
6 Completeness

6.1 Cauchy sequences

Definition 6.1. A sequence (xn) of elements of a metric space (X, %) is
called a Cauchy sequence if, given any ε > 0, there exists Nε such that
%(xn, xm) < ε for all n,m > Nε.

Lemma 6.2. Every convergent sequence is a Cauchy sequence.

Proof. If xn → α then for any ε > 0 there exists Nε such that %(xn, α) < ε/2
for all n ≥ Nε. Applying the triangle inequality we obtain

%(xn, xm) ≤ %(xn, α) + %(α, xm) < ε/2 + ε/2 = ε

for all n,m ≥ Nε. This implies that (xn) is a Cauchy sequence.

6.2 Complete metric spaces

Definition 6.3. A metric space (X, %) is said to be complete if every Cauchy
sequence (xn) in (X, %) converges to a limit α ∈ X.

There are incomplete metric spaces. If a metric space (X, %) is not
complete then it has Cauchy sequences that do not converge. This means,
in a sense, that there are gaps (or missing elements) in X.

Example 6.4. Consider the rational numbers Q with the usual metric
%(x, y) = |x − y|. Consider a sequence of rationals xn converging to

√
2

in (R, %); specifically, we may assume |xn −
√

2| ≤ 1/n. (This is possible
since there are rational numbers arbitrarily close to

√
2. Indeed, we can

even generate a convergent sequence algorithmically using a simple recur-
rence, e.g., x1 = 1, and xn = xn−1/2+1/xn−1 for n > 1. Lemma 6.2 assures
us that xn is a Cauchy sequence. But we know from C&C that

√
2 is not

itself a rational number. So the metric space (Q, %) is not complete.

Every incomplete metric space can be made complete by adding new
elements, which can be thought of as the missing limits of non-convergent
Cauchy sequences. More precisely, we have the following theorem.

Theorem 6.5. Let (X, %) be an arbitrary metric space. Then there exists a
complete metric space (X̃, %̃) such that

1. X ⊆ X̃ and %̃(x, y) = %(x, y) whenever x, y ∈ X;
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2. for every x̃ ∈ X̃ there exists a sequence of elements xn ∈ X such that
xn → x̃ as n→∞ in the space (X̃, %̃).

Proof. The proof of this theorem is beyond the scope of the course.

The metric space (X̃, %̃) is said to be the completion of (X, %). If (X, %)
is already complete then necessarily X = X̃ and % = %̃. Note that part (1)
of the theorem is saying that the original metric space (X, %) is a subspace
of its completion (X̃, %̃); Part (2) can be viewed as a minimality condition.
(E.g., the complex numbers C with the natural metric is a complete metric
space which includes R. However, it is not a completion of R by part (2).)
It can be shown that the completion of a metric space is unique (up to
isomorphism).

Example 6.6. Let X be the set of rational numbers with the standard
metric %(x, y) = |x− y|. As we noted in the previous example, this space is
not complete. The completion of (Q, %) is the set of all real numbers R with
the metric %(x, y) = |x − y|. Any irrational number can be written as an
infinite decimal fraction 0.a1a2 . . . or, in other words, can be identified with
the Cauchy sequence 0, 0.a1, 0.a1a2, . . . of rational numbers.

The space of real numbers R can be defined as the completion of the
space of rational numbers and is then, by definition, complete.

Lemma 6.7. Suppose (X, %) is a complete metric space, and that A ⊆ X is
a closed subset of X. Then (A, %) is a complete metric space.

Proof. Suppose (xn) is a Cauchy sequence in (A, %). Since (xn) is also a
Cauchy sequence in (X, %) it must converge to a limit α ∈ X. We just need
to show that α ∈ A. If α = xn for some n then we are done. Otherwise
(since xn → α) for every ε > 0 there exists n such that α 6= xn ∈ Bε(α). In
other words, α is a limit point of A. But A, as a closed set, contains all its
limit points.

Example 6.8. The metric space ([0, 1], %), where %(x, y) = |x − y| is the
usual metric on reals, is a complete metric space.

Recall that, for any set S, B(S) is the space of bounded functions S → R
equipped with the sup metric.

Theorem 6.9. B(S) is complete.
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Proof. Let f1, f2, . . . be a Cauchy sequence in B(S). Then for any ε > 0
there exists Nε such that

sup
x∈S

|fn(x)− fm(x)| < ε/2, for all n,m ≥ Nε.

This implies that for each fixed x ∈ S the numbers fn(x) form a Cauchy
sequence of real numbers. Since the space of real (or complex) numbers is
complete, this sequence has a limit. Let us denote this limit by f(x). Then
fn(x) → f(x) for each fixed x ∈ S, that is, for any ε > 0 there exists an
integer Mε,x (which may depend on x) such that

|fm(x)− f(x)| < ε/2, for all m ≥Mε,x.

So far, we know that fn converges pointwise to f . We want to show that
convergence is actually uniform. (The issue here is that Mε,x depends on x
as well as ε.) For any x ∈ S and any n,m ≥ 1, the triangle inequality tells
us that

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)|.

If n,m > Nε and m > Mε,x then the right hand side is bounded above by ε.
Therefore the left hand side is bounded by ε for all x ∈ S; indeed, given x,
we can always choose m in the right hand side to be greater than both Nε

and Mε,x. This implies that supx∈S |fn(x)− f(x)| < ε for all n ≥ Nε, which
means that fn → f uniformly.

It remains to prove that f is bounded. Choosing ε = 1 and n = Nε = N1

we obtain

sup
x∈S

|f(x)| = sup
x∈S

|fn(x)− fn(x) + f(x)|

≤ sup
x∈S

(
|fn(x)|+ |fn(x)− f(x)|

)
≤ sup

x∈S
|fn(x)|+ sup

x∈S
|fn(x)− f(x)|

≤ sup
x∈S

|fn(x)|+ 1.

Since fn is bounded, this estimate implies that f is also bounded.

Recall that C[a, b] is the space of continuous functions [a, b] → R equipped
with the sup metric.

Corollary 6.10. C[a, b] is complete.
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Proof. Since continuous functions on [a, b] are bounded, Theorem 6.9 implies
that any Cauchy sequence of continuous functions (fn) converges uniformly
to a bounded function f on [a, b], and we only need to prove that the func-
tion f is continuous.

Let α ∈ [a, b] and ε > 0 be arbitrary. We must show that there exists
δ > 0 such that |f(x)− f(α)| < ε whenever |x− α| < δ. We have

|f(x)− f(α)| = |f(x)− fn(x) + fn(x)− fn(α) + fn(α)− f(α)|
≤ |f(x)− fn(x)|+ |fn(x)− fn(α)|+ |fn(α)− f(α)|.

Since fn → f in C[a, b], we can choose n such that d∞(fn, f) < ε/3, where
d∞ is the sup metric on C[a, b]. For this choice of n, we have |f(x)−fn(x)| <
ε/3 and |f(α) − fn(α)| ≤ ε/3. Since the function fn is continuous, there
exists δ > 0 such that |fn(x)−fn(α)| < ε/3 whenever |x−y| < δ. Therefore

|f(x)− f(α)| ≤ ε/3 + ε/3 + ε/3 = ε

whenever |x− α| ≤ δ.

6.3 Contractions

Definition 6.11. A map f from a metric space (X, %) to itself is called a
contraction if %(f(x), f(y)) ≤ c%(x, y) for some 0 ≤ c < 1 and all x, y ∈ X.

Lemma 6.12. Let f be a mapping of metric space to itself. If f is a con-
traction then f is continuous.

Proof. Suppose α ∈ X and ε > 0 are arbitrary. For any x with %(x, α) < ε
we have %(f(x), f(α)) ≤ c %(x, α) < ε. So the definition of continuity is met
with δ = ε.

Theorem 6.13 (The Contraction Mapping Theorem). If f is a contraction
on a complete metric space then the equation f(x) = x has a unique solu-
tion x and, for any x0 ∈ X, the sequence xn defined by xn = f(xn−1), for
all n > 0, converges to x.

Proof. Let r0 = %(x0, x1). Then

%(xk, xk+1) = %(f(xk−1), f(xk)) ≤ c %(xk−1, xk),
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for k > 0, and so, by induction on k, %(xk, xk+1) ≤ ckr0. Let n < m. Then

%(xn, xm) ≤ %(xn, xn+1) + %(xn+1, xn+2) + %(xm−1, xm)

≤ cnr0 + cn+1r0 + · · ·+ cm−1r0

≤ cnr0(1 + c+ c2 + · · · )
= cn(1− c)−1r0. (5)

Since c < 1, the final expression can be made arbitrarily small by choosing
n large. This implies that xn is a Cauchy sequence. Since our metric space
is complete, xn converges to a limit x.

In view of Lemma 6.12, we have f(xn) → f(x) as n → ∞. At the
same time, f(xn) = xn+1 → x as n→∞. So, by looking at the limit of the
convergent sequence f(xn) in two different ways, we conclude that f(x) = x,
as required.

If y is another solution of the equation f(y) = y then

0 = %(f(x), f(y))− %(x, y) ≤ c %(x, y)− %(x, y) = (c− 1)%(x, y)

and, consequently, %(x, y) = 0. This implies that x is the only solution of
the equation f(x) = x.

Theorem 6.13 allows one to construct an approximate solution to an
equation of the form f(x) = x by choosing an arbitrary element x0 ∈ X and
evaluating xk = fk(x) for sufficiently large m. This is called the method of
successive approximations.

Corollary 6.14 (error estimate). Under the conditions of Theorem 6.13 we
have

%(xn, x) ≤ cn(1− c)−1%(x0, x1), for all x0 ∈ X and all n = 0, 1, 2, . . . .

Proof. We know that xm converges to x. Let ε > 0 and choose m ≥ n such
that %(xm, x) < ε. Then

%(xn, x) ≤ %(xn, xm) + %(xm, x)

≤ cn(1− c)−1%(x0, x1) + ε,

by (5). But ε > 0 is arbitrary, and the result follows.

Example 6.15. Consider the function f(x) = x/2 + 1/x defined on [1,∞).
The function f maps [1,∞) into itself. [Check this.] It is also a contraction
(with respect to the usual metric):

|f(x)−f(y)| =
∣∣(x/2+1/x)−(y/2+1/y)

∣∣ =
∣∣(x−y)(1/2−1/xy)

∣∣ ≤ |x−y|/2.
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Furthermore, [1,∞) is complete. [Check this.] Thus the sequence f(1) = 1.5,
f2(1) = 1.4167−, f3(1) = 1.4142+ converges to a unique limit x ∈ [1,∞).
Since x =

√
2 satisfies the equation f(x) = x, that limit is in fact

√
2. Since

c = 1
2 and %(1, f(1)) = 1

2 , the error estimate from Corollary 6.14 is 2−n. If we
had started with an initial value other than 1 we would still have converged
to the same limit.

Remark 6.16. For a function f : R → R the inequality |f(x) − f(y)| ≤
c |x − y|, (with some c > 0) is called a Lipschitz condition. If f is continu-
ously differentiable on [a, b] then, by the mean value theorem, f satisfies the
Lipschitz condition with c = sup{|f ′(x)| : x ∈ [a, b]}.

Example 6.17. Suppose we are looking for a solution to the differential
equation

dϕ

dx
= αϕ(x), ϕ(0) = 1,

in C[0, b], i.e., among continuous functions ϕ(x) on the closed interval [0, b].
(Of course, this is artificial, as we know the answer immediately!) Recast
the above as an integral equation

ϕ(x) = ϕ(0) + α

∫ x

0
ϕ(ξ) dξ = 1 + α

∫ x

0
ϕ(ξ) dξ. (6)

(This is legitimate by the Fundamental Theorem of calculus.) Now define
the map T : C[0, b] → C[0, b] as follows:

(T (ϕ))(x) = 1 + α

∫ x

0
ϕ(ξ) dξ.

(That is to say: T (ϕ) is a function whose value at x ∈ [0, b] is given by the
rhs of the equation.) We are using here the fact that a continuous function
is integrable, and that the integral in the definition of T is a continuous
function of x.) Then (6) is equivalent to the equation T (ϕ) = ϕ.

Now, we know (Corollary 6.10) that C[0, b] is a complete metric space.
So, if T is a contraction, then T (ϕ) = ϕ has a unique solution, which we can
approximate using the method of successive approximations. To this end,
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consider the following sequence of inequalities:

d∞(T (ϕ), T (ψ)) = sup
x∈[0,b]

|T (ϕ)(x)− T (ψ)(x)|

= sup
x∈[0,b]

∣∣∣∣α ∫ x

0
ϕ(ξ)− ψ(ξ) dξ

∣∣∣∣
≤ sup

x∈[0,b]
|α|

∫ x

0
|ϕ(ξ)− ψ(ξ)| dξ

= |α|
∫ b

0
|ϕ(ξ)− ψ(ξ)| dξ

≤ b |α| sup
ξ∈[0,b]

|ϕ(ξ)− ψ(ξ)|

= b |α| d∞(ϕ,ψ).

So T is a contraction, provided b < |α|−1.
How does this work in practice? Well, let’s set ϕ0 to be the constant

function 0 (the choice is not critical), and define ϕn for n > 0 by ϕn =
T (ϕn−1). Then (simple calculus):

ϕ0(x) = 0,
ϕ1(x) = 1,
ϕ2(x) = 1 + αx,

ϕ3(x) = 1 + αx+ (αx)2/2! ,

ϕ4(x) = 1 + αx+ (αx)2/2! + (αx)3/3! ,

etc. [Check this.] We can see ϕn tending uniformly to exp(αx) as expected,
and it even does so outside the range [0, b] guaranteed by the contraction
mapping theorem.

Of course, this is a toy example, but the same process can be used to
show existence and uniqueness of solutions to differential equations under
quite general conditions, and to provide an effective procedure for computing
approximate solutions.

Let g be a real-valued function defined on an open domain Ω ⊆ R2.
Consider the ordinary (non-linear) differential equation

dϕ

dx
= g(x, ϕ(x)) (7)

with the initial condition ϕ(x0) = ϕ0, where x takes values in R, ϕ is a
function of x and ϕ0 is some constant.
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Theorem 6.18 (Picard’s Theorem). Let (x0, ϕ0) ∈ Ω and g be a continuous
function satisfying the Lipschitz condition

|g(x, y1)− g(x, y2)| ≤ c |y1 − y2|,

where c is some constant. Then the equation (7) with the initial condition
ϕ(x0) = ϕ0 has a unique solution on some interval [x0 − δ, x0 + δ].

Proof. This is beyond the scope of the course. However, the basic ideas are
all in Example 6.17, and the various steps can be justified by reference to
results from D&IA. The proof provides an explicit procedure for producing
approximations to the solution ϕ.
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