
Path Coupling and Belief Propagation

Eric Vigoda

Georgia Tech

joint work with:

C. Efthymiou, T. Hayes, D. Štefankovič, Y. Yin [FOCS ’16]
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Independent Set

Undirected graph G = (V ,E ):

Independent set: subset of vertices with no adjacent pairs.

Let Ω = all independent sets (of all sizes).

Our Goal:

1 Counting problem: Estimate |Ω|.
2 Sampling problem: Sample uniformly at random from Ω.



Independent Sets

Given input graph G = (V ,E ) with n = |V | vertices,
let Ω = set of all independent sets in G .

Typically, |Ω| is HUGE = exponentially large in n.

Goal: in time poly(n):

1 Counting: Compute |Ω|,
2 Sampling: generate random element of Ω.

Exactly computing |Ω| is #P-complete:
hence aim to approximate it.

But approximating is also hard...
Max independent set within n1−ε for any ε > 0 is NP-hard.
Computing |Ω| within 2n

1−ε
for any ε > 0 is NP-hard.

restricted classes of graphs
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Bounded Degree Graphs

For constant ∆ ≥ 3:
Given input graph G = (V ,E ) with maximum degree ∆

let Ω = set of all independent sets in G .

Exact computation of |Ω| is #P-complete, even for ∆ = 3.
[Greenhill ’00]

What about approximating |Ω|?
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Hard-Core Gas Model

Graph G = (V ,E ), fugacity λ > 0, for σ ∈ Ω:

Gibbs distribution: µ(σ) =
λ|σ|

Z

where
Partition function: Z =

∑
σ

λ|σ|

λ = 1, Z = |Ω| = # of independent sets.



Hard-Core Gas Model

Graph G = (V ,E ), fugacity λ > 0, for σ ∈ Ω:

Gibbs distribution: µ(σ) =
λ|σ|

Z

where
Partition function: Z =

∑
σ

λ|σ|

λ = 1, Z = |Ω| = # of independent sets.

Inuition: Small λ easier: for λ < 1 prefer smaller sets.
Large λ harder: for λ > 1 prefer max independent sets.



Hard-Core Gas Model

Graph G = (V ,E ), fugacity λ > 0, for σ ∈ Ω:

Gibbs distribution: µ(σ) =
λ|σ|

Z

where
Partition function: Z =

∑
σ

λ|σ|

FPRAS for Z : Given G , ε, δ > 0, output EST where:

Pr (EST(1− ε) ≤ Z ≤ EST(1 + ε)) ≥ 1− δ,
in time poly(|G |, 1/ε, log(1/δ)).

FPTAS for Z : FPRAS with δ = 0.

FPAUS for µ: Given G , δ > 0, output X from distribution ν:

dTV(ν, µ) :=
1

2

∑
σ∈Ω
|ν(σ)− µ(σ)| ≤ δ,

in time poly(|G |, log(1/δ)).



Glauber dynamics (Xt) = Gibbs Sampler

Xt → Xt+1 is defined as follows:

1 Choose v uniformly at random from V .

X ′ =

{
Xt ∪ {v} with probability λ/(1 + λ)

Xt \ {v} with probability 1/(1 + λ)

2 If X ′ is independent set, then Xt+1 = X ′, otherwise Xt+1 = Xt

Stationary distribution is Gibbs distribution: µ(X ) = λ|X |

Z

Mixing Time: Tmix := min{t : for all X0, dtv (Xt , µ) ≤ 1/4}

Then Tmix(ε) ≤ log(1/ε)Tmix.

Recall, dTV(µ, ν) = 1
2

∑
σ∈Ω |µ(σ)− ν(σ)|.
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Approximating Partition Function

• For λ < 2
∆−2 , Tmix = O(n log n) (λ = 1, ∆ = 4, poly(n))

[Luby,V ’97],[Dyer,Greenhill ’00]

Let λc(∆) := (∆−1)∆−1

(∆−2)∆ ∼ e
∆ :

• All constant ∆, all λ < λc(∆), FPTAS for Z . [Weitz ’06]

• FPTAS using Barvinok’s approach. [Patel,Regts ’17, Peters,Regts ’17]

For δ, ε > 0, ∆ ≥ 3, exists C = C (δ,∆),
for λ < (1− δ)λc , running time (n/ε)C log∆.

• All ∆ ≥ 3, all λ > λc(∆): NP-hard to approx. Z for ∆-regular
[Sly ’10,Galanis,Stefankovic,V ’13, Sly,Sun ’13, GSV ’15]

• For λ = 1, ∆ ≥ 25, NP-hard to approx. Z within an exponential
factor on ∆-regular graphs. [Dyer,Frieze,Jerrum ’02]

What happens at λc(∆)?
Statistical physics phase transition on infinite ∆-regular tree!
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Our Results

Theorem

For all δ > 0, there exists ∆0 = ∆0(δ):
all G = (V ,E ) of max degree ∆ ≥ ∆0 and girth ≥ 7,
all λ < (1− δ)λc(∆),

Tmix = O (n log n) .

Corollaries

An O∗(n2) FPRAS for estimating the partition function Z .

Tmix = O(n log n) when λ ≤ (1− δ)λc(∆) for:

random ∆-regular graphs
random ∆-regular bipartite graphs
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Phase Transition on Trees

For ∆-regular tree of height `:

Let p` := Pr (root is occupied)

Extremal cases: even versus odd height.

Does lim
`→∞

p2` = lim
`→∞

p2`+1 ?

λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 .

λ ≤ λc(∆): No boundary affects root.

uniqueness

λ > λc(∆): Exist boundaries affect root.

non-uniqueness
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Example: ∆ = 5, λ = 1:
peven = .245, podd = .245



Phase Transition on Trees

For ∆-regular tree of height `:

Let p` := Pr (root is occupied)

Extremal cases: even versus odd height.
Does lim

`→∞
p2` = lim

`→∞
p2`+1 ?

λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 .

λ ≤ λc(∆): No boundary affects root. uniqueness
λ > λc(∆): Exist boundaries affect root. non-uniqueness

Example: ∆ = 5, λ = 1.05:
peven = .250, podd = .250



Phase Transition on Trees

For ∆-regular tree of height `:

Let p` := Pr (root is occupied)

Extremal cases: even versus odd height.
Does lim

`→∞
p2` = lim

`→∞
p2`+1 ?

λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 .

λ ≤ λc(∆): No boundary affects root. uniqueness
λ > λc(∆): Exist boundaries affect root. non-uniqueness

Example: ∆ = 5, λ = 1.06:
peven = .283, podd = .219



Phase Transition on Trees

For ∆-regular tree of height `:

Let p` := Pr (root is occupied)

Extremal cases: even versus odd height.
Does lim

`→∞
p2` = lim

`→∞
p2`+1 ?

λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 .

λ ≤ λc(∆): No boundary affects root. uniqueness
λ > λc(∆): Exist boundaries affect root. non-uniqueness

Tree/BP recursions: p`+1 = λ(1−p`)∆−1

1+λ(1−p`)∆−1

Key: Unique vs. Multiple fixed points of 2-level recursions.



Phase Transition on Trees

For ∆-regular tree of height `:

Let p` := Pr (root is occupied)

Extremal cases: even versus odd height.
Does lim

`→∞
p2` = lim

`→∞
p2`+1 ?

λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 .

λ ≤ λc(∆): No boundary affects root. uniqueness
λ > λc(∆): Exist boundaries affect root. non-uniqueness

For 2-dimensional integer lattice Z2:
Conjecture: λc(Z2) ≈ 3.79
Best bounds: 2.53 < λc(Z2) < 5.36



Coupling of Markov Chains

Consider a Markov chain (Ω,P).
Coupling is a joint process ω = (Xt ,Yt) on Ω ×Ω where:

Xt ∼ P and Yt ∼ P

More precisely, for all a, b, c ∈ Ω,

Pr (Xt+1 = c | Xt = a,Yt = b) = P(a, c)

Pr (Xt+1 = c | Xt = a,Yt = b) = P(b, c)

Intuition:
(Xt → Xt+1) ∼ P and (Yt → Yt+1) ∼ P can correlate by ω.

Let X0 be arbitrary, and Y0 ∼ π. Once XT = YT then XT ∼ π.

Coupling time:

Tcouple = max
a,b

min{t : Pr (Xt 6= Yt | X0 = a,Y0 = b) ≤ 1/4.}

Tmix ≤ Tcouple
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Coupling of Markov Chains
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Coupling for Independent Sets

Consider a pair of independent sets Xt and Yt :

Look at Xt
Yt

:

Identity Coupling:
Update same vt , attempt to add to both or remove from both.

How to analyze???
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Coupling for bounding Tmix

For all Xt ,Yt , define a coupling: (Xt ,Yt)→ (Xt+1,Yt+1).

Look at Hamming distance: H(Xt ,Yt) = |{v : Xt(v) 6= Yt(v)}|.

If for all Xt ,Yt ,

E [H(Xt+1,Yt+1)|Xt ,Yt ] ≤ (1− 1/n)H(Xt ,Yt),

then Tmix = O(n log n).

Path coupling: Suffices to consider pairs where H(Xt ,Yt) = 1.



Path Coupling [Bubley and Dyer ’97]

Let S ⊂ Ω2 denote pairs (Xt ,Yt) where H(Xt ,Yt) = 1.
Define a coupling ω for all (Xt ,Yt) ∈ S where:

E [H(Xt+1,Yt+1) | Xt ,Yt ] ≤ 1− C/n.



Path Coupling [Bubley and Dyer ’97]

Let S ⊂ Ω2 denote pairs (Xt ,Yt) where H(Xt ,Yt) = 1.
Define a coupling ω for all (Xt ,Yt) ∈ S where:

E [H(Xt+1,Yt+1) | Xt ,Yt ] ≤ 1− C/n.

For arbitrary (At ,Bt) ∈ Ω2:
In graph (Ω, S), consider a shortest path Xt to Yt :

(At ,W
1
t ,W

2
t , . . . ,W

`−1
t ,Bt), ` = H(At ,Bt).

Couplings: ω1 = (W 0
t ,W

1
t ), . . . , ω` = (W `−1

t ,W `
t ).

Compose: ω = ω1 ◦ ω2 ◦ · · · ◦ ω` gives coupling (At ,Bt).
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Let S ⊂ Ω2 denote pairs (Xt ,Yt) where H(Xt ,Yt) = 1.
Define a coupling ω for all (Xt ,Yt) ∈ S where:

E [H(Xt+1,Yt+1) | Xt ,Yt ] ≤ 1− C/n.

For arbitrary (At ,Bt) ∈ Ω2:
In graph (Ω, S), consider a shortest path Xt to Yt :

(At ,W
1
t ,W

2
t , . . . ,W

`−1
t ,Bt), ` = H(At ,Bt).

Couplings: ω1 = (W 0
t ,W

1
t ), . . . , ω` = (W `−1

t ,W `
t ).

Compose: ω = ω1 ◦ ω2 ◦ · · · ◦ ω` gives coupling (At ,Bt).
Algorithmic View:

1 Choose W 0
t →W 1

t by P,

2 Apply ω1 to get W 2
t →W 2

t+1,

3 Apply ω2 to get W 3
t →W 3

t+1, . . . ,

4 Get W `
t →W `

t+1.



Path Coupling [Bubley and Dyer ’97]

Let S ⊂ Ω2 denote pairs (Xt ,Yt) where H(Xt ,Yt) = 1.
Define a coupling ω for all (Xt ,Yt) ∈ S where:

E [H(Xt+1,Yt+1) | Xt ,Yt ] ≤ 1− C/n.

For arbitrary (At ,Bt) ∈ Ω2:
In graph (Ω, S), consider a shortest path Xt to Yt :

(At ,W
1
t ,W

2
t , . . . ,W

`−1
t ,Bt), ` = H(At ,Bt).

Couplings: ω1 = (W 0
t ,W

1
t ), . . . , ω` = (W `−1

t ,W `
t ).

Compose: ω = ω1 ◦ ω2 ◦ · · · ◦ ω` gives coupling (At ,Bt).

E [H(At+1,Bt+1)] ≤ E

[∑
i

H(W i−1
t+1 ,W

i
t+1)

]
≤

∑
i

E
[
H(W i−1

t+1 ,W
i
t+1)

]
≤

∑
i

(1− C/n)

≤ H(At ,Bt)(1− C/n).



Path Coupling [Bubley and Dyer ’97]

Let S ⊂ Ω2 denote pairs (Xt ,Yt) where H(Xt ,Yt) = 1.
Define a coupling ω for all (Xt ,Yt) ∈ S where:

E [H(Xt+1,Yt+1) | Xt ,Yt ] ≤ 1− C/n.

Then for arbitrary (At ,Bt) ∈ Ω2, can construct coupling where:

E [H(At+1,Bt+1)] ≤ H(At ,Bt)(1− C/n).

Pr (AT 6= BT ) ≤ E [H(AT ,BT )]

≤ H(A0,B0)(1− C/n)T

≤ n exp(−C/n)

≤ 1/4 for T = O(n log n).

Hence, Tmix = O(n log n).

Can replace H():
For Φ : V → R≥1 , let Φ(X ,Y ) =

∑
v∈X⊕Y Φv .

Key: if X 6= Y then Φ(X ,Y ) ≥ 1 and Pr (Xt 6= Yt) ≤ E [Φ(Xt ,Yt)].
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Path Coupling with Hamming Distance

E [H(Xt+1,Yt+1)] = H(Xt ,Yt)−
1

n
+
∑
zi

Pr[zi ∈ Yt+1]

= (1− 1

n
) +

1

n

∑
zi

1{zi unblocked}
λ

1 + λ

≤ 1− 1

n
+
∆

n

λ

1 + λ

< 1

Requires: λ < 1/(∆− 1)

v

z1

z2

z`

w1

w2

w3

w4

ws

Yt

Xt

Blocked

Coupling: update same vertex, attempt add λ
1+λ , remove 1

1+λ .
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Path Coupling with Φ

E [Φ(Xt+1,Yt+1)|Xt ,Yt ] =

(
1− 1

n

)
Φv +

∑
zi

Pr[zi ∈ Yt+1] · Φzi

=

(
1− 1

n

)
Φv +

1

n

∑
zi

1{zi unblocked}
λ

1 + λ
Φzi

< Φv

Want: Φv >
λ

1 + λ

∑
zi

1{zi unblocked in Yt} · Φzi
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Belief Propagation on trees

For tree T and given λ, compute:

q(v ,w) = µ(v occupied|w unoccupied)

Rv→w =
q(v ,w)

1− q(v ,w)

Rv→w = λ
∏

z∈N(v)\{w}

1

1 + Rz→v

BP starts from arbitrary R0
v→w ,

then iterates:

R i
v→w = λ

∏
z∈N(v)\{w}

1

1 + R i−1
z→v

v

w

Rv→w

z ẑ

Rz→v Rẑ→v



BP and Gibbs distribution on trees

Convergence on trees

For i > max-depth, for every initial (R0):

R i
v→w = R∗v→w

In turn

µ(v occupied|w unoccupied) = q∗ =
R∗v→w

1 + R∗v→w

BP is an elaborate version of Dynamic Programing



BP Convergence for girth ≥ 6

Loopy Belief Propagation: Run BP on general G = (V ,E ). For all
v ∈ V ,w ∈ N(v):

R i
v→w = λ

∏
z∈N(v)\{w}

1

1 + R i−1
z→v

and qi (v ,w) =
R i
v→w

1 + R i
v→w

Does it converge? If so, to what?

For λ < λc : R() has a unique fixed point R∗.

Theorem

Let δ, ε > 0, ∆0 = ∆0(δ, ε) and C = C (δ, ε).
For G of max degree ∆ ≥ ∆0 and girth ≥ 6, all λ < (1− δ)λc(∆):

for i ≥ C, for all v ∈ V , w ∈ N(v),∣∣∣∣ qi (v ,w)

µ(v is occupied | w is unoccupied)
− 1

∣∣∣∣ ≤ ε
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Unblocked Neighbors and loopy BP

Recall, loopy BP estimate that z is unoccupied:

R i
z = λ

∏
y∈N(v)

1

1 + R i−1
y

Loopy BP estimate that z is unblocked:

ωi
z =

∏
y∈N(z)

1

1 + λ · ωi−1
y

For λ < λc :
Since R converges to unique fixed point R∗,

thus ω converges to unique fixed point ω∗.

We’ll prove (but don’t know a priori):

ω∗(z) ≈ µ(z is unblocked)



Back to Path Coupling

worst case condition

Φv >
λ

1 + λ

∑
zi

1{zi unblocked} · Φzi

when Xt ,Yt “behave” like ω∗

Φv >
λ

1 + λ

∑
zi

ω∗(zi ) · Φzi

v

z1

z2

z`

w1

w2

w3

w4

ws

Yt

Xt

Blocked



Finding Φ

Reformulation

Goal: Find Φ such that

Φv >
∑

z∈N(v)

λω∗(z)

1 + λω∗(z)
Φz

Define n × n matrix C

C(v , z) =

{
λω∗(z)

1+λω∗(z) if z ∈ N(v)

0 otherwise

Rephrased: Find vector Φ ∈ RV
≥1 such that

C Φ < Φ
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Connections with Loopy BP

Recall, BP operator for unblocked: F (ω)(z) =
∏

y∈N(z)

1

1 + λω(y)

It has Jacobian: J(v , u) =

∣∣∣∣∂F (ω)(v)

∂ω(u)

∣∣∣∣ =

{
λF (ω)(v)
1+λω(u) if u ∈ N(v)

0 otherwise

Let J∗ = J|ω=ω∗ denote the Jacobian at the fixed point ω∗.

Key fact: C = D−1J∗D,

where D is diagonal matrix with D(v , v) = ω∗(v)

Fixed point ω∗ is Jacobian attractive so all eigenvalues < 1.
Principal eigenvector Φ is good coupling distance.
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Outline

Problem: We don’t know good Φ for worst-case Xt ,Yt .

Proof approach:
• Find good Φ when locally Xt ,Yt “behave” like ω∗

–dynamics gets “local uniformity ” builds on [Hayes ’13]

which builds on [Dyer,Frieze ’03]

For any X0, when λ < λc and girth ≥ 7,
with prob. ≥ 1− exp(−Ω(∆)), for t = Ω(n log∆):

#{Unblocked Neighbors of v in Xt} <
∑

z∈N(v)

ω∗(z) + ε∆.
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Local Uniformity Result

Main result: For Glauber (Xt), when λ < λc and girth ≥ 7, with
prob. ≥ 1− exp(−Ω(∆)), for t = Ω(n log∆):

#{Unblocked Neighbors of v in Xt} <
∑

z∈N(v)

ω∗(z) + ε∆.

Proof idea: Chain behaves locally like loopy BP.



Local Uniformity Proof Idea

For v ∈ V , fix σ on its grandchildren S2(v), let

Rv (σ) := Pr
Y∼µ

[v is unblocked in Y |v /∈ Y , Y (S2(v)) = σ(S2(v))]

v

w1

w2

w`

z1

z2

z3

z4

zs

For triangle-free G : Rv (σ) =
∏

w (1− λ
1+λ1{w unblocked in σ}).

Key result: for Gibbs dist. µ when girth ≥ 6, for X ∼ µ. whp:∣∣∣∣∣Rv (X )−
∏
w∼v

(
1− λ

1 + λ
Rw (X )

)∣∣∣∣∣ < γ,

Proof: Conditions on S3(v) and uses girth ≥ 6 so Rw (X ) is
independent across w ∈ N(v).

Similarly for Glauber dynamics when girth ≥ 7.
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Key Results

Proof approach:

Find good Φ when locally Xt ,Yt “behave” like ω∗

Glauber dynamics converges locally to ω∗

dynamics gets “local uniformity ” builds on [Hayes ’13]

This Φ + local uniformity → rapid mixing
builds on [Dyer-Frieze-Hayes-V ’13]



Rapid Mixing with Uniformity [Dyer-Frieze-Hayes-V ’13]

v √
∆

disagerement
area

G

1 Initially: single disagreement at v .

2 Run the chains for O(n log∆) steps: “burn-in”.

3 The disagreements might spread during this burn-in.

4 The disagreements do not escape the ball B, whp.

5 The entire ball B has uniformity, whp.

6 Interpolate and do path coupling for the disagree pairs in B,
. . . pairs have local uniformity

and Φ gives contraction

7 Run O(n) steps to get expected # of disagreements < 1/8.
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Questions

Interesting directions:

Remove girth assumptions: Modified form of BP to deal with
short cycles?

Conjecture: Glauber dynamics is rapidly mixing for any model
in “uniqueness”.

Rapid mixing for independent sets for ∆ = 5?

Extend from hard-core to general (anti-ferromagnetic) 2-spin
models.

Rapid mixing (or some approx. counting scheme) for
k-colorings when k ≥ ∆+ 2.

Easier: Strong spatial mixing for colorings on ∆-regular trees
when k ≥ ∆+ 2.

THANK YOU!
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