PATH COUPLING AND BELIEF PROPAGATION

Eric Vigoda

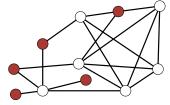
Georgia Tech

joint work with:

C. Efthymiou, T. Hayes, D. Štefankovič, Y. Yin [FOCS '16]

Martin Dyer Celebration, July '18

Undirected graph G = (V, E):



Independent set: subset of vertices with no adjacent pairs.

Let $\Omega = \text{all independent sets (of all sizes)}$.

Our Goal:

- **①** Counting problem: Estimate $|\Omega|$.
- **2** Sampling problem: Sample uniformly at random from Ω .

Given input graph G = (V, E) with n = |V| vertices, let $\Omega = \text{set of all independent sets in } G$.

Typically, $|\Omega|$ is HUGE = exponentially large in n.

Given input graph G = (V, E) with n = |V| vertices, let $\Omega = \text{set of all independent sets in } G$.

Typically, $|\Omega|$ is HUGE = exponentially large in n.

Goal: in time poly(n):

• Counting: Compute $|\Omega|$,

2 Sampling: generate random element of Ω .

Given input graph G = (V, E) with n = |V| vertices, let $\Omega = \text{set}$ of all independent sets in G.

Typically, $|\Omega|$ is HUGE = exponentially large in n.

Goal: in time poly(n):

• Counting: Compute $|\Omega|$,

2 Sampling: generate random element of Ω .

Exactly computing $|\Omega|$ is #P-complete: hence aim to approximate it.

Given input graph G = (V, E) with n = |V| vertices, let $\Omega = \text{set}$ of all independent sets in G.

Typically, $|\Omega|$ is HUGE = exponentially large in n.

Goal: in time poly(n):

• Counting: Compute $|\Omega|$,

2 Sampling: generate random element of Ω .

Exactly computing $|\Omega|$ is #P-complete: hence aim to approximate it.

But approximating is also hard...

Max independent set within $n^{1-\epsilon}$ for any $\epsilon>0$ is NP-hard. Computing $|\Omega|$ within $2^{n^{1-\epsilon}}$ for any $\epsilon>0$ is NP-hard.

```
Given input graph G = (V, E) with n = |V| vertices, let \Omega = \text{set} of all independent sets in G.
```

Typically, $|\Omega|$ is HUGE = exponentially large in n.

Goal: in time poly(n):

• Counting: Compute $|\Omega|$,

2 Sampling: generate random element of Ω .

Exactly computing $|\Omega|$ is #P-complete: hence aim to approximate it.

But approximating is also hard...

Max independent set within $n^{1-\epsilon}$ for any $\epsilon>0$ is NP-hard. Computing $|\Omega|$ within $2^{n^{1-\epsilon}}$ for any $\epsilon>0$ is NP-hard.

restricted classes of graphs

BOUNDED DEGREE GRAPHS

For constant $\Delta \geq 3$: Given input graph G = (V, E) with maximum degree Δ let $\Omega = \text{set}$ of all independent sets in G.

BOUNDED DEGREE GRAPHS

```
For constant \Delta \geq 3:
Given input graph G = (V, E) with maximum degree \Delta
let \Omega = \text{set} of all independent sets in G.
```

Exact computation of $|\Omega|$ is # P-complete, even for $\Delta=3$. [Greenhill '00]

What about approximating $|\Omega|$?

HARD-CORE GAS MODEL

Graph
$$G = (V, E)$$
, fugacity $\lambda > 0$, for $\sigma \in \Omega$:

Gibbs distribution:
$$\mu(\sigma) = \frac{\lambda^{|\sigma|}}{Z}$$

where

Partition function:
$$Z = \sum_{\sigma} \lambda^{|\sigma|}$$

$$\lambda = 1$$
, $Z = |\Omega| = \#$ of independent sets.

HARD-CORE GAS MODEL

Graph
$$G = (V, E)$$
, fugacity $\lambda > 0$, for $\sigma \in \Omega$:

Gibbs distribution:
$$\mu(\sigma) = \frac{\lambda^{|\sigma|}}{Z}$$

where

Partition function:
$$Z = \sum_{\sigma} \lambda^{|\sigma|}$$

$$\lambda = 1$$
, $Z = |\Omega| = \#$ of independent sets.

Inuition: Small λ easier: for $\lambda < 1$ prefer smaller sets. Large λ harder: for $\lambda > 1$ prefer max independent sets.

HARD-CORE GAS MODEL

Graph G = (V, E), fugacity $\lambda > 0$, for $\sigma \in \Omega$:

Gibbs distribution:
$$\mu(\sigma) = \frac{\lambda^{|\sigma|}}{Z}$$

where

Partition function:
$$Z = \sum_{\sigma} \lambda^{|\sigma|}$$

FPRAS for *Z*: Given *G*, ϵ , δ > 0, output EST where:

$$\Pr\left(\mathsf{EST}(1-\epsilon) \leq Z \leq \mathsf{EST}(1+\epsilon)\right) \geq 1-\delta,$$
 in time $\mathsf{poly}(|\mathcal{G}|, 1/\epsilon, \log(1/\delta))$.

FPTAS for *Z*: FPRAS with $\delta = 0$.

FPAUS for μ : Given G, $\delta > 0$, output X from distribution ν : $d_{\mathsf{TV}}(\nu,\mu) := \frac{1}{2} \sum |\nu(\sigma) - \mu(\sigma)| \leq \delta,$

in time poly(
$$|G|$$
, $log(1/\delta)$).

 $X_t \rightarrow X_{t+1}$ is defined as follows:

 $X_t \rightarrow X_{t+1}$ is defined as follows:

• Choose v uniformly at random from V.

 $X_t \to X_{t+1}$ is defined as follows:

• Choose v uniformly at random from V.

$$X' = egin{cases} X_t \cup \{v\} & ext{ with probability } \lambda/(1+\lambda) \ X_t \setminus \{v\} & ext{ with probability } 1/(1+\lambda) \end{cases}$$

 $X_t \rightarrow X_{t+1}$ is defined as follows:

• Choose v uniformly at random from V.

$$X' = egin{cases} X_t \cup \{v\} & ext{ with probability } \lambda/(1+\lambda) \ X_t \setminus \{v\} & ext{ with probability } 1/(1+\lambda) \end{cases}$$

② If X' is independent set, then $X_{t+1} = X'$, otherwise $X_{t+1} = X_t$

Stationary distribution is Gibbs distribution:
$$\mu(X) = \frac{\lambda^{|X|}}{Z}$$

 $X_t \to X_{t+1}$ is defined as follows:

• Choose v uniformly at random from V.

$$X' = egin{cases} X_t \cup \{v\} & ext{ with probability } \lambda/(1+\lambda) \ X_t \setminus \{v\} & ext{ with probability } 1/(1+\lambda) \end{cases}$$

② If X' is independent set, then $X_{t+1} = X'$, otherwise $X_{t+1} = X_t$

Stationary distribution is Gibbs distribution: $\mu(X) = \frac{\lambda^{|X|}}{Z}$

Mixing Time:
$$T_{mix} := \min\{t : \text{ for all } X_0, \ d_{tv}(X_t, \mu) \leq 1/4\}$$

Then $T_{\text{mix}}(\epsilon) \leq \log(1/\epsilon) T_{\text{mix}}$.

 $X_t \rightarrow X_{t+1}$ is defined as follows:

• Choose v uniformly at random from V.

$$X' = egin{cases} X_t \cup \{v\} & ext{ with probability } \lambda/(1+\lambda) \ X_t \setminus \{v\} & ext{ with probability } 1/(1+\lambda) \end{cases}$$

② If X' is independent set, then $X_{t+1} = X'$, otherwise $X_{t+1} = X_t$

Stationary distribution is Gibbs distribution:
$$\mu(X) = \frac{\lambda^{|X|}}{Z}$$

Mixing Time:
$$T_{mix} := \min\{t : \text{ for all } X_0, \ d_{tv}(X_t, \mu) \leq 1/4\}$$

Then
$$T_{\text{mix}}(\epsilon) \leq \log(1/\epsilon) T_{\text{mix}}$$
.

Recall,
$$d_{\mathsf{TV}}(\mu, \nu) = \frac{1}{2} \sum_{\sigma \in \Omega} |\mu(\sigma) - \nu(\sigma)|$$
.

• For
$$\lambda < \frac{2}{\Delta - 2}$$
, $T_{\text{mix}} = O(n \log n)$ $(\lambda = 1, \Delta = 4, \text{ poly}(n))$ [Luby, V '97], [Dyer, Greenhill '00]

$$ullet$$
 For $\lambda < rac{2}{\Delta - 2}$, $T_{
m mix} = O(n \log n)$ $(\lambda = 1, \Delta = 4, \
m poly(n))$ [Luby, V '97], [Dyer, Greenhill '00]

• For $\lambda=1, \Delta\geq 25$, NP-hard to approx. Z within an exponential factor on Δ -regular graphs. [Dyer,Frieze,Jerrum '02]

ullet For $\lambda < rac{2}{\Delta - 2}$, $T_{
m mix} = O(n \log n)$ $(\lambda = 1, \Delta = 4, \
m poly(n))$ [Luby,V '97],[Dyer,Greenhill '00]

Let
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

• All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]

ullet For $\lambda=1, \Delta\geq 25$, NP-hard to approx. Z within an exponential factor on Δ -regular graphs. [Dyer,Frieze,Jerrum '02]

ullet For $\lambda < rac{2}{\Delta - 2}$, $T_{
m mix} = O(n \log n)$ $(\lambda = 1, \Delta = 4, \
m poly(\it n))$ [Luby, V '97], [Dyer, Greenhill '00]

Let
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

• All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]

- All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: NP-hard to approx. Z for Δ -regular [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]
- ullet For $\lambda=1, \Delta\geq 25$, NP-hard to approx. Z within an exponential factor on Δ -regular graphs. [Dyer,Frieze,Jerrum '02]

ullet For $\lambda < rac{2}{\Delta - 2}$, $T_{
m mix} = O(n \log n)$ $(\lambda = 1, \Delta = 4, \
m poly(\it n))$ [Luby,V '97],[Dyer,Greenhill '00]

Let
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

- All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]
- FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '17]

- All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: NP-hard to approx. Z for Δ -regular [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]
- ullet For $\lambda=1, \Delta\geq 25$, NP-hard to approx. Z within an exponential factor on Δ -regular graphs. [Dyer,Frieze,Jerrum '02]

ullet For $\lambda < rac{2}{\Delta - 2}$, $T_{
m mix} = O(n \log n)$ $(\lambda = 1, \Delta = 4, \
m poly(n))$ [Luby, V '97], [Dyer, Greenhill '00]

Let
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

- All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]
- FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '17] For $\delta, \epsilon > 0$, $\Delta \geq 3$, exists $C = C(\delta, \Delta)$, for $\lambda < (1 \delta)\lambda_c$, running time $(n/\epsilon)^{C\log \Delta}$.
- All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: NP-hard to approx. Z for Δ -regular [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]
- For $\lambda=1, \Delta\geq 25$, NP-hard to approx. Z within an exponential factor on Δ -regular graphs. [Dyer,Frieze,Jerrum '02]

ullet For $\lambda < rac{2}{\Delta - 2}$, $T_{
m mix} = O(n \log n)$ $(\lambda = 1, \Delta = 4, \
m poly(\it n))$ [Luby,V '97],[Dyer,Greenhill '00]

Let
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

- All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]
- FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '17] For $\delta, \epsilon > 0$, $\Delta \geq 3$, exists $C = C(\delta, \Delta)$, for $\lambda < (1 \delta)\lambda_c$, running time $(n/\epsilon)^{C\log \Delta}$.
- All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: NP-hard to approx. Z for Δ -regular [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]
- For $\lambda=1, \Delta\geq 25$, NP-hard to approx. Z within an exponential factor on Δ -regular graphs. [Dyer,Frieze,Jerrum '02]

What happens at $\lambda_c(\Delta)$?

ullet For $\lambda < rac{2}{\Delta - 2}$, $T_{
m mix} = O(n \log n)$ $(\lambda = 1, \Delta = 4, \
m poly(n))$ [Luby,V '97],[Dyer,Greenhill '00]

Let
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

- All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]
- FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '17] For $\delta, \epsilon > 0$, $\Delta \geq 3$, exists $C = C(\delta, \Delta)$, for $\lambda < (1 \delta)\lambda_c$, running time $(n/\epsilon)^{C\log\Delta}$.
- All $\Delta \geq 3$, all $\lambda > \lambda_c(\Delta)$: NP-hard to approx. Z for Δ -regular [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]
- For $\lambda=1, \Delta\geq 25$, NP-hard to approx. Z within an exponential factor on Δ -regular graphs. [Dyer,Frieze,Jerrum '02]

What happens at $\lambda_c(\Delta)$?

Statistical physics phase transition on infinite Δ -regular tree!

Our Results

Our Results

THEOREM

For all
$$\delta>0$$
, there exists $\Delta_0=\Delta_0(\delta)$:
all $G=(V,E)$ of max degree $\Delta\geq\Delta_0$ and girth \geq 7,
all $\lambda<(1-\delta)\lambda_c(\Delta)$,

$$T_{\min} = O(n \log n)$$
.

Our Results

THEOREM

For all
$$\delta>0$$
, there exists $\Delta_0=\Delta_0(\delta)$:
all $G=(V,E)$ of max degree $\Delta\geq\Delta_0$ and girth \geq 7,
all $\lambda<(1-\delta)\lambda_c(\Delta)$,

$$T_{\min} = O(n \log n)$$
.

COROLLARIES

- An $O^*(n^2)$ FPRAS for estimating the partition function Z.
- $T_{mix} = O(n \log n)$ when $\lambda \leq (1 \delta)\lambda_c(\Delta)$ for:
 - \bullet random Δ -regular graphs
 - ullet random Δ -regular bipartite graphs

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{ is occupied})$

Extremal cases: even versus odd height.

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{ is occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell\to\infty} p_{2\ell} = \lim_{\ell\to\infty} p_{2\ell+1}$$
?

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$$
 ?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$
 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root.
 $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root.

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$$
 ?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness

 $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root. non-uniqueness

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} \, (\mathsf{root} \, \mathsf{is} \, \mathsf{occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$$
?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness

 $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root. non-uniqueness

Example: $\Delta = 5$, $\lambda = 1$:

$$p_{even} = .245, \ p_{odd} = .245$$

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr}$ (root is occupied)

Extremal cases: even versus odd height.

Does
$$\lim_{\ell\to\infty}p_{2\ell}=\lim_{\ell\to\infty}p_{2\ell+1}$$
 ?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness

 $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root. non-uniqueness

Example:
$$\Delta = 5$$
, $\lambda = 1.05$:

$$p_{even} = .250, \ p_{odd} = .250$$

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell\to\infty}p_{2\ell}=\lim_{\ell\to\infty}p_{2\ell+1}$$
 ?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness

 $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root. non-uniqueness

Example:
$$\Delta = 5$$
, $\lambda = 1.06$:

$$p_{even} = .283, \ p_{odd} = .219$$

PHASE TRANSITION ON TREES

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr}$ (root is occupied)

Extremal cases: even versus odd height.

Does
$$\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$$
 ?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness

 $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root. non-uniqueness

Tree/BP recursions:
$$p_{\ell+1} = \frac{\lambda(1-p_{\ell})^{\Delta-1}}{1+\lambda(1-p_{\ell})^{\Delta-1}}$$

Key: Unique vs. Multiple fixed points of 2-level recursions.

PHASE TRANSITION ON TREES

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{ is occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell\to\infty}p_{2\ell}=\lim_{\ell\to\infty}p_{2\ell+1}$$
 ?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness

 $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root. non-uniqueness

For 2-dimensional integer lattice \mathbb{Z}^2 :

Conjecture: $\lambda_c(\mathbb{Z}^2) \approx 3.79$

Best bounds: $2.53 < \lambda_c(\mathbb{Z}^2) < 5.36$

Coupling of Markov Chains

Consider a Markov chain (Ω, P) .

Coupling is a joint process $\omega = (X_t, Y_t)$ on $\Omega \times \Omega$ where:

$$X_t \sim P$$
 and $Y_t \sim P$

More precisely, for all $a, b, c \in \Omega$,

$$Pr(X_{t+1} = c \mid X_t = a, Y_t = b) = P(a, c)$$

$$Pr(X_{t+1} = c \mid X_t = a, Y_t = b) = P(b, c)$$

Coupling of Markov Chains

Consider a Markov chain (Ω, P) .

Coupling is a joint process $\omega = (X_t, Y_t)$ on $\Omega \times \Omega$ where:

$$X_t \sim P$$
 and $Y_t \sim P$

More precisely, for all $a, b, c \in \Omega$,

$$Pr(X_{t+1} = c \mid X_t = a, Y_t = b) = P(a, c)$$

 $Pr(X_{t+1} = c \mid X_t = a, Y_t = b) = P(b, c)$

Intuition:

$$(X_t o X_{t+1}) \sim P$$
 and $(Y_t o Y_{t+1}) \sim P$ can correlate by ω .

Let X_0 be arbitrary, and $Y_0 \sim \pi$. Once $X_T = Y_T$ then $X_T \sim \pi$.

COUPLING OF MARKOV CHAINS

Consider a Markov chain (Ω, P) .

Coupling is a joint process $\omega = (X_t, Y_t)$ on $\Omega \times \Omega$ where:

$$X_t \sim P$$
 and $Y_t \sim P$

More precisely, for all $a, b, c \in \Omega$,

$$Pr(X_{t+1} = c \mid X_t = a, Y_t = b) = P(a, c)$$

 $Pr(X_{t+1} = c \mid X_t = a, Y_t = b) = P(b, c)$

Intuition:

$$(X_t o X_{t+1}) \sim P$$
 and $(Y_t o Y_{t+1}) \sim P$ can correlate by ω .

Let X_0 be arbitrary, and $Y_0 \sim \pi$. Once $X_T = Y_T$ then $X_T \sim \pi$.

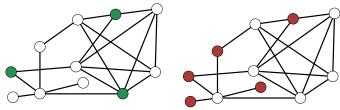
Coupling time:

$$T_{\text{couple}} = \max_{a,b} \min\{t : \Pr(X_t \neq Y_t \mid X_0 = a, Y_0 = b) \le 1/4.\}$$

$$T_{\rm mix} \leq T_{\rm couple}$$

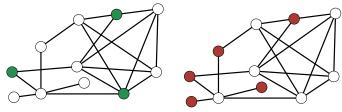
Coupling for Independent Sets

Consider a pair of independent sets X_t and Y_t :

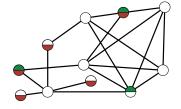


Coupling for Independent Sets

Consider a pair of independent sets X_t and Y_t :

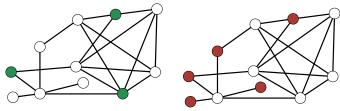


Look at $\frac{X_t}{Y_t}$:

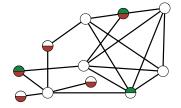


COUPLING FOR INDEPENDENT SETS

Consider a pair of independent sets X_t and Y_t :



Look at $\frac{X_t}{Y_t}$:

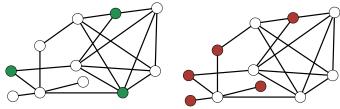


Identity Coupling:

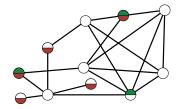
Update same v_t , attempt to add to both or remove from both.

COUPLING FOR INDEPENDENT SETS

Consider a pair of independent sets X_t and Y_t :



Look at $\frac{X_t}{Y_t}$:



Identity Coupling:

Update same v_t , attempt to add to both or remove from both.

How to analyze???

Coupling for bounding T_{mix}

For all X_t, Y_t , define a coupling: $(X_t, Y_t) \rightarrow (X_{t+1}, Y_{t+1})$.

Look at Hamming distance: $H(X_t, Y_t) = |\{v : X_t(v) \neq Y_t(v)\}|.$

If for all X_t, Y_t ,

$$\mathbb{E}\left[\left.H(X_{t+1},Y_{t+1})\right|X_t,Y_t\right] \leq (1-1/n)H(X_t,Y_t),$$
 then $T_{\mathrm{mix}} = O(n\log n).$

Path coupling: Suffices to consider pairs where $H(X_t, Y_t) = 1$.

Let $S \subset \Omega^2$ denote pairs (X_t, Y_t) where $H(X_t, Y_t) = 1$. Define a coupling ω for all $(X_t, Y_t) \in S$ where:

$$\mathbb{E}[H(X_{t+1}, Y_{t+1}) \mid X_t, Y_t] \leq 1 - C/n.$$

Let $S \subset \Omega^2$ denote pairs (X_t, Y_t) where $H(X_t, Y_t) = 1$. Define a coupling ω for all $(X_t, Y_t) \in S$ where:

$$\mathbb{E}[H(X_{t+1}, Y_{t+1}) \mid X_t, Y_t] \leq 1 - C/n.$$

For arbitrary $(A_t, B_t) \in \Omega^2$: In graph (Ω, S) , consider a shortest path X_t to Y_t : $(A_t, W_t^1, W_t^2, \dots, W_t^{\ell-1}, B_t), \ \ell = H(A_t, B_t).$ Couplings: $\omega^1 = (W_t^0, W_t^1), \dots, \omega^\ell = (W_t^{\ell-1}, W_t^\ell).$ Compose: $\omega = \omega^1 \circ \omega^2 \circ \dots \circ \omega^\ell$ gives coupling $(A_t, B_t).$

PATH COUPLING [BUBLEY AND DYER '97]

Let $S \subset \Omega^2$ denote pairs (X_t, Y_t) where $H(X_t, Y_t) = 1$. Define a coupling ω for all $(X_t, Y_t) \in S$ where:

$$\mathbb{E}[H(X_{t+1}, Y_{t+1}) \mid X_t, Y_t] \leq 1 - C/n.$$

For arbitrary $(A_t, B_t) \in \Omega^2$:

In graph (Ω, S) , consider a shortest path X_t to Y_t : $(A_t, W_t^1, W_t^2, \dots, W_t^{\ell-1}, B_t), \ \ell = H(A_t, B_t).$

Couplings: $\omega^1 = (W_t^0, W_t^1), \dots, \omega^{\ell} = (W_t^{\ell-1}, W_t^{\ell}).$

Compose: $\omega = \omega^1 \circ \omega^2 \circ \cdots \circ \omega^\ell$ gives coupling (A_t, B_t) .

Algorithmic View:

- Choose $W_t^0 o W_t^1$ by P,
- ullet Apply ω^1 to get $W_t^2 \to W_{t+1}^2$,
- \bullet Apply ω^2 to get $W_t^3 \to W_{t+1}^3, \ldots,$

Let $S \subset \Omega^2$ denote pairs (X_t, Y_t) where $H(X_t, Y_t) = 1$. Define a coupling ω for all $(X_t, Y_t) \in S$ where:

$$\mathbb{E}[H(X_{t+1}, Y_{t+1}) \mid X_t, Y_t] \leq 1 - C/n.$$

For arbitrary $(A_t, B_t) \in \Omega^2$:

In graph (Ω, S) , consider a shortest path X_t to Y_t : $(A_t, W_t^1, W_t^2, \dots, W_t^{\ell-1}, B_t), \ \ell = H(A_t, B_t).$

Couplings: $\omega^1 = (W_t^0, W_t^1), \dots, \omega^{\ell} = (W_t^{\ell-1}, W_t^{\ell}).$

Compose: $\omega = \omega^1 \circ \omega^2 \circ \cdots \circ \omega^\ell$ gives coupling (A_t, B_t) .

$$\mathbb{E}[H(A_{t+1}, B_{t+1})] \leq \mathbb{E}\left[\sum_{i} H(W_{t+1}^{i-1}, W_{t+1}^{i})\right] \\ \leq \sum_{i} \mathbb{E}\left[H(W_{t+1}^{i-1}, W_{t+1}^{i})\right] \\ \leq \sum_{i} (1 - C/n) \\ \leq H(A_{t}, B_{t})(1 - C/n).$$

Let $S \subset \Omega^2$ denote pairs (X_t, Y_t) where $H(X_t, Y_t) = 1$. Define a coupling ω for all $(X_t, Y_t) \in S$ where:

$$\mathbb{E}[H(X_{t+1}, Y_{t+1}) \mid X_t, Y_t] \leq 1 - C/n.$$

Then for arbitrary $(A_t, B_t) \in \Omega^2$, can construct coupling where:

$$\mathbb{E}[H(A_{t+1}, B_{t+1})] \leq H(A_t, B_t)(1 - C/n).$$

$$\begin{aligned} \mathbf{Pr} \left(A_T \neq B_T \right) & \leq & \mathbb{E} \left[H(A_T, B_T) \right] \\ & \leq & H(A_0, B_0) (1 - C/n)^T \\ & \leq & n \exp(-C/n) \\ & \leq & 1/4 \quad \text{for } T = O(n \log n). \end{aligned}$$

Hence, $T_{\text{mix}} = O(n \log n)$.

Let $S \subset \Omega^2$ denote pairs (X_t, Y_t) where $H(X_t, Y_t) = 1$. Define a coupling ω for all $(X_t, Y_t) \in S$ where:

$$\mathbb{E}[H(X_{t+1}, Y_{t+1}) \mid X_t, Y_t] \leq 1 - C/n.$$

Then for arbitrary $(A_t, B_t) \in \Omega^2$, can construct coupling where:

$$\mathbb{E}[H(A_{t+1}, B_{t+1})] \leq H(A_t, B_t)(1 - C/n).$$

$$\Pr(A_T \neq B_T) \leq \mathbb{E}[H(A_T, B_T)]$$

$$\leq H(A_0, B_0)(1 - C/n)^T$$

$$\leq n \exp(-C/n)$$

$$\leq 1/4 \text{ for } T = O(n \log n).$$

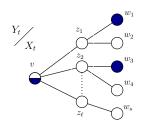
Hence, $T_{\text{mix}} = O(n \log n)$.

Can replace H():

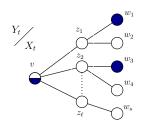
For $\Phi:V o\mathbb{R}_{\geq 1}$, let $\Phi(X,Y)=\sum_{v\in X\oplus Y}\Phi_v.$

Key: if $X \neq Y$ then $\Phi(X, Y) \geq 1$ and $\Pr(X_t \neq Y_t) \leq \mathbb{E}[\Phi(X_t, Y_t)]$.

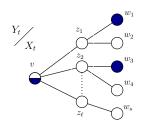
$$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$



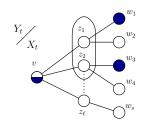
$$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$



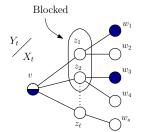
$$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$



$$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$



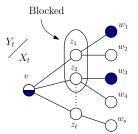
$$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$



$$\mathbb{E}\left[H(X_{t+1}, Y_{t+1})\right] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$

$$= (1 - \frac{1}{n}) + \frac{1}{n} \sum_{z_i} \mathbf{1}\{z_i \text{ unblocked}\} \frac{\lambda}{1 + \lambda}$$

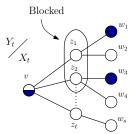
$$\leq 1 - \frac{1}{n} + \frac{\Delta}{n} \frac{\lambda}{1 + \lambda}$$



$$\mathbb{E}\left[H(X_{t+1}, Y_{t+1})\right] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$

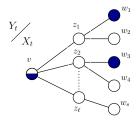
$$= (1 - \frac{1}{n}) + \frac{1}{n} \sum_{z_i} \mathbf{1}\{z_i \text{ unblocked}\} \frac{\lambda}{1 + \lambda}$$

$$\leq 1 - \frac{1}{n} + \frac{\Delta}{n} \frac{\lambda}{1 + \lambda} < 1$$
Requires: $\lambda < 1/(\Delta - 1)$

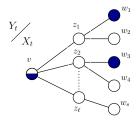


$$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,\,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle \mathcal{V}} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$

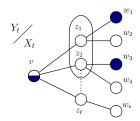
$$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle \mathcal{V}} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$



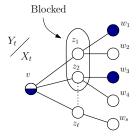
$$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle \mathcal{V}} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$



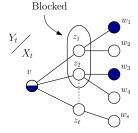
$$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle \mathcal{V}} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$



$$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,\,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle V} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$



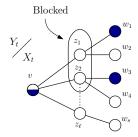
$$\begin{split} \mathbb{E}\left[\varPhi(X_{t+1}, Y_{t+1}) | \, X_t, \, Y_t \right] &= \left(1 - \frac{1}{n} \right) \varPhi_v + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i} \\ &= \left(1 - \frac{1}{n} \right) \varPhi_v + \frac{1}{n} \sum_{z_i} \mathbf{1} \{ z_i \text{ unblocked} \} \frac{\lambda}{1 + \lambda} \varPhi_{z_i} \end{split}$$



$$\mathbb{E}\left[\Phi(X_{t+1},Y_{t+1})|X_t,Y_t\right] = \left(1 - \frac{1}{n}\right)\Phi_v + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \Phi_{z_i}$$

$$= \left(1 - \frac{1}{n}\right) \varPhi_{v} + \frac{1}{n} \sum_{z_{i}} \mathbf{1} \{z_{i} \text{ unblocked}\} \frac{\lambda}{1 + \lambda} \varPhi_{z_{i}} < \underline{\varPhi}_{v}$$

Want:
$$\Phi_{v} > \frac{\lambda}{1+\lambda} \sum_{z_{i}} \mathbf{1}\{z_{i} \text{ unblocked in } Y_{t}\} \cdot \Phi_{z_{i}}$$



Belief Propagation on trees

For tree T and given λ , compute:

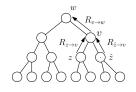
$$q(v, w) = \mu(v \text{ occupied}|w \text{ unoccupied})$$

$$R_{v \to w} = \frac{q(v, w)}{1 - q(v, w)}$$

$$R_{v \to w} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}}$$

BP starts from arbitrary $R_{v \to w}^0$, then iterates:

$$R_{v \to w}^{i} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}}$$



BP AND GIBBS DISTRIBUTION ON TREES

Convergence on trees

For i > max-depth, for every initial (R^0) :

$$R_{v \to w}^i = R_{v \to w}^*$$

In turn

$$\mu(v \text{ occupied}|w \text{ unoccupied}) = q^* = \frac{R_{v \to w}^*}{1 + R_{v \to w}^*}$$

BP is an elaborate version of *Dynamic Programing*

BP Convergence for girth > 6

Loopy Belief Propagation: Run BP on general G = (V, E). For all $v \in V, w \in N(v)$:

$$R_{v \to w}^{i} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}} \quad \text{and} \quad q^{i}(v, w) = \frac{R_{v \to w}^{i}}{1 + R_{v \to w}^{i}}$$

BP CONVERGENCE FOR GIRTH > 6

Loopy Belief Propagation: Run BP on general G = (V, E). For all $v \in V, w \in N(v)$:

$$R_{v \to w}^{i} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}} \quad \text{and} \quad q^{i}(v, w) = \frac{R_{v \to w}^{i}}{1 + R_{v \to w}^{i}}$$

Does it converge? If so, to what?

BP CONVERGENCE FOR GIRTH > 6

Loopy Belief Propagation: Run BP on general G = (V, E). For all $v \in V, w \in N(v)$:

$$R_{v \to w}^i = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}} \quad \text{and} \quad q^i(v, w) = \frac{R_{v \to w}^i}{1 + R_{v \to w}^i}$$

Does it converge? If so, to what?

For $\lambda < \lambda_c$: R() has a unique fixed point R^* .

BP Convergence for Girth ≥ 6

Loopy Belief Propagation: Run BP on general G = (V, E). For all $v \in V, w \in N(v)$:

$$R_{v \to w}^{i} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}} \quad \text{and} \quad q^{i}(v, w) = \frac{R_{v \to w}^{i}}{1 + R_{v \to w}^{i}}$$

Does it converge? If so, to what?

For $\lambda < \lambda_c$: R() has a unique fixed point R^* .

THEOREM

Let
$$\delta, \epsilon > 0$$
, $\Delta_0 = \Delta_0(\delta, \epsilon)$ and $C = C(\delta, \epsilon)$.

For G of max degree $\Delta \geq \Delta_0$ and girth ≥ 6 , all $\lambda < (1 - \delta)\lambda_c(\Delta)$: for $i \geq C$, for all $v \in V$, $w \in N(v)$,

$$\left|\frac{q^i(\mathsf{v},\mathsf{w})}{\mu(\mathsf{v}\ is\ occupied\ |\ \mathsf{w}\ is\ unoccupied)} - 1\right| \leq \epsilon$$

Unblocked Neighbors and Loopy BP

Recall, loopy BP estimate that z is unoccupied:

$$R_z^i = \lambda \prod_{y \in N(v)} \frac{1}{1 + R_y^{i-1}}$$

Loopy BP estimate that z is unblocked:

$$\omega_z^i = \prod_{y \in N(z)} \frac{1}{1 + \lambda \cdot \omega_y^{i-1}}$$

For $\lambda < \lambda_c$:

Since R converges to unique fixed point R^* , thus ω converges to unique fixed point ω^* .

We'll prove (but don't know a priori):

$$\omega^*(z) \approx \mu(z \text{ is unblocked})$$

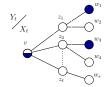
BACK TO PATH COUPLING

worst case condition

$$\Phi_{\nu} > \frac{\lambda}{1+\lambda} \sum_{z_i} \mathbf{1}\{z_i \text{ unblocked}\} \cdot \Phi_{z_i}$$

when X_t, Y_t "behave" like ω^*

$$\Phi_{\nu} > \frac{\lambda}{1+\lambda} \sum_{z_i} \omega^*(z_i) \cdot \Phi_{z_i}$$



Finding Φ

REFORMULATION

Goal: Find Φ such that

$$\Phi_{v} > \sum_{z \in N(v)} \frac{\lambda \omega^{*}(z)}{1 + \lambda \omega^{*}(z)} \Phi_{z}$$

Finding Φ

REFORMULATION

Goal: Find Φ such that

$$\Phi_{v} > \sum_{z \in N(v)} \frac{\lambda \omega^{*}(z)}{1 + \lambda \omega^{*}(z)} \Phi_{z}$$

Define $n \times n$ matrix C

$$\mathcal{C}(v,z) = \left\{ egin{array}{ll} rac{\lambda \omega^*(z)}{1 + \lambda \omega^*(z)} & ext{if } z \in \mathcal{N}(v) \\ 0 & ext{otherwise} \end{array}
ight.$$

Finding Φ

REFORMULATION

Goal: Find Φ such that

$$\Phi_{
m v} > \sum_{z \in N({
m v})} rac{\lambda \omega^*(z)}{1 + \lambda \omega^*(z)} \; \Phi_{z}$$

Define $n \times n$ matrix C

$$C(v,z) = \begin{cases} \frac{\lambda \omega^*(z)}{1 + \lambda \omega^*(z)} & \text{if } z \in N(v) \\ 0 & \text{otherwise} \end{cases}$$

Rephrased: Find vector $\Phi \in \mathbb{R}^V_{\geq 1}$ such that

$$\mathcal{C} \Phi < \Phi$$

CONNECTIONS WITH LOOPY BP

Recall, BP operator for unblocked:
$$F(\omega)(z) = \prod_{y \in N(z)} \frac{1}{1 + \lambda \omega(y)}$$

It has Jacobian:
$$J(v, u) = \left| \frac{\partial F(\omega)(v)}{\partial \omega(u)} \right| = \begin{cases} \frac{\lambda F(\omega)(v)}{1 + \lambda \omega(u)} & \text{if } u \in N(v) \\ 0 & \text{otherwise} \end{cases}$$

Let $J^*=J|_{\omega=\omega^*}$ denote the Jacobian at the fixed point ω^* .

Key fact:
$$C = D^{-1}J^*D$$
,

where D is diagonal matrix with $D(v, v) = \omega^*(v)$

CONNECTIONS WITH LOOPY BP

Recall, BP operator for unblocked:
$$F(\omega)(z) = \prod_{y \in N(z)} \frac{1}{1 + \lambda \omega(y)}$$

It has Jacobian:
$$J(v, u) = \left| \frac{\partial F(\omega)(v)}{\partial \omega(u)} \right| = \begin{cases} \frac{\lambda F(\omega)(v)}{1 + \lambda \omega(u)} & \text{if } u \in N(v) \\ 0 & \text{otherwise} \end{cases}$$

Let $J^*=J|_{\omega=\omega^*}$ denote the Jacobian at the fixed point ω^* .

Key fact:
$$C = D^{-1}J^*D$$
,

where D is diagonal matrix with $D(v, v) = \omega^*(v)$

Fixed point ω^* is Jacobian attractive so all eigenvalues < 1. Principal eigenvector Φ is good coupling distance.

OUTLINE

Problem: We don't know good Φ for worst-case X_t, Y_t .

Proof approach:

ullet This arPhi+ local uniformity o rapid mixing builds on [Dyer-Frieze-Hayes-V '13]

OUTLINE

Problem: We don't know good Φ for worst-case X_t, Y_t .

Proof approach:

• Find good Φ when locally X_t, Y_t "behave" like ω^* —dynamics gets "local uniformity" builds on [Hayes '13] which builds on [Dyer, Frieze '03] For any X_0 , when $\lambda < \lambda_c$ and girth ≥ 7 , with prob. $\geq 1 - \exp(-\Omega(\Delta))$, for $t = \Omega(n \log \Delta)$: $\#\{\text{Unblocked Neighbors of } v \text{ in } X_t\} < \sum_{z \in N(v)} \omega^*(z) + \epsilon \Delta.$

ullet This arPhi+ local uniformity o rapid mixing builds on [Dyer-Frieze-Hayes-V '13]

OUTLINE

Problem: We don't know good Φ for worst-case X_t, Y_t .

Proof approach:

• Find good Φ when locally X_t, Y_t "behave" like ω^* —dynamics gets "local uniformity" builds on [Hayes '13] which builds on [Dyer,Frieze '03] For any X_0 , when $\lambda < \lambda_c$ and girth ≥ 7 , with prob. $\geq 1 - \exp(-\Omega(\Delta))$, for $t = \Omega(n \log \Delta)$: $\#\{\text{Unblocked Neighbors of } v \text{ in } X_t\} < \sum_{z \in N(v)} \omega^*(z) + \epsilon \Delta.$

• This Φ + local uniformity \to rapid mixing builds on [Dyer-Frieze-Hayes-V '13] For (X_0, Y_0) differ only at v, for $T = O(n \log \Delta)$, $r = O(\sqrt{\Delta})$, $\Pr(X_T \oplus Y_T \subset B_r(v)) \ge 1 - \exp(\Omega(\sqrt{\Delta}))$

LOCAL UNIFORMITY RESULT

Main result: For Glauber (X_t) , when $\lambda < \lambda_c$ and girth ≥ 7 , with prob. $\geq 1 - \exp(-\Omega(\Delta))$, for $t = \Omega(n \log \Delta)$:

$$\#\{\text{Unblocked Neighbors of } v \text{ in } X_t\} < \sum_{z \in N(v)} \omega^*(z) + \epsilon \Delta.$$

Proof idea: Chain behaves locally like loopy BP.

LOCAL UNIFORMITY PROOF IDEA

For $v \in V$, fix σ on its grandchildren $S_2(v)$, let

$$\mathsf{R}_v(\sigma) := \Pr_{Y \sim \mu}[v \text{ is unblocked in } Y | v \notin Y, \ Y(S_2(v)) = \sigma(S_2(v))]$$

LOCAL UNIFORMITY PROOF IDEA

For $v \in V$, fix σ on its grandchildren $S_2(v)$, let

$$\mathsf{R}_v(\sigma) := \Pr_{Y \sim \mu}[v \text{ is unblocked in } Y | v \notin Y, \ Y(S_2(v)) = \sigma(S_2(v))]$$

For triangle-free G: $\mathbf{R}_{\nu}(\sigma) = \prod_{w} (1 - \frac{\lambda}{1+\lambda} \mathbf{1}\{w \text{ unblocked in } \sigma\})$.

Local Uniformity Proof Idea

For $v \in V$, fix σ on its grandchildren $S_2(v)$, let

$$\mathsf{R}_v(\sigma) := \Pr_{Y \sim \mu}[v \text{ is unblocked in } Y | v \notin Y, \ Y(S_2(v)) = \sigma(S_2(v))]$$

For triangle-free G: $\mathbf{R}_{\nu}(\sigma) = \prod_{w} (1 - \frac{\lambda}{1+\lambda} \mathbf{1}\{w \text{ unblocked in } \sigma\})$. Key result: for Gibbs dist. μ when girth ≥ 6 , for $X \sim \mu$. whp:

$$\left| \mathbf{R}_{\nu}(X) - \prod_{w \in \mathcal{X}} \left(1 - \frac{\lambda}{1 + \lambda} \mathbf{R}_{w}(X) \right) \right| < \gamma,$$

Proof: Conditions on $S_3(v)$ and uses girth ≥ 6 so $\mathbf{R}_w(X)$ is independent across $w \in N(v)$.

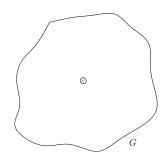
Similarly for Glauber dynamics when girth ≥ 7 .

KEY RESULTS

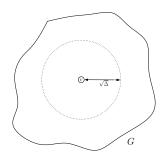
Proof approach:

- Find good Φ when locally X_t, Y_t "behave" like ω^*
- Glauber dynamics converges locally to ω^*
 - dynamics gets "local uniformity" builds on [Hayes '13]
- \bullet This $\varPhi+{\sf local}$ uniformity $\to {\sf rapid}$ mixing

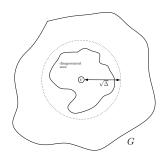
builds on [Dyer-Frieze-Hayes-V '13]



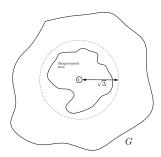
lacktriangle Initially: single disagreement at v.



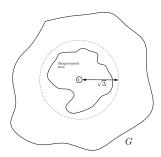
- lacktriangle Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".



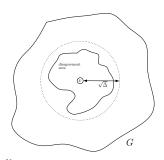
- Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".
- The disagreements might spread during this burn-in.



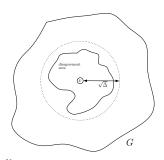
- Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".
- **1** The disagreements might spread during this burn-in.
- \bullet The disagreements do not escape the ball B, whp.



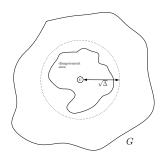
- Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".
- The disagreements might spread during this burn-in.
- lacktriangle The disagreements do not escape the ball B, whp.
- The entire ball *B* has uniformity, whp.



- Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".
- The disagreements might spread during this burn-in.
- lacktriangle The disagreements do not escape the ball B, whp.
- The entire ball *B* has uniformity, whp.
- Interpolate and do path coupling for the disagree pairs in B, ... pairs have local uniformity



- Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".
- The disagreements might spread during this burn-in.
- The disagreements do not escape the ball B, whp.
- **1** The entire ball B has uniformity, whp.
- Interpolate and do path coupling for the disagree pairs in B, ... pairs have local uniformity and Φ gives contraction



- Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".
- The disagreements might spread during this burn-in.
- \bullet The disagreements do not escape the ball B, whp.
- **1** The entire ball *B* has uniformity, whp.
- Interpolate and do path coupling for the disagree pairs in B, ... pairs have local uniformity and Φ gives contraction
- Run O(n) steps to get expected # of disagreements < 1/8.

QUESTIONS

Interesting directions:

- Remove girth assumptions: Modified form of BP to deal with short cycles?
- Conjecture: Glauber dynamics is rapidly mixing for any model in "uniqueness".
- Rapid mixing for independent sets for $\Delta = 5$?
- Extend from hard-core to general (anti-ferromagnetic) 2-spin models.
- Rapid mixing (or some approx. counting scheme) for k-colorings when $k \ge \Delta + 2$.
 - Easier: Strong spatial mixing for colorings on Δ -regular trees when $k \geq \Delta + 2$.

QUESTIONS

Interesting directions:

- Remove girth assumptions: Modified form of BP to deal with short cycles?
- Conjecture: Glauber dynamics is rapidly mixing for any model in "uniqueness".
- Rapid mixing for independent sets for $\Delta = 5$?
- Extend from hard-core to general (anti-ferromagnetic) 2-spin models.
- Rapid mixing (or some approx. counting scheme) for k-colorings when $k \ge \Delta + 2$.
 - Easier: Strong spatial mixing for colorings on Δ -regular trees when $k \geq \Delta + 2$.

THANK YOU!

Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1} \operatorname{arcsinh}(\sqrt{\lambda x})$$

Convergence with Ψ

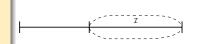
Potential function

$$\Psi(x) = (\lambda)^{-1} \operatorname{arcsinh}(\sqrt{\lambda x})$$

Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1} \operatorname{arcsinh}(\sqrt{\lambda x})$$



Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1} \operatorname{arcsinh}(\sqrt{\lambda x})$$

Provided

• $t \in \mathcal{I}'$ approximate BP equation hold in B(v, R)

 $u \in B(v, i+1)$

 $|\Psi(\mathsf{R}(X_t,u)) - \Psi(\omega^*(u))| \le \alpha_{i+1}$

 $t \in \mathcal{I}_i, \ u \in B(v,i)$

 $\Psi(\mathsf{R}(X_t,u)) - \Psi(\omega^*(u))| \le (1-\delta)\epsilon$

Convergence with Ψ

Potential function

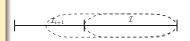
$$\Psi(x) = (\lambda)^{-1} \operatorname{arcsinh}(\sqrt{\lambda x})$$

Provided

- $t \in \mathcal{I}'$ approximate BP equation hold in B(v, R)
- $\forall t \in \mathcal{I}_{i+1}, u \in B(v, i+1)$

$$|\Psi(\mathbf{R}(X_t,u))-\Psi(\omega^*(u))| \leq \alpha_{i+1}$$

 $\forall t \in \mathcal{I}_i, \ u \in B(v,i)$



Convergence with Ψ

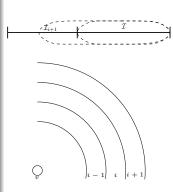
Potential function

$$\Psi(x) = (\lambda)^{-1} \operatorname{arcsinh}(\sqrt{\lambda x})$$

Provided

- $t \in \mathcal{I}'$ approximate BP equation hold in B(v, R)
- $\forall t \in \mathcal{I}_{i+1}$, $u \in B(v, i+1)$

$$|\Psi(\mathbf{R}(X_t,u))-\Psi(\omega^*(u))| \leq \alpha_{i+1}$$



CD(v,v)

Convergence with Ψ

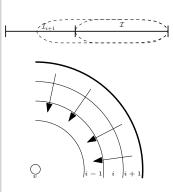
Potential function

$$\Psi(x) = (\lambda)^{-1} \operatorname{arcsinh}(\sqrt{\lambda x})$$

Provided

- $t \in \mathcal{I}'$ approximate BP equation hold in B(v, R)
- $\forall t \in \mathcal{I}_{i+1}$, $u \in B(v, i+1)$

$$|\Psi(\mathbf{R}(X_t,u))-\Psi(\omega^*(u))| \leq \alpha_{i+1}$$



Convergence with Ψ

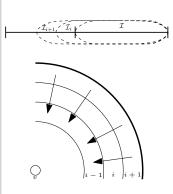
Potential function

$$\Psi(x) = (\lambda)^{-1} \operatorname{arcsinh}(\sqrt{\lambda x})$$

Provided

- $t \in \mathcal{I}'$ approximate BP equation hold in B(v, R)
- $\forall t \in \mathcal{I}_{i+1}$, $u \in B(v, i+1)$

$$|\Psi(\mathbf{R}(X_t,u))-\Psi(\omega^*(u))| \leq \alpha_{i+1}$$



Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1} \operatorname{arcsinh}(\sqrt{\lambda x})$$

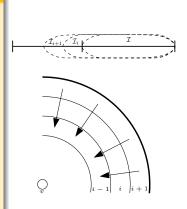
Provided

- $t \in \mathcal{I}'$ approximate BP equation hold in B(v, R)
- $\forall t \in \mathcal{I}_{i+1}$, $u \in B(v, i+1)$

$$|\Psi(\mathbf{R}(X_t,u))-\Psi(\omega^*(u))| \leq \alpha_{i+1}$$

 $\forall t \in \mathcal{I}_i, u \in B(v,i)$

$$|\Psi(\mathsf{R}(X_t,u))-\Psi(\omega^*(u))| \leq (1-\delta)\alpha_{i+1}$$



Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1} \operatorname{arcsinh}(\sqrt{\lambda x})$$

Provided

- $t \in \mathcal{I}'$ approximate BP equation hold in B(v, R)
- $\forall t \in \mathcal{I}_{i+1}$, $u \in B(v, i+1)$

$$|\Psi(\mathbf{R}(X_t,u))-\Psi(\omega^*(u))| \leq \alpha_{i+1}$$

 $\forall t \in \mathcal{I}_i, u \in B(v,i)$

$$|\Psi(\mathsf{R}(X_t,u)) - \Psi(\omega^*(u))| \leq (1-\delta)\alpha_{i+1}$$

