it. In §3.4

we will see how to apply this in order to compute invariants.

3.3.3. Connectedness of the moduli spaces. Here we take a brief detour to record a simple

but important fact (used implicitly in the discussion above).

Lemma 3.3.3. All of the following spaces are connected:

Mlog
0,α(P

N |D,d ) Mnot-fs
0,α (P

N |D,d ) Msnc
0,α (P

N |D,d )

Proof. We first show that the moduli space of log stable maps is connected. The argument we

present is due to M. Gross (though we have since discovered that a similar argument has been

given independently in [CS13, §2]). As already discussed, the moduli space

Mlog
0,α(P

N |D,d )
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can be considered as an fs log stack over the trivial log point, and our earlier arguments show

that it is log smooth (alternatively, use the same argument as in the proof of [CS13, Proposition

2.1]). By [Niz06, Proposition 2.6] it follows that the locus on which the log structure is trivial is

dense. Therefore, it su�ces to show that this locus is connected.

The log structure is trivial if and only if the ghost sheaf is trivial, and the construction of the

minimal monoid given in [GS13, §1.5] shows that this can only happen when the source curve is

smooth and does not map into any of the components of D . But in this case the log stable map

is uniquely determined by the underlying stable map, and so this locus is isomorphic to the

nice locus in the snc space (see Example 3.2.3). As already discussed, one can easily show that

the nice locus is connected (in fact, irreducible) because it admits an explicit parametrisation.

Thus, we conclude that the log moduli space is connected.

Now, recall that the map

Mlog
0,α(P

N |D,d ) →Mnot-fs
0,α (P

N |D,d )

is given by integralisation and saturation of log stacks. Since this construction is carried out

locally on the target, the number of connected components of the source must be greater

than or equal to the number of connected components of the target; hence we conclude that

Mnot-fs
0,α (P

N |D,d ) is connected. Finally, the map

Mnot-fs
0,α (P

N |D,d ) →Msnc
0,α (P

N |D,d )

is surjective (since it is obtained by pulling back a surjective morphism) and bijective on geo-

metric points, and so we conclude that Msnc
0,α (P

N |D,d ) is also connected. �

Remark 3.3.4. It would be nice to give a direct proof that Msnc
0,α (P

N |D,d ) is connected, by

showing that a general object of this space can always be deformed to lie in the nice locus. We

have some ideas on how to go about this, but are not yet able to give a complete argument

which covers all cases.

3.3.4. Comparing the virtual classes. It is natural to ask whether the map

τ : Mlog
0,α(P

N |D,d ) →Msnc
0,α (P

N |D,d )

preserves the virtual classes. In general, the answer is “no”. Here we will give a simple example

to demonstrate this fact. Note that since the source of τ is irreducible of the correct dimension,

its virtual class is just the ordinary fundamental class.



91

Example 3.3.5. Consider the target geometry (P2,H0+H1), with d = 2, n = 1 and the following

vector of tangency orders:

α =
©­«
2

2

ª®¬
Consider the corresponding map of moduli spaces:

τ : Mlog
0,α(P

2 |D,2) →Msnc
0,α (P

2 |D,2)

In this case the virtual dimension is 2. As already discussed, the logarithmic moduli space is

irreducible of the correct dimension, and τ maps surjectively onto the main component of the

snc space. We will now examine the geometry of the snc space directly. As with any snc space,

it has a main component of the expected dimension (in this case, 2):

Mmain
0,α (P

2 |D,2) ⊆Msnc
0,α (P

2 |D,2)

Now let us consider the locus of maps of the following form:

C0

d0 = 0

C1

d1 = 1
C2

d2 = 1

x1

(
1

1

) (
1

1

)

This locus is isomorphic (up to a double cover) to the product of the moduli spaces for C0,C1

and C2 separately, which is:

M0,3 ×M
snc
0,α′(P

2 |D,1) ×Msnc
0,α′(P

2 |D,1), α′ =
©­«
1

1

ª®¬
The locus therefore has dimension 0 + 1 + 1 = 2, and as such forms an irreducible component

of the moduli space, distinct from the main component; we will call this the other component:

Mother
0,α (P

2 |D,2) ⊆Msnc
0,α (P

2 |D,2)

We claim that in this example, these two components make up the entire moduli space. To

see this, consider an arbitrary element (C,x1, f ) ∈ Msnc
0,α (P

2 |D,2) and let C ′ ⊆ C denote the

irreducible component of C contaning x1. We will consider several cases. First, if C ′ is not

mapped inside H0 or H1 then we must have C = C ′ and then (C,x1, f ) belongs to the nice locus,

hence to the main component.
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Next, if C ′ is mapped inside H0 ∩ H1 then deg f |C ′ = 0 and by stability there must be two

non-contracted components of the curve adjacent to C ′. Each of these could be mapped inside

H0 or H1, but infinitesimally we can deform them outside of these hyperplanes. Thus, (C,x1, f )

belongs to the other component.

Finally, suppose C ′ is mapped inside H0 but not inside H1. Then we must have deg f |C ′ = 2

since x1 must have tangency order 2 with respect to H1. So C = C ′ and we may deform the map

to obtain an element of the nice locus. Hence, (C,x1, f ) belongs to the main component.

We thus conclude that the snc moduli space is made up of two irreducible components, each

of dimension 2:

Msnc
0,α (P

2 |D,2) =Mmain
0,α (P

2 |D,2) ∪Mother
0,α (P

2 |D,2)

Thus we may write the virtual fundamental class as

[Msnc
0,α (P

2 |D,2)]virt = λ · [Mmain
0,α (P

2 |D,2)] + µ · [Mother
0,α (P

2 |D,2)]

for some λ, µ ∈ Q. Moreover, since the virtual fundamental class is defined by taking a refined

intersection product inside the (smooth) moduli space of absolute stable maps to P2, we have

by [Ful98, §8.2] that λ, µ > 0.

On the other hand, τ maps onto the main component of the snc space and is an isomorphism

over the (dense) nice locus, and so:

τ∗[M
snc
0,α (P

2 |D,2)] = [Mmain
0,α (P

2 |D,2)]

In paticular, τ does not preserve the virtual fundamental classes: there is a non-zero piece of

the virtual class of the snc space supported away from the main component, which is not seen

by τ.

3.4. Towards a recursion formula

The original motivation for introducing the snc moduli spaces was to prove a Gathmann-

like recursion formula for log Gromov–Witten invariants. However, as we saw in the previous

section, the snc moduli spaces are not suited for computing log invariants, since they are not

virtually birational to the moduli spaces of log stable maps.

This suggests that, in order to obtain a recursion formula for log invariants, we should work

directly on the log space. This approach provides a number of simplifications – the spaces

involved are irreducible of the correct dimension, and can be partially described using tropical

geometry – but also presents its own di�culties, the most pressing of which is the question of
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gluing for log maps, i.e. understanding the recursive structure of the boundary of the moduli

space.

In this section we will attempt to apply the recursion formula to a number of examples,

explaining the di�culties we encounter and our attempts to overcome them. Our approach

will be rather informal, and it should be clear to the reader that this is still very much work in

progress.

3.4.1. The recursion scheme. We assume that the reader is familiar with Gathmann’s recur-

sion formula for smooth divisors, as described in §2.2.2. The basic idea of the snc recursion is

as follows. We start with a moduli space of log stable maps:

Mlog
0,α(P

N |D,d )

Choose a marked point xk ∈ {x1, . . . ,xn} and a hyperplane H j ∈ {H0, . . . ,Hr } with α
j
k > 0. This

is where we will perform the recursion. Consider the following (larger) moduli space, obtained

by lowering the tangency order at xk :

Mlog

0,α−e jk
(PN |D,d )

As in [Gat02, Construction 2.1], we can construct a line bundle on this moduli space whose first

Chern class is equal to

(α
j
k − 1) · ψk + ev

∗
k H

and which carries a regular section whose vanishing locus includes the divisor

Mlog
0,α(P

N |D,d ) ⊆Mlog

0,α−e jk
(PN |D,d )

as well as a number of comb loci, given by the strata in Mlog

0,α−e jk
(PN |D,d ) where xk belongs to

a component of the source curve mapped inside Hi . Consequently we obtain a relation in the

Chow group of

Mlog

0,α−e jk
(PN |H ,d )

which one should think of as describing how to decrease the tangency of xk to H j . The problem

– and this is not only a technical problem, but actually involves some geometry – is to identify

the comb loci which appear here, and to express integrals over them in a recursive manner.
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We will see how this plays out in a number of examples. In order to identify the comb loci,

we will adopt the following strategy. Consider the map

ϕ : Mlog

0,α−e jk
(PN |D,d ) →Mlog

0,α j−ek (P
N |H j ,d )

which we may think of as a closed embedding. The line bundle and section which we constructed

also make sense on Mlog
0,α j−ek (P

N |H j ,d ), and as such we may obtain our comb loci by first

identifying the appropriate comb loci in Mlog
0,α j−ek (P

N |H j ,d ) (by essentially the same analysis

as in [Gat02]) and then pulling back along ϕ.

Remark 3.4.1. The reader familiar with log Gromov–Witten theory may feel somewhat uneasy

hearing us talk about “decreasing the tangency”, since log stable maps must, by definition, have

maximal tangency, i.e. we always have

n∑
i=1

α
j
i = d

for each hyperplane H j . The way we make sense of non-maximal tangencies such as α − e jk
is to introduce an additional marked point (which we refer to as �ctitious) which has tangency

1 with respect to H j (and zero with respect to all other hyperplanes). Intuitively, there is not

much di�erence between this space and the true “non-maximal tangency space”, and this can

actually be made precise [Gat02, Lemma 1.15(i)].

Notation 3.4.2. Through this section, we will use the shorthand notation[
α
]PN
d

to denote the following moduli space of log stable maps:

Mlog
0,α(P

N |D,d )

Here, as before, α is a matrix of tangency orders, with the columns of α corresponding to

the marked points and the rows corresponding to the components of the divisor D . If xi ∈

{x1, . . . ,xn} is a marked point, we will use

H [i ] := ev∗i H

to denote the induced cohomology class on [α]P
N

d .
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3.4.2. Example 1. Consider the moduli space


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0


P2

1

parametrising degree 1 maps to P2 with 5 marked points and tangency orders to the toric

boundary as specified in the above matrix. This has dimension equal to the virtual dimension

vdim


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0


P2

1

= vdimM0,5(P
2,1) − 3 = 4

and so we can attempt to compute the following log Gromov–Witten invariant:

H [4]2ψ4ψ5 ∩


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0


P2

1

This has been computed in [MR16, Example 5.5] by an enumeration of tropical curves, giving

an answer of 2. Here we will compute this invariant using the log recursion.

The procedure, as outlined in §3.4.1 above, is to reduce the tangencies at each of the marked

points. Let us start with x1, which is tangent to H1 to order 1 (and not tangent to any of the

other hyperplanes). We must consider the corresponding recursion formula in the moduli space

of log stable maps to (P2,H1)

Mlog
0,(0,...,0)(P

2 |H1,1) =M0,5(P
2,1)

which in this case takes a particularly simple form:

[Mlog
0,(1,0,...,0)(P

2 |H1,1)] = H [1] ∩ [M
log
0,(0,...,0)(P

2 |H1,1)]

The reason no comb loci appear here is because the equation

d0 +
r∑
i=1

mi =
∑
xk ∈C0

α
j
k
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is never satisfied, since the right hand side is zero. Pulling back along ϕ as in §3.4.1, we obtain

H [4]2ψ4ψ5 ∩


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0


P2

1

= H [1]H [4]2ψ4ψ5 ∩


0 0 0 0 0

0 1 0 0 0

0 0 1 0 0


P2

1

Applying the same argument to x2 and x3, we can remove all the tangencies and obtain:

H [4]2ψ4ψ5 ∩


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0


P2

1

= H [1]H [2]H [3]H [4]2ψ4ψ5 ∩ [M0,5(P
2,1)]

The right hand side can be computed by applying the divisor equation, the dilaton equation

and finally the Mirror Theorem (I used Growi [Gat]). The answer is 2, as expected.

3.4.3. Example 2. The previous example was easy because no comb loci appeared. However,

this is usually too much to hope for; we will now present a simple case in which comb loci do

in fact appear. Consider the following moduli space:
1 1 0

0 0 2


P2

2

This has dimension given by:

vdimM0,3(P
2,2) − 4 = 4

Let us try to apply the recursion to compute the following invariant:

ψ4
3 ∩


1 1 0

0 0 2


P2

2

We begin by recursing at x1 with respect to H1. The first thing to do is to identify Gathmann’s

comb loci in the corresponding moduli space of log stable maps to (P2,H1):[
0 1 0

]P2

2

(We will then have to pull these back to obtain the comb loci in the space of maps to (P2,H1 +

H2)). Recall that we have an internal component C0 containing x1 and a collection C1, . . . ,Cr

of external components such that:

(3.4.1) d0 +
r∑
i=1

mi =
∑
xi ∈C0

αi
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In this case, we must have that x2 ∈ C0 in order for the right hand side to be non-zero. With

x2 ∈ C0, the right hand side is equal to 1, and so the only possibility is d0 = 0 and r = 1 with

m1 = 1. There are two corresponding comb loci, given by:

d0 = 0

d1 = 2

1
x1
0

x2
1

x30

(I)

d0 = 0

d1 = 2

1
x1
0

x2
1

x3
0

(II)

Here we have indicated the tangencies with respect to H1. Note that equation (3.4.1) is satisfied

in both cases. These loci define divisors inside the moduli space

[
0 1 0

]P2

2

which contribute to the recursion. Pulling back along ϕ corresponds to imposing the tangency

conditions with respect to H2. The loci we obtain are given by:

d0 = 0

d1 = 2

(
1

0

)
x1

(
0

0

)
x2

(
1

0

)

x3
(
0

2

)

(I)

d0 = 0

d1 = 2

(
1

2

)
x1

(
0

0

)
x2

(
1

0

)
x3

(
0

2

)

(II)

Note thatC0 is contracted insideH1 in case (I) but insideH1∩H2 in case (II). The corresponding

moduli spaces are equal to the products of the moduli spaces for C0 and C1:

(I): M0,3 ×


1 0

0 2


P2

2

(II): M0,4 ×


1

2


P2

2

Note that these are both 4-dimensional, so they define divisors inside our original space


1 1 0

0 0 2


P2

2
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as expected. Now, locus (II) does not contribute because the ψ4
3 insertion vanishes on M0,4.

On the other hand, locus (I) contributes

ψ4
2 ∩


1 0

0 2


P2

2

= H [1]ψ4
2 ∩

[
0 2

]P2

2
= −3/4

as calculated using Growi. Thus, the recursion formula reads:

ψ4
3 ∩


1 1 0

0 0 2


P2

2

= H [1]ψ4
3 ∩


0 1 0

0 0 2


P2

2

− (−3/4)

If we now recurse at x2, no comb loci appear for the same reason as in Example 1 above. Thus

we obtain:

ψ4
3 ∩


1 1 0

0 0 2


P2

2

= H [1]H [2]ψ4
3 ∩

[
0 0 2

]P2

2
+ 3/4

The first term on the right hand side can now be computed using Gathmann’s original recursion

for relative Gromov–Witten invariants. The result (given by Growi) is:

ψ4
3 ∩


1 1 0

0 0 2


P2

2

= 17/8 + 3/4 = 23/8

3.4.4. Example 3. In the previous example an important step was to identify the preimage of

Gathmann’s comb locus under the map:

Mlog
0,α((P

2 |H1 +H2),d )
ϕ
−→Mlog

0,α1(P
2 |H1,d )

In the example we considered, this was not terribly di�cult: we just imposed the tangencies with

respect to H2 in the only way possible. However, in general the preimage can be more tricky

to identify. We will illustrate this through two examples: the current one, which can be solved

using tropical geometry, and a further example which requires more sophisticated methods. To

keep the exposition simple, we will abandon the attempt at calculating individual invariants,

and instead focus our attention on certain specific comb loci. Consider the following moduli

space of log stable maps to (P2,H1 +H2)

(3.4.2)


2 1 0

0 0 3


P2

3

which has dimension 5. Let us recurse at x1, but now by increasing the tangency. This means

that the comb loci we consider consist of the subloci of the moduli space (3.4.2), in which x1
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belongs to an internal component of the curve. As usual, we begin by considering the comb

loci with respect to H1. In particular, we will focus our attention on the following locus

d0 = 0

d1 = 2

1

d2 = 1

1
x1
2

x3
0

x21

where as usual, the tangencies we have indicated are with respect to H1. This gives a locus

inside the moduli space [
2 1 0

]P2

3

and in order to obtain the snc comb locus, we must identify its preimage along the map:

ϕ :


2 1 0

0 0 3


P2

3

→

[
2 1 0

]P2

3

There is an obvious way to impose the tangencies with respect to H2, illustrated in the following

figure:

d0 = 0

d1 = 2

(
1

2

)

d2 = 1

(
1

1

)
x1

(
2

0

)
x3

(
0

3

)

x2
(
1

0

)

When we do this, however, we find that the corresponding moduli space is given by

(3.4.3) M0,4 ×


1 1

2 0


P2

2

×


1

1


P2

1

which has dimension 1 + 3 + 1 = 5. But this was supposed to be a divisor inside our original

moduli space 
2 1 0

0 0 3


P2

3

which also has dimension 5. So we have ended up with a locus of dimension 1 greater than

expected. What has gone wrong?
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The explanation is as follows. What we really have done, in imposing the tangencies with

respect to H2 as above, is to calculate the preimage of our comb locus in the snc moduli space.

But, as we saw before, the snc moduli space can have many components of excess dimension.

What we really want, therefore, is the preimage in the log moduli space, which will actually be

much smaller; in fact, it will be equal (up to a finite map) to the intersection of the locus above

with the main component of the snc space. How are we to identify this preimage? We do not

yet have a fully satisfactory answer to this question, but we do have certain techniques at our

disposal which in some cases (such as the present one) are enough to completely identify the

preimage.

The first idea is to use the connection between log Gromov–Witten theory and tropical geom-

etry. We know that any log stable map must induce a corresponding map on the tropicalisations.

Consider the comb locus with respect toH1 identified above. The corresponding tropical picture

is as follows:

H1

1

1

C1 x21

C0
C2

2 x1

x3

Now, consider the corresponding locus of log stable maps to (PN ,H1). We are trying to identify

the sublocus consisting of those maps which admit a lifting to a log stable map with target

(PN ,H1 +H2). If such a lift exists, then it must tropicalise to give a tropical map lifting the one

above. We see that there are two possibilities for such a tropical lift:

H1

H2

(I)

C1
x2

1

(
1

2

)
C0 x1

2

x3
3

C2

(
1

1

)

H1

H2

(II)

C2

(
1

1

) C0 x1
2

x3
3

C1 x2
1

(
1

2

)
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Thus, we are forced to put either C1 or C2 into a hyperplane in order to obtain a continuous

tropical map. The corresponding moduli spaces are:

(I): M0,4 ×


1 1

0 2


P2

2

×

[
1
]P1

1
(II): M0,4 ×


1

1


P2

1

×

[
2 0

]P1

2

Each of these has dimension 4, and hence forms a divisor in the original moduli space (3.4.2);

thus, we have succesfully identified the preimage of Gathmann’s comb locus in the log moduli

space. Notice that the 5-dimensional locus (3.4.3) which we identified earlier would correspond

in the tropical picture to having both C1 and C2 mapped to the origin; but this does not give

a valid tropical map (the resulting map is not continuous). Analysing the valid tropical maps

gives us a precise description of the intersection of the locus (3.4.3) with the main component: it

is the sublocus where eitherC1 orC2 is mapped into, respectively, H1 orH2. This is a description

which we would have been unlikely to obtain without the logarithmic/tropical picture in mind.

3.4.5. Example 4. The existence of a tropical lift is a necessary, but not in general su�cient,

condition for the existence of a log lift. In this final example, we discuss a case in which the

locus presented to us by the tropical picture has too high dimension, and must be cut down by

additional conditions which guarantee the existence of a log lift. We consider the moduli space


3 0

0 3


P2

3

which one can check is 4-dimensional. Suppose that we are increasing the tangency order at x1

with respect to H1. In doing so, we encounter the following comb locus with respect to H1:

d0 = 0

d1 = 1

1 2

d2 = 2

3
x1

0
x2

As in the previous example, we will attempt to identify the corresponding locus in the space of

maps to (P2,H1 + H2) by way of tropical geometry. The tropical picture corresponding to the

above locus is:
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H1

1

2

C1
C0

C2
3 x1

x2

Now we want to impose the tangency conditions with respect to H2. On the tropical level, this

involves lifting the map above to a tropical curve mapping into the tropicalisation of (P2,H1+H2).

The most generic lift possible is the following

H1

H2

C1

(
1

1

)

C2

(
2

2

)
C0 x13

x2
3

where both C1 and C2 are mapped to the origin. The corresponding moduli space of stable

maps is equal to

(3.4.4) M0,4 ×


1

1


P2

1

×


2

2


P2

2

which has dimension 1 + 1 + 2 = 4. But the original moduli space was
3 0

0 3


P2

3

which also has dimension 4. Thus, we have ended up with a locus of dimension 1 too large.

The issue is that in this case the existence of a tropical lift is not enough to guarantee the

existence of a log lift. We are forced, therefore, to seek out additional criteria for log liftability.

The basic idea which we will pursue here is that the existence of a log lift implies the existence

of a rational function on C satisfying certain special properties. As we will see, the existence of

this rational function will impose additional conditions on the moduli of C .

Suppose therefore that a log lift exists, and consider the following diagram of monoid sheaves

on C :
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0 O∗C f ∗MX f ∗MX 0

0 O∗C MC MC 0

=

The space of global sections of f ∗MX is canonically identified with N2. Taking the section

(1,0) and restricting to the component C0 ⊆ C , we obtain from the above diagram an induced

isomorphism of line bundles on C0:

f ∗0 OP2(H1)
�
−→ OC0(3x1 − q1 − 2q2)

where f0 = f |C0 . Similarly, taking (0,1) we get an isomorphism:

f ∗0 OP2(H2)
�
−→ OC0(3x2 − q1 − 2q2)

But there is a natural isomorphism

OC0

�
−→ f ∗0 OP2(H1 −H2)

given by f ∗0 (s1/s2). Thus we get an induced isomorphism

OC0

�
−→ OC0(3x1 − 3x2)

i.e. a rational function r0 on C0 which vanishes to order 3 at x1, has a pole of order 3 at x2 and

is invertible everywhere else.

We can carry out the same construction on C1 and C2, producing rational functions r1 and

r2 which glue with r0 to produce a global rational function r on C . Now, if we suppose that the

maps f |C1 and f |C2 have been fixed, then r1 and r2 are also fixed. Therefore the values which

r0 must take at q1 and q2 are also fixed (note that r0 is non-vanishing at these points, by the

discussion above). The moduli point (C0,x1,x2,q1,q2) ∈ M0,4 must be such that the rational

function r0 exists, and (as we discuss below) this is a codimension 1 condition. Thus we obtain

a 3-dimensional sublocus of the 4-dimensional locus (3.4.4), which is precisely the comb locus

we were looking for.

If we want to identify the cohomology class that this locus defines (and we do, since we want

to compute integrals over it), then by the principle of continuity we may assume that r0 needs to

take the same value at q1 and q2. We may view r0 as a degree 3 map P1 → P1, totally ramified

at x1 and x2. If we fix q1 there are then 3 choices for what q2 can be, one of which is q2 = q1.
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Thus we see that the locus of curves satisfying the rational function condition represents the

class

3Dq1q2 ∈ A
1(M0,4)

which is certainly something we can integrate over. Thus, we have succesfully managed to

identify the comb locus in this example.

The two steps taken here – using tropical curves to identify candidate loci, and then imposing

rational function conditions on these loci – seem to provide a general solution to the problem

of identifying the logarithmic comb loci. However, the final form which the recursion formula

should take, as well as proofs of some of the claims made above, are still work in progress.

Appendix 3.5: Notes on log geometry

In this appendix we provide a short introduction to log geometry. Our approach is somewhat

unorthodox, placing particular emphasis on those technical points which are important for our

work, while ignoring many others. Since there already exist many good general references for

log schemes, we feel that this decision is justified. The goal is to provide the reader with the

necessary background for understanding the work presented in §§3.1–3.4.

A guide to the literature. The original reference for log geometry is [Kat89]. Other good in-

troductions include [ACG+13] [Kat96, §2] [Cai00a] [Che14, Appendix A]. While all of these

are well-written and cover most of the important examples, their relative brevity means that

many crucial details and technicalities are omitted. For these, one must consult the comprehen-

sive [Ogu] and the (unfinished) [Gil09], the latter of which has a wonderful knack for drawing

the reader’s attention to potentially dangerous technical aspects.

3.5.1. Log schemes.

3.5.1.1. Monoids. The basic algebraic structure in log geometry is the monoid. For us, a monoid

is a set with a binary operation, satisfying all the axioms for an abelian group except perhaps

the existence of inverses.

Example 3.5.1. Every abelian group is a monoid. The simplest monoid which is not a group

is the monoid of natural numbers N, with addition as the binary operation. If R is any (com-

mutative) ring, then R can be considered as a monoid under multiplication.
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Remark 3.5.2. Usually we will write the binary operation additively and denote the identity by

0. An important exception is when dealing with the multiplicative monoid of a ring (discussed

above) in which case we will write the binary operation multiplicatively and denote the identity

by 1.

There is a whole zoo of adjectives used to describe monoids satisfying various properties:

integral, saturated, sharp, torsion free, toric, etc. The sheer length of this list can be a bit

bewildering at first, but eventually all these notions become familiar and natural. To avoid

burdening the reader unnecessarily, we will introduce such terms only as and when they are

needed.

3.5.1.2. Log structures. We now come to the central notion of this section.

De�nition 3.5.3. Let (X ,OX ) be a locally ringed space. A prelog structure is a sheaf of monoids

MX on X together with a morphism of monoid sheaves

α : MX → OX

where OX is viewed as a monoid sheaf under multiplication. A log structure is a prelog structure

such that the induced map

α−1(O∗X ) → O∗X

is an isomorphism.

The rough intuition here is that MX consists of “local logarithms” of certain functions on X ,

with α serving as the exponential map. In some cases a function has a unique local logarithm,

in which case α is injective. In other cases, there may be many choices for the logarithm. An

invertible function should always have a unique logarithm, which is precisely the condition that

a prelog structure needs to satisfy in order to be a log structure. Note that in general α is neither

injective nor surjective.

Remark 3.5.4. Of course, we are only ever interested in the case where (X ,OX ) is a scheme.

Nevertheless, the definition makes sense for any locally ringed space, and I believe it is clearer to

state it in this level of generality, in order to emphasise that in some sense the log structure does

not “see” the fact that the underlying space is a scheme. When dealing with log structures, it is

important to be able to think a bit more topologically, which is what I have tried to convey in this
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definition. See §3.5.2.2 below for a more in-depth discussion of this (somewhat philosophical)

point.

De�nition 3.5.5. A log scheme consists of a scheme equipped with a log structure. In keeping

with the established notation, we will denote the underlying scheme by X , the sheaf of monoids

by MX and the entire package by X = (X ,MX ).

Remark 3.5.6. Strictly speaking, what we have defined above is a Zariski log scheme. In many

situations it is necessary to take a finer topology, usually the étale topology. For the purposes

of this exposition, however, we will ignore this extra layer of subtlety.

Example 3.5.7. Let k be any field and take X = Spec k, so X is a point with structure sheaf

k. Let Q be any monoid and consider the morphism:

α : Q ⊕ k∗ → k

(q , λ) 7→


λ if q = 0

0 if q , 0

This is a morphism of monoids as long as Q is sharp, meaning that q1+q2 = 0 only if q1 = q2 = 0

(this should be thought of as a convexity assumption). It is then clear that α−1(k∗) is isomorphic

to k∗ via α, so we have defined a log structure. We will denote this by (Spec k,Q ).

Example 3.5.8. Let X be a smooth variety and let D ⊆ X be any hypersurface. Define a sheaf

of monoids MX on X as follows:

Γ(U,MX ) =
{
f ∈ Γ(U,OX ) : f |U \D ∈ Γ(U \D,O∗X )

}
That is, MX is the subsheaf of OX consisting of those functions which are invertible outside of

D . We take α to be the inclusion of monoid sheaves:

α : MX ↪→ OX

This defines a log structure on X , called the divisorial log structure associated toD . The divisorial

log structure plays a fundamental role in logarithmic Gromov–Witten theory, where it is used

to keep track of the tangency orders of a stable map.
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Example 3.5.9. For any monoid P , consider the monoid algebra k[P ] and the associated

scheme X = Spec k[P ]. The natural map P → k[P ] induces a morphism of monoid sheaves

P → OX

where P is the constant sheaf on X . This is a prelog structure, but not a log structure in

general. However we will shortly see how general machinery can be used to produce a minimal

“associated log structure” on X :

P a → OX

3.5.1.3. Basic constructions for monoid sheaves. Much of the discomfort caused by log geometry

stems from a lack of fluency when dealing with monoids and their sheaves. Monoids do not

form an abelian category, so the general techniques of homological algebra do not apply. Nev-

ertheless, the categories of monoids and monoid sheaves are su�ciently nice in the sense that

various desirable (co)limits exist. In the following proposition we catalogue the ones which are

most useful for our purposes, and provide references for the curious reader. In all cases, the

proof proceeds by first recognising that the desired (co)limit exists in the category of monoids,

and then sheafifying the presheaf obtained by applying this (co)limit on each open set.

Proposition 3.5.10. Let X be a topological space. Then the following (co)limits exist in the

category of monoid sheaves on X :

(1) Coequalisers (hence in particular cokernels) [Ogu, p.5].

(2) Fibred products [Ogu, §1.1] [Cai00b].

(3) Fibred coproducts [Ogu, (1.1.1)].

There is another universal construction worth mentioning. Given any monoid P , there is

a universal associated abelian group P gp with a morphism P → P gp such that any map with

source P and target an abelian group factors through this morphism. Sheafifying this, we obtain:

Proposition 3.5.11. Let X be a topological space. Then the inclusion morphism from the

category of abelian sheaves to the category of monoid sheaves admits a left adjoint, called

groupi�cation: M 7→Mgp.

3.5.1.4. Basic constructions for log schemes. Now that we have some (co)limits of monoid sheaves

at our disposal, we can use them to carry out some basic constructions involving log structures.
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De�nition-Lemma 3.5.12 (Log structure associated to a prelog structure). Given a prelog

structure NX → OX on X , there is a unique associated log structure

N a
X → OX

together with a morphism of prelog structures NX → N a
X such that any morphism from NX to

a log structure factors uniquely through this one.

Proof. We define N a
X as the fibred coproduct in the category of monoid sheaves:

α−1(O∗X ) NX

O∗X N a
X

y

The universal property produces a map N a
X → OX and it is easy to check that this prelog

structure is in fact a log structure �

Example 3.5.13. In Example 3.5.9 above, we constructed for any monoid P a tautological

prelog structure

P → OX

on X = Spec k[P ]. Applying the above construction, we obtain a canonical associated log

structure:

P a → OX

This log scheme is typically denoted Spec (P → k[P ]) and is fundamental to the theory of

charts, discussed in §3.5.2. Note that P a is almost never a constant sheaf, even though P is.

De�nition 3.5.14 (Ghost sheaf). Given a log scheme X = (X ,MX ) the ghost sheaf (sometimes

also called the characteristic sheaf ) is denoted and defined

MX :=MX /α
−1(O∗X )

i.e. as the cokernel of the monoid sheaf morphism α−1(O∗X ) ↪→MX .

The ghost sheaf is a constructible sheaf, i.e. there exists a stratification of X into locally

closed subsets such that MX is constant on each stratum. As such, the ghost sheaf can be

understood entirely in terms of its stalks (including stalks at generic points) and generisation

maps. One should think of the ghost sheaf as capturing the combinatorial information carried
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by the log structure. It is a fundamental tool in log geometry, and is the basis for the close

interplay with tropical geometry.

Example 3.5.15. Consider Example 3.5.13 above with P = N2. We have X = A2 with log

structure MX induced by the prelog structure which is given on global sections by:

N2 → k[x, y]

(a,b) 7→ xayb

This is nothing but the divisorial log structure with respect to the divisor D = {xy = 0} ⊆ X

(though we will not use this fact). Let us now describe the stalks of MX . Recall that by

construction the monoid sheaf MX is given by

MX = N2 ⊕α−1(O∗X )
O∗X

where α is the map N2 → OX . A basic (and quite believable) fact of category theory [Gil09,

Lemma 4.3.4] then gives

MX = N2/α−1(O∗X )

so in order to determine to stalks of MX we just need to determine the stalks of α−1(O∗X ).

First take a point p ∈ X away from the two co-ordinate axes. The point (a,b) ∈ N2 is sent to

xayb ∈ OX ,p which is invertible since p does not lie on the co-ordinate axes. Thus, α−1(O∗X ,p ) = N2

and so the stalk MX ,p is zero.

Next, take a point p ∈ X which belongs to the {x = 0} axis but not to the {y = 0} axis. Then

xayb ∈ OX ,p is invertible if and only if a = 0, so α−1(O∗X ,p ) = N and is embdedded into N2 as

the second summand, so MX ,p = N. The same argument applies for a point p belonging to the

{y = 0} axis but not to the {x = 0} axis.

Finally, let p ∈ X be the origin. Then xayb ∈ OX ,p is not invertible unless a = b = 0 and so

MX ,p = N2. We thus obtain a complete picture of the stalks of MX :

{x = 0}

{y = 0}

N2

N

N

0
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In fact, this gives a complete description of the sheaf, if we also include the generisation maps.

Let η be the generic point of X and let σx and σy be the generic points of the co-ordinate axes.

Let p0 = 0 ∈ X be the origin. Then the constructible sheaf MX is described by the following

diagram of stalks and generisation maps:

MX ,σx = N

MX ,p0 = N2 MX ,η = 0

MX ,σy = N

π1

π2

The monoid Γ(X ,MX ) of global sections is given by the limit of this diagram, which in this

case is just N2, the stalk at the origin p0. Note in particular that:

N2 = Γ(X ,MX ) , Γ(X ,MX )/Γ(X ,O∗X ) = k∗/k∗ = 0

De�nition-Lemma 3.5.16 (Fibred coproduct of log structures). Let X be a scheme and

suppose we have a diagram of log structures on X :

N M1

M2

Then there exists a fibred coproduct (pushout) M1 ⊕N M2 in the category of log structures on

X .

Proof. By Proposition 3.5.10 we may form the pushout P in the category of monoid sheaves,

and by the universal property the dashed arrow in the following diagram exists:

N M1

M2 P

OX

y

Using the fact that N ,M1 and M2 are log structures, one can show that P → OX is a log

structure. We leave it to the reader to check that this satisfies the required universal property. �

De�nition 3.5.17 (Pull-back of log structures). Let Y = (Y ,MY ) be a log scheme and let

f : X →Y be a scheme morphism. We define a log structure f ∗MY on X , called the pull-back
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log structure, as follows. We have morphisms of monoid sheaves on X

f −1MY → f −1OY → OX

whose composition defines a prelog structure on X . By definition f ∗MY is then the log structure

associated to this prelog structure. Its monoid sheaf is given by:

f ∗MY = f −1MY ⊕α−1(O∗X )
O∗X

In the next section we will define what it means to give a morphism of log schemes. We will

then see that there is a natural map of log schemes (X , f ∗MY ) → (Y ,MY ), and that moreover

this map is strict (see Definition 3.5.20).

3.5.1.5. The category of log schemes.

De�nition 3.5.18. A morphism f = (f , f [) : (X ,MX ) → (Y ,MY ) of log schemes consists of

a scheme morphism f : X → Y together with a morphism f [ of monoid sheaves commuting

with the structure maps:

f −1MY MX

f −1OY OX

f [

f −1αY αX

f ]

Thus a morphism of log schemes consists of strictly more data than a morphism of schemes.

On the other hand, not every morphism of schemes admits a lift to a morphism of log schemes;

we will see examples of this phenomenon in §3.4. As above, we will often abuse notation, using

f to denote both a morphism of log schemes as well as the underlying morphism between the

underlying schemes.

Remark 3.5.19. By the universal property of the associated log structure, giving a map f [ as

above is equivalent to giving a map of monoid sheaves making the following diagram commute

f ∗MY MX

OX

f [

i.e. a morphism of log structures f ∗MY →MX on X .

Thus log schemes form a category, which we denote LogSch. There is an obvious forgetful

morphism:

LogSch→ Sch
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When considering moduli stacks of logarithmic objects, it is important to specify which of these

categories the stack is fibred over. We prefer to consider stacks over Sch, since this is where

we have the most tools at our disposal. On the other hand, there is a beautiful and non-trivial

interplay between stacks over LogSch and log stacks over Sch, which unfortunately we do not

have the time to enter into (the interested reader should consult [Kat00, §§3-4] [Gil12] [RSW17,

§2.7]).

De�nition 3.5.20. A log morphism f : (X ,MX ) → (Y ,MY ) is called strict if the sheaf map

f ∗MY →MX is an isomorphism.

De�nition-Lemma 3.5.21 (Fibre product of log schemes). Suppose that we have a diagram

of log schemes:

X

Y Z

f

g

Then there exists a fibre product X ×Z Y in the category LogSch.

Proof. The underlying scheme of X ×Z Y is taken to be the schematic fibre product:

X ×Z Y X

Y Z

πX

πY � f

g

To define the log structure, let π denote the projection X ×Z Y → Z . Pulling back the log

structure maps

f ∗MZ →MX g ∗MZ →MY

along πX and πY respectively, we obtain a diagram of log structures on X ×Z Y :

π∗MZ π∗XMX

π∗YMY

We define MX ×ZY as the pushout of the above diagram in the category of log structures on

X ×Z Y . We thus obtain a log scheme

X ×Z Y = (X ×Z Y ,MX ×ZY )

which one can check satisfies the required universal property. �
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The construction above shows that the map LogSch→ Sch preserves fibre products. How-

ever, there is a snag: in the cases of interest to us, we will have the need to take fibre products

not in the category LogSch of all log schemes, but in some full subcategory consisting of log

schemes satisfying certain extra conditions (to be precise, we will be interested in the category

of “fine and saturated” log schemes). The fibre products in these two categories do not agree

in general, and moreover the fibre product in the smaller category does not commute with the

fibre product in the category of schemes. This point, though technical, will be crucial for our

study, and we will say a lot more about it in §3.5.3.

3.5.2. Charts and coherence. Up until this point, we have allowed MX to be an essentially

arbitrary sheaf of monoids. But we know, from our experience of working with sheaves of

OX -modules, that arbitrary sheaves can be quite badly behaved, and that it is better to restrict

ourselves to (quasi)coherent sheaves, which admit a nice local description. In this section we

will discuss the corresponding notion in log geometry, that of a (quasi)coherent log structure, and

highlight some of the similarities and important di�erences with (quasi)coherent sheaves.

3.5.2.1. Charts. Throughout this section we let X = (X ,MX ) denote a log scheme.

De�nition 3.5.22. Let U ⊆ X be an open set. Then a local chart for (X ,MX ) (on U ) consists

of a monoid P and a monoid morphism

P → Γ(U,MX )

such that the induced morphism of log structures on U is an isomorphism:

P a �
−→MX |U

Here the log structure P a is defined as follows. The monoid map above induces a morphism of

monoid sheaves

P →MX |U

where P is the constant sheaf on U . Composing with the structure morphism MX |U → OU

makes P into a prelog structure, and the above map into a morphism of prelog structures (whose

target just happens to be a log structure). Taking the associated log structure P a we obtain by

the universal property a morphism of log structures P a →MX |U .

There is an alternative way to describe the data of a chart, which is quite useful in practice.
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Proposition 3.5.23. Let (X ,MX ) be a log scheme andU ⊆ X an open set. Then the following

data are equivalent:

(1) a local chart for (X ,MX ) on U ;

(2) a monoid P and a strict morphism of log schemes:

(U ,MX |U ) → Spec (P → k[P ])

Moreover, these both induce a monoid map P → Γ(U,OU ) whose associated log structure is

isomorphic to MX |U .

Proof. This is a simple exercise with definitions. �

De�nition 3.5.24. A log scheme (X ,MX ) is called quasicoherent if it can be covered by open

sets, each of which admits a chart. It is called coherent if on each open set the monoid P can be

chosen to be finitely generated.

Almost all log schemes which appear in nature are coherent. Coherent log schemes are much

easier to work with than arbitrary ones, since most local questions can be reduced to questions

in algebra. However, some caution is required; there is an important respect in which coherent

log schemes are much more badly-behaved than coherent sheaves; see §3.5.2.2 below.

Example 3.5.25 (Continuing Example 3.5.7). As before, let X = Spec k with log structure

associated to a monoid Q . Since X is a point, a sheaf can be identified with its space of global

sections and hence there is a tautological global chart:

Q ⊕ k∗ → Γ(X ,MX ) = Q ⊕ k∗

This chart, however, is not finitely generated. There is a better chart, given by:

Q → Q ⊕ k∗ = Γ(X ,MX )

q 7→ (q ,1)

To verify that this is a chart, we consider the composition Q → Q ⊕ k∗ → k, which is given by:

α : Q → k

q 7→


1 if q = 0

0 if q , 0
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The associated log structure is obtained via the fibre product

Q ⊕α−1(k∗) k
∗ = Q ⊕ k∗

which is indeed isomorphic to MX . Thus, (Spec k,Q ) is always quasicoherent, and is coherent

as long as Q is finitely generated.

Example 3.5.26 (Continuing Example 3.5.8). Consider a special case of the divisorial log

structure, namely when X and D are both smooth. We will construct local charts for (X ,MX ).

Choose an open cover of X which trivialises the line bundle OX (D). Given an open set U of

this cover, let f ∈ Γ(U,OX ) be the equation cutting out D . Consider the following monoid

morphism:

α : N→ Γ(U,MX ) ⊆ Γ(U,OX )

1 7→ f

Observe that α−1O∗U is a constructible sheaf, equal to 0 along D and N elsewhere. Hence the

stalks of Na are equal to N ⊕ O∗U,x along D and O∗U,x elsewhere. Thus we see that the induced

sheaf morphism

Na →MX |U

is an isomorphism on stalks, and hence is an isomorphism. Thus we have defined a chart, and

so (X ,MX ) is coherent.

The assumptions that X and D be smooth are not necessary. The same argument as above

works for any Cartier divisor D in any variety X , and more generally we may consider normal

crossings divisors D in X , though in this case the monoid defining our chart will not be as

simple as N.

Example 3.5.27 (Continuing Example 3.5.13). If P is any monoid, then Spec (P → k[P ]) is

quasicoherent by definition. If P is finitely generated then it is coherent, which happens if and

only if the scheme Spec k[P ] is of finite type).

3.5.2.2. Coherent log schemes do not deserve their name. Having introduced coherence, I want to

pause in order to discuss an important technical point, which in my opinion has not been given

the attention it deserves in the literature.



116

In ordinary algebraic geometry, coherent sheaves admit a purely algebraic description, at

least a�ne-locally: the category of coherent sheaves on an a�ne scheme X = Spec A is equiva-

lent to the category of finitely-generated A-modules.

Since this comes as second nature to most algebraic geometers, we often forget that it is

not entirely tautological. A priori, if we are given a coherent sheaf F on an a�ne scheme

X = Spec A, all we know is that there exists an a�ne open covering {X i = Spec Ai }i ∈I of

X , such that for each i the restriction F |Xi corresponds to a finitely-generated Ai -module Mi .

The non-trivial fact is that these modules Mi can in some way be “glued” to produce a global

A-module M corresponding to F .

There is an analogous situation in log geometry. Suppose we are given a coherent log scheme

(X ,MX ) whose underlying scheme X = Spec A is a�ne. Since MX is coherent, we know

that there exists an a�ne open cover {X i }i ∈I as above, such that for each i the log scheme

(X i ,MX |Xi ) admits a (global) chart. Since the X i are a�ne, such a chart induces the data of a

finitely generated monoid Pi and a morphism

Pi → Ai

from which the log structure MX |Xi can be recovered. As in the case of coherent sheaves,

the natural question is then the following: can we glue these local charts together, in order to

produce a global chart P → A? If we could, then we would be able to say that the category

of coherent log structures on X = Spec A is equivalent to the category of finitely-generated

monoids P equipped with a monoid morphism P → A.

Unfortunately, it turns out that this is not true; there are perfectly reasonable examples of

coherent a�ne log schemes which do not admit global charts. Consequently, there is no purely

algebraic description of the category of log structures on a given scheme, even a�ne-locally.

In my personal opinion, this fact lies behind much of the confusion and discomfort caused

by log structures. We are used to being able to reduce everything to a problem of algebra, at

least locally. But with log structures, we are forced to confront sheaves for what they really are:

the data of, for each open set, a monoid, and for each inclusion of open sets, a restriction map.

Of course, we can always take smaller open sets until we find one which has a chart, but we

are often not able to say how small these sets have to be. Therefore in doing log geometry, we

are forced to work with open sets, and so to think a little more topologically and a little less

algebraically.
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Example 3.5.28. There are numerous examples of a�ne log schemes with no global chart.

However, though it is easy to write down such a log scheme and convince oneself that none of

the obvious ways of constructing a global chart work, actually proving that no chart exists can

be quite tricky. Here we present an example first suggested to us by O. Overkamp, in which we

were actually able to prove the non-existence of a global chart.

Let X be a smooth, connected a�ne variety and let D ⊆ X be a smooth, connected divisor

which is not linearly trivial, i.e. such that OX (D) � OX . Such examples do indeed exist; for

instance, take X to be a smooth elliptic curve minus a point, and take D to be any point on X .

Let MX be the divisorial log structure on X with respect to D (this is coherent: see Example

3.5.26 above).

Proposition 3.5.29. There does not exist a global chart for X = (X ,MX ).

Proof. Suppose for a contradiction that such a chart exists. This means that there is a finitely

generated monoid P and a strict morphism:

(X ,MX )
f
−→ Spec (P → k[P ]) =: (Y ,MY )

Now, since P is finitely generated there exists a surjection Nr → P for some r ≥ 0, inducing a

log morphism:

(Y ,MY ) := Spec (P → k[P ])
g
−→ Spec (Nr → k[Nr ]) =: (Z ,MZ )

Here, of course, (Z ,MZ ) is just Ar equipped with the divisorial log structure corresponding to

the co-ordinate hyperplanes. The log map g induces a diagram of abelian sheaves onY :

0 O∗Y g ∗Mgp
Z g ∗Mgp

Z 0

0 O∗Y Mgp
Y Mgp

Y 0

Id

Taking global sections of the ghost sheaves, we obtain a sequence of maps:

Zr = Γ(Z,Mgp
Z )

g ∗
−−→ Γ(Y, g ∗Mgp

Z )
g [
−→ Γ(Y,Mgp

Y )

We denote the composition by ϕ : Zr → Γ(Y,Mgp
Y ). Given v ∈ Zr there is a line bundle on Y

associated to the global section ϕ(v ) of Mgp
Y . By the above diagram, this line bundle must be

trivial, since it is equal to the pull-back along g of the line bundle on Z associated to v , which

is trivial since PicZ = 0.
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Now let us examine the corresponding diagram for the log map f

0 O∗X f ∗Mgp
Y f ∗Mgp

Y 0

0 O∗X Mgp
X Mgp

X 0

Id � �

where now the vertical maps are isomorphisms because f is strict. Taking global sections, we

have

Γ(X , f ∗Mgp
Y ) = Γ(X ,M

gp
X ) = Z

with canonical generator 1 ∈ Z inducing the line bundle OX (D) on X . We have maps

Zr
ϕ
−→ Γ(Y,Mgp

Y )
ψ
−→ Γ(Y, f ∗Mgp

Y ) = Z

and we claim that the composition ψ ◦ ϕ is surjective. Once this is proven, we will immediately

arrive at a contradiction. For suppose there exists a v ∈ Zr such that ψ ◦ ϕ(v ) = 1. As discussed

above, the line bundle on X associated to 1 ∈ Z isOX (D). On the other hand, this is isomorphic

to the pull-back along f of the line bundle onY associated to ϕ(v ), and we saw before that this

was trivial. Thus we obtain

OX (D) � OX

which contradicts the assumption that D was not linearly trivial.

It remains to show that ψ ◦ ϕ is surjective; we start by examining the constructible sheaf

Mgp
Y . By the definition of the log structure MY , there is a natural isomorphism of sheaves on

Y [Gil09, Lemma 4.3.4]

MY = P /α−1(O∗Y )

where α is the sheaf map P → OY . Thus in particular we have a surjective morphism of

constructible sheaves:

P �MY

Groupifying, we obtain a morphism P gp →Mgp
Y of constructible abelian sheaves; by examining

the stalks, we see that this is still surjective. Pulling back along f , we obtain a morphism of

sheaves on X

P gp � f −1Mgp
Y

which is surjective by exactness of the pull-back functor. By [Gil09, Proposition 5.5.1] there is a

natural isomorphism f −1Mgp
Y = f

∗Mgp
Y . (We do not have to distinguish between f −1(Mgp

Y ) and

(f −1MY )
gp because groupification commutes with taking stalks.) Moreover by constructibility
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the induced morphism on global sections is also surjective, and so we obtain a composition of

surjective maps

Zr � P gp � Γ(Y, f ∗Mgp
Y )

which is precisely the morphism ψ ◦ ϕ considered earlier. Thus ψ ◦ ϕ is surjective, and this

completes the proof. �

3.5.3. Integral and saturated log schemes.

3.5.3.1. Integral monoids. Amonoid P is said to be integral if it satisfies the following cancellative

property for p,q , r ∈ P :

p + r = q + r ⇒ p = q

This notion is roughly analogous to that of an integral domain for rings. Indeed, we have the

following result.

Lemma 3.5.30. Let P be any monoid, and suppose that k[P ] is an integral domain. Then P

is integral.

Proof. We prove the contrapositive. Suppose that P is not integral, so we have p,q , r ∈ P with

p , q and p + r = q + r . Then in k[P ] we have

z p · z r = z q · z r ⇒ (z p − z q ) · z r = 0

but z r , 0 since r , 0 and z p − z q , 0 since p , q . Thus, k[P ] is not an integral domain. �

We note that the converse of the above statement does not hold. There is also an alternative

characterisation of integrality, which is often useful:

Lemma 3.5.31. A monoid P is integral if and only if the natural map P → P gp is injective.

Example 3.5.32. The natural numbers N are integral, as is every group.

Example 3.5.33. For an easy example of a non-integral monoid, consider the monoid Nstrange

consisting of the natural numbers under multiplication. This is not integral, since for instance:

1 · 0 = 2 · 0

However, this is not really a good example because Nstrange is quite an odd monoid; for instance,

it is not even finitely generated (there are infinitely many primes).
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Example 3.5.34. For a more reasonable example involving a monoid which might actually

appear in nature, consider:

P = N2/((1,0) = (1,1))

Consider the element (0,1) ∈ P . We have

(0,1) + (1,0) = (1,1) (0,0) + (1,0) = (1,0) = (1,1)

but we claim that (0,1) , (0,0). To see this, we observe that P is the coequaliser of the following

diagram:

N N2
(1,0)

(1,1)

Consider the following monoid morphism:

N2 → k[x, y]/(x − xy) = R

(a,b) → xayb

This coequalises the two maps above, hence there is a unique factorisation through P :

N2 → P → k[x, y]/(x − xy) = R

We note that (0,1) ∈ N2 is sent to y ∈ R which is not equal to the monoid identity 1 ∈ R. Hence

by the above factorisation we must have that (0,1) , (0,0) in P , as claimed.

3.5.3.2. Integralisation of monoids. Every monoid has a minimal associated integral monoid,

called the integralisation. It is defined as the image of the map:

P → P gp

Any morphism from P to an integral monoid must factor uniquely through P int. By the above

construction, the map P → P int is always surjective, and is an isomorphism if and only if P is

integral. Note that we always have (P int)gp = P gp.

Example 3.5.35. Consider Example 3.5.34 above. First we need to calculate P gp. Looking at

the coequaliser diagram and groupifying, we obtain a diagram:

N N2 P 0

Z Z2 Z 0

(1,0)

(1,1)

(1,0)

(1,1) (a,b)7→a
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The map P → Z is obtained via the universal property of the coequaliser, but a quick diagram

chase shows that in fact this map is the groupification map P → P gp. Thus we see that

P int = Im(P → P gp) = N

with map P → N given by (a,b) 7→ a. Note that this map is not injective, which is what we

expect since P is not integral.

3.5.3.3. Fine log schemes. A log scheme (X ,MX ) is called �ne if it is coherent (which, remember,

means it admits local charts given by finitely generated monoids P ) and if moreover the monoids

P can chosen to be integral.

Example 3.5.36. The divisorial log structure associated to a smooth pair (X ,D) (see Example

3.5.26) is fine. More generally, the divisorial log structure associated to a pair (X ,D) with X

smooth and D normal crossings, is fine.

Example 3.5.37. The log structure on a point constructed in Example 3.5.7 is fine if and only

if Q is integral.

3.5.3.4. Integralisation of log schemes. Fine log schemes form a full subcategory of coherent log

schemes, denoted:

LogSchf ↪→ LogSchcoh

This inclusion admits a left adjoint, i.e. for every coherent log scheme there is a unique minimal

fine log scheme associated to it, called its integralisation.

We will describe this construction on the level of charts; the general construction follows

from this one by descent. Suppose then that we have a coherent log scheme X = (X ,MX )

which admits a global chart, i.e. a strict morphism:

X → Spec (P → k[P ])

Since our log scheme X is not necessarily fine, P is not necessarily integral. The morphism

P → P int dualises to give a morphism of log schemes

Spec (P int → k[P int]) → Spec (P → k[P ])

and we define the integralisation of X to the fibre product in the category of log schemes:
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X int Spec (P int → k[P int])

X Spec (P → k[P ])

�

Since strictness is a property of morphisms which is stable under base change (this follows

easily by the construction of fibre products in LogSchcoh) the upper horizontal map is a strict

morphism, hence is a chart. This shows that X int is a fine log scheme.

Note that in particular we have for the underlying schemes:

X int = X ×Spec k[P ] Spec k[P int]

So the process of integralisation can actually change the underlying scheme! What does this

look like? We recall that the map P → P int is surjective by construction, so the map

Spec k[P int] → Spec k[P ]

is a closed embedding. Hence

X int → X

is also a closed embedding. In our study of relative Gromov–Witten invariants, we will see

examples where this map appears as the inclusion of the main component of a moduli space.

Remark 3.5.38. Here we will try to convince the reader that this modification of the underlying

scheme is in fact necessary. Viewing the chart above as a map

P →MX

it is tempting to try to keep X the same and simply replace P by P int. The obvious thing to try

to do is construct Mint
X as the following pushout in the category of monoid sheaves on X :

P MX

P int Mint
X

y

The problem is that there is no natural morphism Mint
X → OX . There is, however a morphism

from Mint
X to a certain quotient of OX , which is precisely the structure sheaf of the closed

subscheme X int constructed above.
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3.5.3.5. Fibre products in LogSchf. In Definition-Lemma 3.5.21 we demonstrated how to form a

fibre product in the category LogSch of all log schemes, and saw that the underlying scheme

of the fibre product was equal to the fibre product of the underlying schemes.

It is easy to see that a fibre product of coherent log schemes will still be coherent; if we have

a diagram

X

Y Z
and charts

PX → Γ(X ,MX ) PY → Γ(Y,MY ) PZ → Γ(Z,MZ )

then (after possibly passing to an open cover; see [Kat89, Definition 2.9.2]) we can find com-

patible morphisms of monoids

PZ → PX PZ → PY

inducing the maps on monoid sheaves (such a morphism is called a chart for the log map). We

then get an induced map:

PX ⊕Pz PY → Γ(X ,MX ) ⊕Γ(Z,MZ ) Γ(Y,MY ) → Γ(X ×Z Y,MX ×ZY )

and it is straightforward to show that this gives a chart for X ×Z Y . Thus, the fibre product

in the category LogSchcoh of coherent log schemes exists and agrees with the fibre product in

LogSch.

On the other hand, there is no reason to suppose that the monoid PX ⊕PZ PY is integral, even

if PX ,PY and PZ are (see Example 3.5.40 below). Thus, a fibre product of fine log schemes is

not necessarily fine. Nevertheless, we have the following result.

De�nition-Lemma 3.5.39. Fibre products exist in LogSchf.

Proof. The construction is as follows: first take the fibre product in LogSchcoh and then inte-

gralise the result. The fact that this produces a fibre product in LogSchf follows from formal

nonsense about adjoint functors. �

So fibre products exist in LogSchf, but the underlying scheme of the fibre product is not in

general equal to the fibre product of the underlying schemes (rather, it is a closed subscheme

thereof). This observation will turn out to be important for us, since the log structures on the

source curve and the base of a log stable map are required to be fine.
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Example 3.5.40. Here we provide an example where a fibre product of fine log schemes in the

category LogSchcoh can produce a log scheme which is not fine (I am grateful to M. Gross for

showing me this example). Consider the following diagram of ordinary schemes

X = A1
t

Y = Bl(0,0)A2
xy Z = A2

xy

where X → Z is given by x 7→ t, y 7→ t (i.e. it is the inclusion of the diagonal hyperplane) and

Y → Z is the blow-up map. We equip these schemes with the following divisorial log structures:

• MX the divisorial log structure corresponding to the origin;

• MY the divisorial log structure corresponding to the toric boundary;

• MZ the divisorial log structure corresponding to the co-ordinate hyperplanes.

Note that since these log structures are all divisorial, their structure maps are inclusions, and

hence a log enhancement of a morphism between the underlying schemes is unique if it ex-

ists. Moreover it is straightforward to check that for the maps in the above diagram, such an

enhancement does indeed exist, so that we obtain a diagram of log schemes:

X = (X ,MX )

Y = (Y ,MY ) Z = (Z ,MZ )

All of these log structures are fine, and we can write down charts explicitly. Those for X and

Z exist globally and are easy to understand; they are given by

PX = N→ k[t ]

n 7→ tn

and:

PZ = N2 → k[x, y]

(a,b) 7→ xayb

To obtain a chart for Y , we must work locally. Let us restrict to an open neighbourhood in

Y which contains the intersection of the exceptional divisor with (the proper transform of)

{y = 0}, and which does not touch (the proper transform of) {x = 0}. Let A be the co-ordinate

ring of this a�ne open set and let z be the local equation cutting out the exceptional divisor.
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Then a chart is given by:

PY = N2 → A

(c,d ) 7→ z c yd

In addition to the log schemes X ,Y and Z having charts, the morphisms X → Z and Y → Z

also admit charts, given by

PZ = N2 → N = PX

(a,b) 7→ a + b

and

PZ = N2 → N2 = PY

(a,b) 7→ (a + b,b)

(see [Kat89, Definition 2.9] for the definition of a chart for a morphism of log schemes). As

discussed at the start of this section, a chart for X ×Z Y is then given by the fibred coproduct:

PX ⊕PZ PY = N ⊕N2 N2

We claim that this monoid is not integral. Note that

(1, (0,0)) + (0, (0,1)) = (0, (1,0)) + (0, (0,1)) = (0, (1,1)) = (1, (0,0))

while on the other hand (0, (0,1)) , 0, as can be seen by a similar argument to the one given in

Example 3.5.34. So the monoid is not integral.

In this example, the fibre product of the underlying schemes is the closed subscheme of Y

consisting of the union of the exceptional divisor with (the proper transform of) the diagonal

hyperplane. This is the scheme underlying the fibre product in LogSchcoh. On the other hand,

the scheme underlying the fibre product in LogSchf consists only of the exceptional divisor.

3.5.3.6. Saturated monoids. A monoid P is said to be saturated if it is integral and if, for all

p ∈ P gp and n ∈ N with n ≥ 1, the following condition holds:

n · p ∈ P ⇒ p ∈ P

Example 3.5.41. N is saturated, as is any group.
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Example 3.5.42. Let P = N \ {1} with addition as the binary operation. This is a monoid (a

submonoid of N, indeed) and it is integral, but it is not saturated: we have 1 = 3− 2 ∈ P gp with

2 · 1 ∈ P , but 1 < P .

3.5.3.7. Saturation of monoids. Every monoid P has a unique minimal associated saturated monoid,

called the saturation. It is defined as:

P sat = {p ∈ P gp : n · p ∈ P for some n ≥ 1}

There is a natural inclusion P → P sat satisfying the obvious universal property.

Example 3.5.43. Consider Example 3.5.42 from above. The saturation P sat is equal to N, with

P → P sat the natural inclusion.

3.5.3.8. Fine and saturated (fs) log schemes. A log scheme X = (X ,MX ) is said to be �ne and

saturated (or fs for short) if it is fine and if it admits local charts which are given by saturated

monoids.

Example 3.5.44. X = A1 with the divisorial log structure induced by the origin is saturated.

This is the log scheme Spec (N→ k[N]).

Example 3.5.45. Let P = N \ {1} be the monoid from Example 3.5.42 and let X = Spec (P →

k[P ]). Then this log scheme is not saturated. To see what the underlying scheme is, note that

P is generated by a = 2 and b = 3, subject to the relation 3a = 2b . Hence

k[P ] = k[x, y]/(x3 − y2)

and so X is the cuspidal cubic. The log structure is the divisorial log structure with respect to

the singular point.

3.5.3.9. Saturation of �ne log schemes. Similar to before, fs log schemes form a full subcategory

inside fine log schemes

LogSchfs ↪→ LogSchf

and as before this inclusion admits a left adjoint, called saturation. Given a fine log scheme with

chart

X → Spec (P → k[P ])

the saturation is defined as the fibre product
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X sat Spec (P sat → k[P sat])

X Spec (P → k[P ])

�

in the category LogSchcoh. As before, it is immediate to check that the upper horizontal arrow

is a chart, and hence that X sat is saturated.

In particular we see that, as with integralisation, saturation can also change the underlying

scheme structure. In this case the change which occurs is akin to the normalisation; the map

X sat → X is always finite.

Example 3.5.46. Consider again P = N \ {1} and X = Spec (P → k[P ]). We saw before that

X = V (x3 − y2) ⊆ A2
xy and also that P sat = N. It follows that X sat = A1

t and that the saturation

morphism is given by:

X sat = A1
t → X =V (x3 − y2)

t2 ← � x

t3 ← � y

Thus we see that in this case the saturation is none other than the normalisation.

3.5.3.10. Fibre products in LogSchfs. As the reader has probably guessed by now, if one considers

a diagram of fs log schemes

X

Y Z

and takes the fibre product in the category LogSchf of fine log schemes, it is not in general

true that the resulting log scheme is saturated (see Example 3.5.47 below).

Thus, in much the same way as we did in §3.5.3.5, we form the fibre product in LogSchfs by

first taking the fibre product in LogSchf and then saturating. As already noted, this will entail

a further modification of the underlying scheme.

Example 3.5.47. Let X = Y = Z = A1
t with divisorial log structure corresponding to the

origin. Consider the maps X → Z , Y → Z both given by t 7→ t2. The induced chart for the

fibre product in LogSchcoh is given by

Q = N ⊕N N
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where both maps N → N are given by 1 7→ 2. This monoid is integral, and hence the fibre

product in LogSchcoh agrees with the fibre product in LogSchf and has chart given by Q . On

the other hand, Q is not saturated, since

2 · (1,−1) = (2,−2) = (0,2) + (0,−2) = (0,0) ∈ Q

while (1,−1) < Q .

3.5.3.11. Conclusion. How is all of this relevant for us? In our study of log Gromov–Witten

theory, we encounter examples of moduli spaces with a logarithmic structure which is neither

integral nor saturated. Integralising then singles out the main component of the moduli space,

while saturating (log) desingularises that component. See §3.3.2 for details.



CHAPTER 4

The fundamental solution matrix and relative stable maps

The following chapter originally appeared as [Nab18].

Abstract: Givental’s Lagrangian cone LX is a Lagrangian submanifold of a symplectic vector

space which encodes the genus-zero Gromov–Witten invariants of X . Building on work of

Braverman, Coates has obtained the Lagrangian cone as the push-forward of a certain class

on the moduli space of stable maps to X × P1. This provides a conceptual description for an

otherwise mysterious change of variables called the dilaton shift.

In this chapter we recast this construction in its natural context, namely the moduli space

of stable maps to X × P1 relative the divisor X ×∞. We find that the resulting push-forward is

another familiar object, namely the transform of the Lagrangian cone under the action of the

fundamental solution matrix. This hints at a generalisation of Givental’s quantisation formalism

to the setting of relative invariants. Finally, we use a hidden polynomiality property implied by

our construction to obtain a sequence of universal relations for the Gromov–Witten invariants,

as well as new proofs of several foundational results concerning both the Lagrangian cone and

the fundamental solution matrix.

4.1. Introduction

4.1.1. Gromov–Witten theory. The Gromov–Witten invariants of a smooth projective variety

X are defined as certain intersection numbers on moduli spaces of stable maps to X . They

can be thought of as counting curves of specified genus and degree passing through specified

subvarieties of X . Their intrinsic interest aside, Gromov–Witten invariants have connections to

numerous other areas of mathematics, from representation theory to symplectic topology. In

algebraic geometry they have been used in the proofs of classification theorems, as a tool for

distinguishing non-deformation-equivalent varieties.

Many results in Gromov–Witten theory are expressed most cleanly via generating functions,

that is, formal functions (usually polynomials or power series) whose coe�cients are given

by Gromov–Witten invariants. Oftentimes, a simple identity involving generating functions
129
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is all that is needed to express a relationship which, on the level of indvidual invariants, is

extremely complicated. There is an underlying reason for this: Gromov–Witten theory has

deep connections to theoretical physics, through which the aforementioned generating functions

appear as the “partition functions” of physical theories. This circle of ideas has been extremely

influential for the development of the subject, with the first major result in this direction being

the celebrated Mirror Theorem [CdlOGP91,Giv96,Giv98].

4.1.2. Quantisation formalism. In keeping with this spirit, A. Givental describes in [Giv01a]

a quantisation formalism for Gromov–Witten invariants. In the genus-zero setting (when no

“quantisation” is actually required), this amounts to encoding the Gromov–Witten invariants of

X in a Lagrangian cone

LX ⊆ H

inside a certain symplectic vector space H, now called the Givental space. The data of the cone

LX is equivalent to the data of the generating functions discussed earlier, but it turns out to be

a good idea to treat LX as a geometric object in its own right; many statements in Gromov–

Witten theory can then be translated into statements about how LX transforms under certain

symplectomorphisms of H.

The benefits of this quantisation formalism are twofold. From a theoretical viewpoint, it can

be used to make rigorous sense of a number of deep predictions coming from physics. On the

other hand, from a practical point of view, it has proven to be an extremely versatile framework

in which to formulate and prove statements about Gromov–Witten invariants. Indeed, there

are many results in Gromov–Witten theory which would be di�cult to even state without the

quantisation formalism: examples include the quantum Riemann–Roch formula [CG07], the

crepant transformation conjecture [CIJ14], the Virasoro conjecture and various versions of the

“genus zero implies higher genus” principle [Giv01b]

4.1.3. Push-forwards from graph spaces. Building on work of Braverman [Bra04], T. Coates

shows in [Coa08] that LX can be obtained as a (C∗-localised) push-forward from the moduli

space of stable maps to X × P1 (usually called the graph space). This is motivated by Givental’s

heuristic description of H as the S 1-equivariant cohomology of the loop space of X [Giv95],

and gives a natural geometric interpretation for a mysterious change of variables, called the

“dilaton shift”, which is essential to the quantisation formalism.
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Coates’ construction requires restricting to a certain open substack of the moduli space of

stable maps to X × P1, before localising to a proper fixed locus (with respect to the natural

C∗-action on the moduli space) in order to push forward. With hindsight, this is really the

push-forward from one of the C∗-fixed loci in the moduli space of relative stable maps to the pair

(X × P1,X ×∞).

A natural question to ask is then: what happens if we sum over all the fixed loci? In this chap-

ter we provide the answer (see Proposition 4.2.4): the result is the transform of the Lagrangian

cone under the action of the fundamental solution matrix. The main tools used in the proof

are the relative virtual localisation formula [GV05, Theorem 3.6], a virtual push-forward theo-

rem for relative stable maps to the non-rigid target [Gat03a, Theorem 5.2.7] and a comparison

lemma for psi classes, which we prove in §4.3.2.

Because we are now summing over all fixed loci, we know that the resulting class must actually

belong to the non-localised equivariant cohomology. In practice, this means the following: we

push-forward and obtain a class which, a priori, looks like a rational function in z ; however we

know that, after performing suitable cancellations, we must end up with a polynomial (here z

denotes the C∗-equivariant parameter). We use this observation to give new and simple proofs

of a number of foundational results belonging to the quantisation formalism theory.

4.1.4. Future directions. This construction provides a hint as to how one might obtain a quan-

tisation formalism for relative (or logarithmic) Gromov–Witten invariants; see Remark 4.2.3.

This was in fact the original motivation for this work.

4.1.5. User’s guide. Readers familiar with the quantisation formalism may skip straight to

§4.2.5 where we give the statement of the main result. For the uninitiated, we provide in §§4.2.1-

4.2.4 a brief introduction to the Lagrangian cone and relative Gromov–Witten theory. The proof

of the main result is given in §4.3; this is mostly a computation, with the only geometric content

being a lemma on psi classes which we prove in §4.3.2. Finally in §4.4 we provide examples of

how the “hidden polynomiality” implied by our construction can be used to obtain universal

relations for the Gromov–Witten invariants, as well as new proofs of a number of standard

results concerning the Lagrangian cone and the fundamental solution matrix.

4.1.6. Acknowledgements. I owe a great deal of thanks to Tom Coates, for first suggesting

this project, for patiently explaining the quantisation formalism to me and for pointing out
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Kalashnikov and Mark Shoemaker for useful discussions.
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and Physical Sciences Research Council grant EP/L015234/1: the EPSRC Centre for Doctoral

Training in Geometry and Number Theory at the Interface.

4.2. Background and statement of the main result

4.2.1. Givental space. The Lagrangian cone LX is a geometric object which encodes all the

genus-zero Gromov–Witten invariants of X . It can be viewed as the graph of a certain generating

function for these invariants. This generating function must keep track, through its formal

variables, of both the cohomological insertions γi and the exponents ki of the classes ψi . We

begin by defining a vector spaceH whose co-ordinates will give precisely these formal variables;

the Lagrangian cone will then be a submanifold of H.

We set H∗(X ) = H∗(X ;Λ) where Λ is some (unspecified) field of characteristic zero; for the

moment it is safe to take Λ = C, but later we will need to consider larger fields. We assume

(for notational simplicity) that X has only even cohomology, and choose a homogeneous basis

ϕ0, . . . , ϕN such that ϕ0 = 1X is the unit element. We let ϕ0, . . . , ϕN denote the dual basis with

respect to the Poincaré pairing (· , ·), so that:

(ϕα, ϕ
β ) = δ

β
α

TheGivental spaceH is a certain infinite-dimensional symplectic vector space (overΛ) associated

to X . It is defined as the space of formal Laurent series in a single variable z−1 with coe�cients

in H∗(X ):

H := H∗(X )[z, z−1o =
{ ∑
−∞≤k ≤m

qk z
k : qk ∈ H

∗(X )

}
The notation above is meant to indicate that each series has only finitely many positive powers

of z , but can have infinitely many negative powers. The powers of z−1 will keep track of the

exponents of the psi classes.

There is a symplectic form Ω on H defined as follows

Ω : H ×H→ Λ

(f (z ), g (z )) 7→ Resz=0(f (−z ), g (z ))dz
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where (f (−z ), g (z )) is the Poincaré pairing (extended linearly from H∗(X ) to H), and Resz=0

simply means that we take the coe�cient of z−1 in the resulting Laurent series. A straightforward

computation verifies that Ω is indeed a symplectic form.

Example 4.2.1. Take X = pt so that H∗(X ) = Λ. Then H = Λ[z, z−1o and Ω is given by:

Ω

(∑
k

ak z
k ,

∑
l

bl z
l

)
= Resz=0

(∑
k

∑
l

(−1)kakbl z
k+l

)
=

∑
k+l=−1

(−1)kakbl

Notice that this sum is finite since the terms which appear must have either k or l non-negative,

and there are only finitely many such values for which ak and bl are both non-zero.

Thus (H,Ω) is an infinite-dimensional symplectic vector space. We will now write down

Darboux co-ordinates. It is clear that the following defines a basis for H:

Akα := ϕαzk k ≥ 0, α = 0, . . . ,N

Bγl := ϕγ(−z )−1−l l ≥ 0, γ = 0, . . . ,N

It is also easy to see that these give Darboux co-ordinates, i.e. that we have:

Ω(Akα,A
k ′
α′) = 0 Ω(Bγl ,B

γ′

l ′ ) = 0 Ω(Akα,B
γ

l ) = −δ
γ
αδ

k
l

Using these canonical co-ordinates we can define linear subspaces H+ and H− to be the spans,

respectively, of the Akα and Bγl inside H:

H+ := H∗(X )[z ] =

{∑
k ≥0

q αk ϕαz
k : q αk ∈ Λ

}
H− := z−1H∗(X )nz−1o =

{∑
l ≥0

plγϕ
γ(−z )−1−l : plγ ∈ Λ

}
Here, and in what follows, we adopt the Einstein summation convention when dealing with

Greek letters, i.e. when summing over cohomology classes ϕα and ϕγ . It is clear that both H+
and H− are Lagrangian subspaces, in the sense that:

H⊥± =
{
v ∈ H

���� Ω(v,w) = 0 for all w ∈ H±
}
= H±

Thus we think of H+ and H− as being “half-dimensional” or “semi-infinite” (since in the finite-

dimensional setting a Lagrangian subspace is always half-dimensional). Furthermore this split-

ting gives an identification of symplectic vector spaces

H = T∗H+
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which means that H− gets identified with the cotangent fibre; in terms of the co-ordinates q αk ,

plγ above, the identification is:

pkα =
∂

∂q αk

4.2.2. Lagrangian cone. We are now in a position to construct the Lagrangian cone LX . A

standard object in Gromov–Witten theory is the genus-zero descendant potential, which is a formal

generating function for the genus-zero Gromov–Witten invariants:

F0
X (t(z )) =

∑
β,n

Q β

n!
〈t(ψ1), . . . , t(ψn)〉X0,n,β

Let us explain the notation above. The sum is over all curve classes β ∈ H+2 (X ) and non-negative

integers n ≥ 0. The variable Q is a formal variable, called the Novikov variable, which keeps

track of the curve class. We make sense of this by taking the ground field Λ to be the Novikov

�eld :

Λ = C((H+2 (X )))

Remember that we defined H∗(X ) = H∗(X ;Λ) for some unspecified field Λ; from now on we

take Λ to be the Novikov field. The parameter t(z ) of the generating function is a formal power

series with coe�cients in H∗(X )

t(z ) =
∑
k ≥0

tk z
k tk ∈ H

∗(X )

=
∑
k ≥0

tαk ϕαz
k tαk ∈ Λ

so that the correlators above are interpreted as

〈t(ψ1), . . . , t(ψn)〉X0,n,β :=

〈∑
k1≥0

tα1k1 ϕα1ψ
k1
1 , . . . ,

∑
kn ≥0

tαnkn ϕαnψ
kn
n

〉X
0,n,β

=
∑

k1,...,kn ≥0

tα1k1 · · · t
αn
kn
〈ϕα1ψ

k1
1 , . . . , ϕαnψ

kn
n 〉

X
0,n,β

(remember that we are using the Einstein summation convention for the Greek letters). Thus

we may rewrite F0
X in a more transparent (though less convenient) form as:

F0
X (t(z )) =

∑
β,n

Q β

n!

∑
k1,...,kn ≥0

tα1k1 · · · t
αn
kn
· 〈ϕα1ψ

k1
1 , . . . , ϕαnψ

kn
n 〉

X
0,n,β
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We view this as a formal power series in the variables tαk for k ≥ 0 and α = 0, . . . ,N . Notice

that these co-ordinates look very similar to the co-ordinates q αk for H+ defined in §4.2.1; indeed

they are related by the following change of variables

q(z ) = t(z ) − z1X

called the dilaton shift. In concrete terms this means that q αk = t
α
k unless (k, α) = (1,0), in which

case q 01 = t
0
1 − 1. Under this change of variables, we can view F0

X as a function

F0
X : H+ → Λ

and hence the derivative dF0
X defines a section of the cotangent bundle T∗H+. The Lagrangian

cone is defined as the graph of this section:

LX :=
{
(q(z ),p(z )) ∈ H = H+ ⊕H−

���� p(z ) = dF0
X (q(z ))

}
Thus for every point q(z ) ∈ H+ there is a unique point of LX lying over q(z ). In concrete terms,

this is:

LX |q(z ) = (t(z ) − z1X ) +
∑
β,n

Q β

n!

∑
l ≥0

〈
t(ψ1), . . . , t(ψn), ϕγψln+1

〉X
0,n+1,β

· ϕγ(−z )−l−1

= (t(z ) − z1X ) +
∑
β,n

Q β

n!

〈
t(ψ1), . . . , t(ψn),

(
ϕγ

−z − ψn+1

)〉X
0,n+1,β

· ϕγ

The first term t(z )−z1X = q(z ) specifies the point in the base, while the remaining terms specify

the point in the fibre. The meaning of the fractional insertion in the second line is that it should

be expanded as a power series in z−1, the result of which is precisely the expression on the first

line.

As it has been presented, divorced from its origins in physics, LX may come across as a mys-

terious object. Working with it takes some getting used to, but the eventual payo� is significant,

and it is now recognised as a fundamental tool in Gromov–Witten theory. To give just a taste

of this, we state a few basic facts about the Lagrangian cone.

Theorem 4.2.2 ( [CG07, Proposition 1]). The following basic properties hold:

• LX is a cone (it is preserved under scalar multiplication by elements of Λ);

• for f ∈ LX , we have (Tf LX ) ∩ LX = z · Tf LX ⊆ H;

• the set of all tangent spaces to LX forms a finite-dimensional family; thus LX is ruled

by a finite-dimensional family of linear subspaces.
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Thus we see that the geometry of LX is very tightly constrained. The above theorem is actually

equivalent [Giv04, Theorem 1] to the following three fundamental results in Gromov–Witten

theory: the string equation, the dilaton equation and the topological recursion relations. More

generally, the Lagrangian cone can be used to conveniently express statements which would be

exceedingly cumbersome to phrase otherwise. For more on this, see [Giv01a], [CI14].

Finally, we note that the dilaton shift q(z ) = t(z ) − z1X is an essential part of the theory; for

instance, LX is not even a cone in the t(z ) co-ordinates.

4.2.3. Fundamental solution matrix. There is one more object in Gromov–Witten theory

which we must define. The fundamental solution matrix is a family of symplectic operators on the

Givental space H (so named because it encodes a fundamental set of solutions to the quantum

di�erential equations [Dub96]). For our purposes it depends on a parameter q(z ) ∈ H+, and is

given by:

St(z )(f ) = f +
∑
β,n

Q β

n!

〈(
f

z − ψ0

)
, t(ψ1), . . . , t(ψn), ϕγ

〉X
0,n+2,β

· ϕγ

Here the insertion f ∈ H is expanded linearly in the z and ϕα, and t(z ) is the dilaton-shifted

element corresponding to q(z ) (we write St(z ) instead of Sq(z ) to keep our notation compatible

with standard usage). As with the Lagrangian cone, the fundamental solution matrix has deep

connections to physics, and has been the focus of intense study. We will not attempt to say more

than this here; the interested reader should consult [Pan98] and [CK99, §10].

In this chapter we will view S as a single endomorphism of the trivial H-bundle over H+
H+ ×H H+ ×H

H+

S

where the endomorphism H → H over q(z ) ∈ H+ is given by St(z ). We can also view the

Lagrangian cone as a submanifold of H+ ×H by doubling the base co-ordinate:

LX =
{
(q(z ),q(z ),p(z ))

���� p(z ) = dF0
X (q(z ))

}
⊆ H+ ×H

Thus, we can define the transform S (LX ) ⊆ H+ × H of LX by S without having to specify a

parameter q(z ). This will be important for the statement of our main result.

4.2.4. Relative stable maps. The final ingredient which we need to explain is the theory of

relative stable maps. Given a smooth projective variety Z and a smooth hypersurface Y ⊆ Z ,

the moduli space of relative stable maps parametrises stable maps in Z with fixed tangency
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orders to Y at the marked points. If there are n marked points then this tangency information

is encoded in a vector α = (α1, . . . , αn) of non-negative integers. The resulting moduli space

M0,α(Z |Y, β )

should parametrise stable maps to Z such that the i th marked point has tangency order αi

to the divisor Y . This data must satisfy the obvious numerical condition Σiαi = Y · β . The

question of how to define these spaces rigorously is a non-trivial one; the problem with the

naïve approach described above is that the deformation theory can become extremely wild

when there are components of the source curve mapping into Y ; this wildness means that the

usual construction of the virtual fundamental class no longer works, so these spaces cannot be

used to define invariants.

The earliest solution to this problem, due to J. Li and following ideas first developed in sym-

plectic geometry, is to allow the target Z to degenerate into a so-called expanded degeneration

Z [l ] [Li01,Li02]. The space Z [l ] is constructed from Z by gluing on a chain of l copies of the

projective completion of the normal bundle toY in Z :

P = PY
(
NY |Z ⊕OY

)
The picture is as follows (which illustrates the case Z [2]):

Z P P

Y1

Y2

Y∞

The idea is that, whenever a component of the source curve starts to fall into the divisor, the tar-

get “bubbles” o� an extra copy of P , and the internal component is then mapped (transversely)

into P .

Y

Y∞
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Two such maps into P are identified if they di�er by an element of the group C∗ of automor-

phisms of P given by rescalings of the fibre. As illustrated above, the resulting map to Z [l ] is

transverse in a very strong sense: the only points of the curve which map to the infinity divisor

are the markings xi , and they do so with the correct tangency order αi . On the other hand,

the curve can only map to the singular locus at a finite number of isolated nodal points, and

for each node the tangency orders of the two adjacent branches of the curve to the singular

locus must be equal. This transversality condition, usually called predeformability, ensures that

the resulting moduli space has the correct virtual dimension. An extremely careful analysis of

the deformation theory of this new space then shows that a virtual class can be defined [Li02].

Integrals against this virtual class are called relative Gromov–Witten invariants of (Z,Y ). In our

applications we will always have Z = X × P1 and Y = X × ∞. In this case the normal bundle

of Y in Z is trivial, so P � X × P1 = Z and thus all the levels of the expanded degeneration,

including level 0, are isomorphic.

We will assume that the reader is reasonably familiar with relative stable maps; all the facts

which we will use can be found in §§2-3 of [GV05], which also serves as a good introduction to

relative Gromov–Witten theory.

Remark 4.2.3. More recently, the theory of logarithmic stable maps, as developed by D. Abramovich,

Q. Chen, M. Gross and B. Siebert, has provided an alternative (and significantly more general)

approach to relative stable maps [GS13] [Che14] [AC14]. We expect that the computations we

carry out here will carry over to the log setting, once a suitable localisation formula has been

established for log stable maps. Indeed, log Gromov–Witten theory relative a simple normal

crossings divisor seems to be the correct generality in which to apply the construction given in

this chapter.

4.2.5. Statement of the main result. We are finally in a position to state our main result. Let

X be a smooth projective variety. For β ∈ H+2 (X ) and n ≥ 0, consider the moduli space

M0,n,(1)

(
(X × P1 | X ×∞), (β,1)

)
of relative stable maps to (X ×P1,X ×∞) of class (β,1), where the first n marked points x1, . . . ,xn

have tangency 0 with the divisor, and the last marked point x∞ has tangency 1. There is a natural

C∗-action on this moduli space induced by the action on the target X ×P1 (acting trivially on the

first factor and with weight −1 on the second). Consider the following class in the equivariant
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cohomology of the moduli space

Θβ,n(t(z )) = (−z ) ·
n∏
i=1

ev∗i (t(ψi ))

where z is the equivariant parameter. Then we have:

Proposition 4.2.4.

(4.2.1) (ev∞)∗

(∑
β,n

Q β

n!
· Θβ,n(t(z ))

)
= S (LX )|q(z )

where q(z ) is the dilaton-shifted co-ordinate corresponding to t(z ).

The proof will be given in §4.3; for the moment let us explain the statement. We view ev∞ as a

map

ev∞ :
∐
β,n

M0,n,(1)

(
(X × P1 | X ×∞), (β,1)

)
−→ X ×∞ = X

so that the target of the push-forward (ev∞)∗ is the equivariant cohomology of X with respect

to the trivial torus action. But this is just:

H∗(X ) ⊗ Λ[z ] = H+ ⊆ H

On the other hand, S (LX ) naturally lives inside the total space of the trivial bundleH+×H→ H+
(see the discussion at the end of §4.2.3 above); therefore when we write S (LX ) in equation (4.2.1),

we really mean its projection along π2 : H+ ×H→ H. Another way to say this is that for a fixed

q(z ) ∈ H+, with dilaton-shifted co-ordinate t(z ), the push-forward of the left-hand side of (4.2.1)

is equal to St(z )(LX |q(z )).

An immediate corollary of the above result is that S (LX ) ⊆ z ·H+ rather than just H. For an

application of this, as well as a deeper exploration of the “hidden polynomiality” arising from

our construction, see §4.4.

Remark 4.2.5. The total transform S (LX ) has a geometric interpretation as a family of ancestor

cones; see [CG07, Appendix 2].

Remark 4.2.6. Notice that for any choice of β , the curve class (β,1) is non-zero. Hence the

sum in Proposition 4.2.4 is over all β and n. This is in contrast to the sum which appears in the

definition of the Lagrangian cone in §4.2.2, which is only over the stable range, i.e. excludes

the cases (β,n) = (0,0) and (0,1). This di�erence will become important during the proof of

Proposition 4.2.4.
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4.3. Proof of the main result

We will assume that the reader is familiar with the space of relative stable maps, and in

particular with the torus localisation formula, established in [GV05] whenever the divisor is

fixed pointwise by the action (as is the case for us). We will write X0 and X∞ for X × 0 and

X ×∞, viewing them either as divisors in X × P1 or in X [l ], as appropriate.

4.3.1. Identifying the �xed loci. The proof proceeds by C∗-localisation. The C∗-fixed loci of

the moduli space are indexed by graphs of the following form:

X0

β0
xi1

xin0
X∞

β∞
x j1

x jn∞
x∞

These correspond to splittings of the source curve into two pieces: a piece C0 which maps to X0

and a piece C∞ which maps to X∞ (and hence, in general, into the higher levels of the expanded

degeneration); the two pieces are joined by a rational component which maps isomorphically

onto a P1-fibre of X × P1. The marking x∞ always belongs to the second piece since it must

map to the infinity divisor. The other choices – of degrees β0 and β∞ for the two pieces, and

of a partition A0 t A∞ = {x1, . . . ,xn} of the non-relative markings – are free. The fixed locus

corresponding to this data is isomorphic to

M0,A0∪{q0 }(X , β0) ×X M0,A∞,(1),(1)

(
X × P1 | (X0 + X∞), β∞

)
∼

with virtual fundamental class induced by the virtual classes of the two factors; this is part of

the statement of the virtual localisation theorem in [GV05]. Here the second factor is a moduli

space of stable maps to the non-rigid target; see [GV05, §2.4]. The notation is supposed to

indicate that there is a set A∞ of non-relative markings, a single marking q∞ which maps to X0

with tangency 1, and a single marking x∞ which maps to X∞ with tangency 1. The fibre product

is taken with respect to the evaluations at q0 and q∞ on each side. The Euler class of the virtual

normal bundle is equal [GV05, Theorem 3.6 and Example 3.7] to

(−z )(−z − ψq0)(z − ψq∞)

which obviously splits into a product of classes supported on the two factors. We should briefly

explain these: −z arises from the deformations of the map on the rational bridge, −z −ψq0 arises

from the smoothing of the node connecting the rational bridge to C0 and z −ψq∞ is a target psi
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class, which arises from the smoothing of the target singularity connecting the level 0 piece and

the level 1 piece of the expanded degeneration. Here we have used the identification of the target

psi class with a multiple of the psi class on one of the relative markings [Gat03a, Construction

5.1.17]. There is also a contribution arising from the smoothing of the node connecting the

rational bridge to C∞, but this is canceled out by the local obstruction at that node (see [GV05,

§3.8]).

Note that for certain choices of (β0,A0 | β∞,A∞) the moduli spaces which we have written

down above do not exist, because the data defining them is not stable. In these degenerate

cases, we still have fixed loci; it is simply that one (or both) of the factors becomes trivial.

Hence we must deal with these separately. The possible situations are enumerated below.

Case 1: (β,n) = (0,0). This is the maximally degenerate case. The fixed locus is just X , which

has virtual codimension 0; there is no virtual normal bundle.

Case 2: (β,n) = (0,1) and n∞ = 0. In this case the fixed locus is again just X , with a single marked

point x1 mapped to X0 and another marked point x∞ mapped to X∞ (there is no expansion of

the target). The virtual codimension is 1, and the Euler class of the virtual normal bundle is

−z .

Case 3: n ≥ 1 and (β0,n0) = (0,0). In this case the fixed locus is a moduli space of relative maps

to the non-rigid target, with n + 2 marked points. The virtual codimension is 1, and the virtual

normal bundle contribution is z − ψq∞ .

Case 4: n ≥ 1 and (β0,n0) = (0,1). Here the fixed locus is the same as the one in the previous

case, but it now has virtual codimension 2 because there is a marked point at the X0 end of the

rational bridge; the Euler class of the virtual normal bundle is −z (z − ψq∞).

Case 5: n ≥ 2 and (β∞,n∞) = (0,0). In this case the fixed locus is just the moduli space of stable

maps to X with n + 1 markings. The virtual codimension is 2, and the Euler class of the virtual

normal bundle is −z (−z − ψq0).

4.3.2. Comparison lemma for psi classes. We now need to calculate the contributions to

the push-forward from each of these fixed loci. A priori this is di�cult, because the fixed loci

involve moduli spaces of relative stable maps to the non-rigid target, which are in general hard

to understand. However, in genus zero, a beautiful result of A. Gathmann says that these moduli



142

spaces are in fact virtually birational to the underlying moduli spaces of stable maps to X . To

be more precise: there is a projection map

π : M0,n∞,(1),(1)

(
X × P1 |(X0 + X∞), β∞

)
∼
→M0,n∞+2(X , β∞)

induced by the collapsing map from the non-rigid target to X , and [Gat03a, Theorem 5.2.7]

shows that this map respects the virtual classes:

π∗[M0,n∞,(1),(1)

(
X × P1 |(X0 + X∞), β∞

)
∼
]virt = [M0,n∞+2(X , β∞)]

virt

This result goes a long way towards making these invariants computable. However there is still

a problem: the map π may contract many components of the source curve, and hence does

not in general preserve the psi classes. Consequently, descendant invariants (which certainly

appear in our discussion) are still complicated to compute, because one has to keep track of

how psi classes pull back. It turns out, however, that X × P1 is special in this respect.

Lemma 4.3.1. The map π cannot contract any component of the source curve which contains

a marking.

Proof. The components contracted by π are those with two or fewer special points which are

mapped into a fibre of P = X × P1 over X . Let C ′ be such a component. Since it has two or

fewer special points, the map f must be non-constant on C ′ (by stability), and hence there is

at least one point of C ′ which maps to X∞ and at least one point which maps to X0. Thus,

C ′ contains exactly two special points, which must map to the special divisors of the non-rigid

target.

Now suppose for a contradiction that some marking xi belongs to C ′. If xi is a non-relative

marking then we immediately arrive at a contradiction, since such a marking cannot map into

any special divisor. Otherwise, xi = q∞ or x∞ and so is mapped into X0 or X∞, respectively;

without loss of generality we may suppose xi = q∞. By the stability condition for relative maps,

there must exist some other component of the source curve which maps with positive degree

into the same level of the non-rigid target as C ′. But this would necessarily touch X0, which is

a contradiction since q∞ is the only point of the source curve which is allowed to map to X0

(here we are using something special about the geometry of X × P1; for non-trivial P1-bundles

over X , it is no longer true that a component of the source curve which touches X∞ must also

touch X0). �
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Corollary 4.3.2. π∗ψi = ψi for any i ∈ {1, . . . ,n∞ + 2}. Thus, we can identify any non-rigid

invariant of (X × P1,X0 + X∞) with the corresponding invariant of X .

4.3.3. Calculating the contributions. We are now in a position to calculate the contributions

to the push-forward. We fix (β,n) and look at the fixed loci of the corresponding moduli space.

Ignoring the degenerate cases for the moment, we must sum over stable splittings (β0,A0 | β∞,A∞)

of (β,n). We may phrase this as summing over splittings (β0, β∞) of β and (n0,n∞) of n, with a

factor of
( n
n0

)
=

( n
n∞

)
introduced to account for the choice of which marked points to put in A0

and which to put in A∞. Thus the contribution

Q β

n!
(ev∞)∗

(
(−z ) ·

n∏
i=1

ev∗i (t(ψi ))

)
is equal to:

Q β

n!

∑
β0+β∞=β
n0+n∞=n

(
n
n∞

)
〈t(ψ1), . . . , t(ψn0),

(
ϕα

−z − ψq0

)
〉X0,n0+1,β0 ·

〈

(
ϕα

z − ψq∞

)
, t(ψ1), . . . , t(ψn∞), ϕγ〉

X
0,n∞+2,β∞ · ϕ

γ

=
∑

β0+β∞=β
n0+n∞=n

(
Q β0

n0!
〈t(ψ1), . . . , t(ψn0),

(
ϕα

−z − ψq0

)
〉X0,n0+1,β0

)
·

(
Q β∞

n∞!
〈

(
ϕα

z − ψq∞

)
, t(ψ1), . . . , t(ψn∞), ϕγ〉

X
0,n∞+2,β∞ · ϕ

γ

)
There are also the contributions from the degenerate fixed loci, enumerated in §4.3.1 above.

We now calculate these.

Case 1: (β,n) = (0,0). This gives a single contribution, which is

−z (ev∞)∗(1X ) = −z1X

Case 2: (β,n) = (0,1) and n∞ = 0. This also gives a single contribution, which is

(ev∞)∗(ev∗1 t(ψ1)) = t(z )

here we have used the fact that the psi class ψ1 restricts to a trivial class on the fixed locus with

non-trivial weight z , so the equivariant class ψ1 gets identified with z .
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Case 3: n ≥ 1 and (β0,n0) = (0,0). Here we get a contribution for each (β,n) with n ≥ 1. The

contribution is:

Q β∞

n∞!
〈

(
−z1X
z − ψq∞

)
, t(ψ1), . . . , t(ψn∞), ϕγ〉

X
0,n∞+2,β · ϕ

γ

Case 4: n ≥ 1 and (β0,n0) = (0,1). We get a contribution for each (β,n) with n ≥ 1, and the

contribution is

Q β∞

n∞!
〈

(
t(z )

z − ψq∞

)
, t(ψ1), . . . , t(ψn∞), ϕγ〉

X
0,n∞+2,β∞ · ϕ

γ

where again we have used the fact that the class ψ0 restricts to the pure weight class z on the

fixed locus.

Case 5: n ≥ 2 and (β∞,n∞) = (0,0). Here we get a contribution for each (β,n) with n ≥ 2, and

the contribution is:

Q β0

n0!
〈t(ψ1), . . . , t(ψn0),

(
ϕγ

−z − ψq0

)
〉X0,n0+1,β0 · ϕ

γ

4.3.4. Putting everything together. If we sum together all the terms computed in the previous

section, we obtain:

(t(z ) − z1X )+
∑
β0,n0

Q β0

n0!
〈t(ψ1), . . . , t(ψn0),

(
ϕα

−z − ψq0

)
〉X0,n0+1,β0 · ϕ

α

+

(∑
β0,n0

Q β0

n0!
〈t(ψ1), . . . , t(ψn0),

(
ϕα

−z − ψq0

)
〉X0,n0+1,β0

)
·( ∑

β∞,n∞

Q β∞

n∞!
〈

(
ϕα

z − ψq∞

)
, t(ψ1), . . . , t(ψn∞), ϕγ〉

X
0,n∞+2,β∞ · ϕ

γ

)
+

∑
β∞,n∞

Q β∞

n∞!
〈

(
t(z ) − z1X
z − ψq∞

)
, t(ψ1), . . . , t(ψn), ϕγ〉X0,n∞+2,β∞ · ϕ

γ

Using q(z ) = t(z ) − z1X and grouping the final two terms together, we see that this is equal to:

q(z )+
∑
β0,n0

Q β0

n0!
〈t(ψ1), . . . , t(ψn0),

(
ϕα

−z − ψq0

)
〉X0,n0+1,β0 · ϕ

α

+
∑
β∞,n∞

Q β∞

n∞!

〈
1

z − ψq∞
·

(
q(z ) +

∑
β0,n0

Q β0

n0!
〈t(ψ1), . . . , t(ψn0),

(
ϕα

−z − ψq0

)
〉X0,n0+1,β0 · ϕ

α

)
,

t(ψ1), . . . , t(ψn∞), ϕγ

〉X
0,n∞+2,β∞

· ϕγ
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But this is equal to

LX |q(z ) +
∑
β∞,n∞

Q β∞

n∞!
〈

( LX |q(z )
z − ψq∞

)
, t(ψ1), . . . , t(ψn∞), ϕγ〉

X
0,n∞+2,β∞ · ϕ

γ = S (LX )|q(z )

as claimed. This completes the proof of Proposition 4.2.4.

Remark 4.3.3. It is perhaps worth comparing our computation to the computation carried out

in [Coa08]. There, the moduli space under consideration is the space of ordinary stable maps

to X × P1; Coates restricts to an open substack of this space, consisting of stable maps such

that only a single point of the curve is mapped to X∞. He then applies torus localisation and

pushes forward from the (proper) fixed loci. From our point of view, the loci from which he

pushes forward are the degenerate loci which appear as Case 5 in §4.3.1 above. The special

cases which he calls Case 2 and Case 3 are what we call Case 2 and Case 1, respectively. Our

non-special case, which contributes a product of invariants from stable maps to X and stable

maps to the non-rigid target, does not appear in his setting; nor do our special cases 3 and 4.

4.4. Variants and applications

Since an equivariant push-forward must take values in H∗(X ) ⊗ Λ[z ] = H+, an immediate

consequence of Proposition 4.2.4 is the following:

Theorem 4.4.1. S (LX ) ⊆ z ·H+.

This is somewhat surprising, since a priori we only know that S (LX ) ⊆ H, and indeed both S

and LX involve many non-positive powers of z . What Theorem 4.4.1 says is that the coe�cients

of these non-positive powers cancel out when we take S (LX ); this translates into a sequence

of universal relations for the Gromov–Witten invariants. Calculating the coe�cients of z−k

explicitly, we obtain for k ≥ 2 and q(z ) ∈ H+(
〈〈ψk−11 q(ψ1),ϕα〉〉

X
0,2 + (−1)

k 〈〈ϕαψ
k−1
1 〉〉

X
0,1+

k−2∑
r=0

(−1)1+r 〈〈ϕγψr1〉〉
X
0,1 · 〈〈ϕ

γψk−2−r1 , ϕα〉〉
X
0,2

)
(t(ψ)) · ϕα = 0

where we have used the correlator notation:

〈〈ϕα1ψ
k1
1 , . . . , ϕαrψ

kr
r 〉〉

X
0,r (t(ψ)) :=

∑
β,n

Q β

n!
〈ϕα1ψ

k1
1 , . . . , ϕαrψ

kr
r , t(ψr+1), . . . , t(ψr+n)〉

X
0,n+r,β
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These equations appear to be equivalent to the reconstruction relation [LP04, Equation (2)],

combined with the dilaton equation.

Remark 4.4.2. Theorem 4.4.1 can be viewed as a generalisation of one of the fundamental

results in the quantisation formalism, namely that the J -function is inverse to the fundamental

solution matrix; see Remark 4.4.4 below.

In this section we will now extend the above line of argument, exploiting the “hidden poly-

nomiality” implicit in our construction. We obtain new proofs and generalisations of several

foundational results concerning both the fundamental solution matrix and the Lagrangian cone.

4.4.1. The fundamental solution matrix and its adjoint. Looking at the definition given in

§4.2.3, we see that we can regard St(z ) as a power series in z−1 with coe�cients in End(H∗(X )):

St(z ) ∈ End(H∗(X ))nz−1o

We will write St(z )(z ) to emphasise this point of view. The adjoint St(z )∗(z ) is defined by taking

the adjoints, term-by-term, of the coe�cients of St(z )(z ) (with respect to the Poincaré pairing on

H∗(X )). It is easy to check that, for v ∈ H∗(X ):

(4.4.1) St(z )
∗(z )(v ) = v +

∑
β,n

Q β

n!
〈v, t(ψ1), . . . , t(ψn),

(
ϕα
z − ψ

)
〉X0,n+2,β · ϕ

α

An important feature of the theory [Giv96] is that when t(z ) = τ, the operators Sτ(z ) and

Sτ∗(−z ) are inverse to each other; this is in fact equivalent to the statement that Sτ(z ) is a

symplectomorphism [CPS13, §3.1]. We now generalise this fact to arbitrary t(z ), based on a

slight modification of the construction used in Proposition 4.2.4.

Proposition 4.4.3. St(z )∗(−z ) = St(z )(z )−1.

Proof. We first note that it is su�cient to prove:

(4.4.2) St(z )(z ) ◦ St(z )
∗(−z ) = IdH∗(X )

Indeed, the operators St(z )(z ) and St(z )∗(−z ) can be viewed as finite-dimensional matrices over

the field of Laurent series Λ((z−1)). If (4.4.2) holds then both these matrices have maximal rank,

and therefore we also have:

St(z )
∗(−z ) ◦ St(z )(z ) = IdH∗(X )
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Thus it remains to show (4.4.2). We consider the following moduli space

M0,n,(1),(1)

(
(X × P1 | X0 + X∞), (β,1)

)
which has a single marked point x0 mapping to X0, a single marked point x∞ mapping to X∞,

and a collection of other markings x1, . . . ,xn which carry no tangency conditions.

Since the divisor is now disconnected, we must be slightly careful about what we mean by

the space above. For our purposes, the allowed automorphisms act separately on the fibres of

the expanded degeneration over X0 and X∞. The stability condition is also imposed separately.

As such, each expansion is now indexed by two integers, l0 and l∞, giving the lengths of the

expansion over X0 and X∞ respectively. This is close to the approach taken in [FP05]. One can

view this moduli space as the fibre product:

M0,n+1,(1)

(
X × P1 |X0, (β,1)

)
×M0,n+2(X ×P1,(β,1))M0,n+1,(1)

(
X × P1 |X∞, (β,1)

)
Taking the definition this way ensures that, when we localise, the fixed loci are fibre products

of moduli spaces of relative stable maps to the non-rigid target. Furthermore since the stability

condition is imposed separately over X0 and X∞, the proof of Lemma 4.3.1 still applies. An

analogous computation to the one given in §4.3 then shows that, for v ∈ H∗(X ):

(ev∞)∗

(∑
β,n

Q β

n!
· ev∗0(v ) ·

n∏
i=1

ev∗i t(ψi )

)
= St(z )(z )

(
St(z )

∗(−z )(v )
)

Since this is an equivariant push-forward, we see that St(z )(z ) ◦ St(z )∗(−z ) is a polynomial in z

with coe�cients in End(H∗(X )). On the other hand it is obvious from the definitions that it is

also a power series in z−1. Thus St(z )(z ) ◦St(z )∗(−z ) is constant in z , and since the constant term

is clearly the identity this completes the proof. �

Remark 4.4.4. As noted previously, Proposition 4.4.3 is a generalisation of the following fun-

damental fact for τ ∈ H∗(X ):

Sτ∗(−z ) = Sτ(z )−1

I would like to thank M. Shoemaker for pointing out that one can also view Theorem 4.4.1 as a

generalisation of this result. Indeed, when t(z ) = τ we can use the string equation to show that

(4.4.3) LX |q(z ) = Sτ∗(−z )(−z )

where q(z ) = τ − z . Thus we find:

S (LX )|q(z ) = Sτ(LX |q(z )) = Sτ(z ) ◦ Sτ∗(−z )(−z ) = −z ∈ z ·H+
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Our result can be viewed as a generalisation of this to arbitrary t(z ). The original proof does

not apply in this more general setting, because it relies on an application of the string equation

which produces additional unwanted terms when t(z ) involves higher powers of z . In particular,

the identification (4.4.3) no longer holds, which explains why we end up with two di�erent

generalisations.

4.4.2. Properties of the Lagrangian cone. Here we reprove two fundamental facts concerning

the Lagrangian cone. First, we modify the previous construction to give a concrete proof that

LX is Lagrangian (though it should be noted that this also follows from the general fact that

the graph of any closed 1-form is Lagrangian).

Proposition 4.4.5. LX is Lagrangian.

Proof. Let q(z ) ∈ H+ be a point in the base and let f = LX |q(z ) ∈ H be the point on the cone

lying over q(z ). We must show that Tf LX is a Lagrangian subspace of H. First let us describe

the points of Tf LX . Recall that f is given by:

f = LX |q(z ) = q(z ) +
∑
β,n

Q β

n!
〈t(ψ1), . . . , t(ψn),

(
ϕγ

−z − ψ

)
〉X0,n+1,β · ϕ

γ

Since LX is the graph of the section dF0
X , the tangent space Tf LX is spanned by the partial

derivatives of the above expression in the H+-co-ordinates. Given such a co-ordinate q αk the

corresponding derivative is:

ϕαzk +
∑
β,n

Q β

n!
〈ϕαψ

k , t(ψ1), . . . , t(ψn),
(

ϕγ

−z − ψ

)
〉X0,n+2,β · ϕ

γ

Thus the tangent space consists of vectors in H of the form

r(z ) +
∑
β,n

Q β

n!
〈r(ψ), t(ψ1), . . . , t(ψn),

(
ϕγ

−z − ψ

)
〉X0,n+2,β · ϕ

γ

for r(z ) ∈ H+. On the other hand, if we look at the expression (4.4.1) given earlier for St(z )∗(z ) ∈

End(H∗(X ))nz−1o, we see that this can be extended in a natural way to give a map H+ → H via

St(z )
∗(z )(r(z )) = r(z ) +

∑
β,n

Q β

n!
〈r(ψ), t(ψ1), . . . , t(ψn),

(
ϕγ

z − ψ

)
〉X0,n+2,β · ϕ

γ

(note that this is di�erent from the extension of St(z )(z ) to an endomorphism ofH which we gave

in §4.2.3, where we treated the insertion r(z ) formally). Under the above definition, we see that:

Tf LX = St(z )∗(−z )(H+)
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Fixing r(z ),u(z ) ∈ H+, we thus need to show that:

Ω

(
St(z )

∗(z )(r(−z )),St(z )∗(−z )(u(z ))
)
= 0

⇔ Resz=0
(
St(z )

∗(z )r(−z ),St(z )∗(−z )(u(z ))
)
dz = 0

We take the moduli space

M0,n,(1),(1)

(
(X × P1 | X0 + X∞), (β,1)

)
as before and consider the equivariant integral (against the virtual class) of the following class:∑

β,n

Q β

n!

(
ev∗0(r(ψ0)) ·

n∏
i=1

ev∗i (t(ψi )) · ev
∗
∞(u(ψ∞))

)
Then an analogous computation to the one given in §4.3 shows cdthat this integral is equal to:(

St(z )
∗(z )(r(−z )),St(z )∗(−z )(u(z ))

)
Thus the above pairing is a polynomial in z , and so in particular the coe�cient of z−1 vanishes.

But this is precisely the residue that we needed to calculate, and the claim follows. �

Another fundamental fact about LX , already discussed in §4.2.2, is that:

(Tf LX ) ∩ LX = z · Tf LX

To finish, we will give a direct proof of one important consequence of this fact.

Proposition 4.4.6. f ∈ z · Tf LX .

Proof. As noted before, an immediate consequence of Proposition 4.2.4 is that:

St(z )(z )(f ) ∈ z ·H+

Applying St(z )∗(−z ) to both sides, we find that

f ∈ St(z )
∗(−z ) (z ·H+)

where, unlike in the proof of Proposition 4.4.5, the extension of St(z )∗(−z ) from H∗(X ) to H+ =

H∗(X )[z ] is obtained by expanding linearly in z . A deep fact from the theory now says that,

under this definition:

St(z )
∗(−z )(H+) = Tf LX

Some care is required here: we also saw this statement in the proof of the previous proposition,

but that was for a di�erent extension of St(z )∗(−z ) which was not linear in z . Under the new
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extension used here, which is linear in z , the statement still holds, though it is much less trivial.

Using this, we obtain:

f ∈ z · St(z )
∗(−z )(H+) = z · Tf LX

as required. �

Remark 4.4.7. The idea of using torus localisation to prove that certain generating functions

are polynomials is not new. It was used by Givental in the proof of the Mirror Theorem [Giv96]

and by I. Ciocan-Fontanine and B. Kim in the proof of the wall-crossing formula for quasimap

invariants [CFK16]. The disussion above constitutes a small continuation of this story.
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