
A faster and simpler strongly
polynomial algorithm for

generalized flow maximization
László Végh

London School of Economics

Joint work with

Neil Olver
Vrije Universiteit Amsterdam and CWI

Queen Mary Algorithms Day
17 July 2018

■ Strongly polynomial
– poly(",$) elementary arithmetic operations and

comparisons
– PSPACE: The numbers do not get too large during the

computations
■ Weakly polynomial
– Running time depends on total encoding length L
– Ellipsoid algorithm, interior point methods

Is there a strongly polynomial
algorithm for Linear

Programming?

Linear Programming
& strongly polynomial algorithms

min)*+
,+ = .
+ ≥ 0

, ∈ ℚ3×5

Linear Programming
& strongly polynomial algorithms

■ Network flow problems:
– Maximum flow: Edmonds-Karp-Dinitz ’70-72
– Min-cost flow: Tardos ’85

■ Combinatorial LP’s: integer matrix A.
– poly !,#, log Δ for (∈ ℤ+×- with max.

subdeterminant .: Tardos ’86, Vavasis-Ye ’96

■ Dual feasibility
solving a system of inequalities with ≤ 2 variables per
inequality: Megiddo ’83

■ Primal feasibility
reduces to max. generalized flow: V ’14, this paper

■ Optimization problem
equivalent to min-cost generalized flow: open

■ Three nonzeros
equivalent to general LP

LP’s with at most two nonzero entries
per column in the constraint matrix

min &'(
)(= +
(≥ 0

) =
∗ ∗ 0 0
∗ 0 ∗ 0
0 ∗ 0 ∗
0 0 ∗ 0

Generalized flow maximization

■ Network flow model with gain factors

■ Gain factors can model:
– physical changes (e.g. leakage, theft)
– conversions between different types of entities

(e.g. currencies, products)

■ Objective: maximize the flow amount reaching the
sink t.

40 30

×34

Generalized flow maximization

■ Network flow model with gain factors

■ Flow balance at node !
"#$ = &

'∈)*+($)
.'$#'$ − &

'∈)012($)
#$'

! 3
#$' .$'#$'

×.$'

max"#8
s.t. "#$ ≥ :$ ∀! ∈ < − =

≥ 0

−1
0
.$'
0

!3
!

3

Generalized flow maximization
■ n: #nodes, m: #arcs, B: largest integer in input data
■ Kantorovich ’39, Dantzig ’62: model introduced
■ Goldberg, Plotkin & Tardos ’91: first polynomial combinatorial

algorithm
■ Several weakly polynomial algorithms: Cohen & Megiddo ’94,

Goldfarb, Jin ’96, Goldfarb, Jin & Orlin ’97, Tardos & Wayne
’98, Wayne ’02, Daitch & Spielman ’08,
Restrepo & Williamson ’09, V. ’12, …

■ Best previous running times:
– Vaidya ’89: ! "#.%&' log+
– Radzik ’04: ! " + & log & "& log+
■ V ’14: ! "-&'

■ Olver-V ’17: ! " + & log & "& log ./
0

Detour:
Net Present Value Problem

■ Critical Path Problem with time discounts

■ Introduced by Russell ’70

■ Application of generalized flows

■ Strongly polynomial computability becomes a crucial
issue

Net Present Value Problem

■ Jobs !, precedence constraints ≺
■ Processing time #$ ∈ ℕ, profit/loss
'$ ∈ ℤ for each) ∈ !

■ Discount factor * > 1

max0
$∈1

'$*234

s.t. 5$ ≥ 57 + #$ ∀: ≺)
5; = 0, 5 ≥ 0

16 32

-4
-4

-2

1

0
1

2

3

1 3

3 2

16 32

-4
-4

-2

1

0
1

2

3

1 3

3 2

■ !" ≔ $%&, ()" ≔ $*&

max.
"∈0

1"
!"

s.t. !" ≥ ()"!) ∀4 ≺ 6
!7 = 1, ! > 0

max.
"∈0

1"$<%&

s.t. =" ≥ =) + ?" ∀4 ≺ 6
=7 = 0, = ≥ 0

Net Present Value Problem

16 32

-4
-4

-2

1

0
1

2

3

1 3

3 2

■ !" ≔ $%&, ()" ≔ $*&

max.
"∈0

1"
!"

s.t. !" ≥ ()"!) ∀4 ≺ 6
!7 = 1, ! > 0

■ Dual of generalized flow maximization
■ Weakly polynomial algorithms cannot work
■ A variant of our algorithm is strongly polynomial

for this problem (at least for $ ∈ ℕ):
Correa, Olver, Schulz, V.

Net Present Value Problem

Generalized flow maximization

■ Flow balance at node !
"#$ = &

'∈)*+($)
.'$#'$ − &

'∈)012($)
#$'

max"#6
s.t. "#$ ≥ 8$ ∀! ∈ : − ;

≥ 0

max =6&
'∈>

8'
='

s.t. =' ≥ .$'=$ ∀!? ∈ @
= > 0

Dual

Labellings and duality
■ Change measurement unit

■ !: # → ℝ&'
■ ()*

+ ≔
-./
+.

, 0)*
+ ≔

1./+.
+/

,

3)
+ ≔

3)
!)
, 4()

+ ≔
4()
!)

■ 56 ∈ 8 is tight if 0)*
+ = 1

■ ((, !) is a fitting pair if
– 0)*

+ ≤ 1 ∀56 ∈ 8
dual feasibility

– 0)*
+ = 1, if ()* > 0

complementary slackness

max!DE
*∈F

3*
+

s.t. 0)*
+ ≤ 1 ∀56 ∈ 8
! > 0

Dual

×1

×1

×1

×1

×1

×
3
4

×
1
2

2

6

3

1

2

4

!)

×3

× K
L

×
1
2

×
1
2

×
1
4

×1

×
1
2

Main progress: abundant arcs

■ Main goal: find a dual optimal solution !∗.
■ Primal optimal solution: max normal flow computation

on tight arcs w.r.t. !∗.
■ Main progress:
– find an abundant arc $ that must be tight for every

optimal dual solution
– contract $ and recurse.

■ Standard technique for minimum cost flows: Orlin ’93
– also used in V. ’14

Main progress: abundant arcs

■ Feasible flow: !"# ≥ %# ∀' ∈) − +
■ Total relabeled excess

," ", . : = 1
#∈234

(!"#6 − %#6)

■ Proof: standard flow decomposition technique.

LEMMA: If x is a feasible flow and (", .) is a
fitting pair, and

"86 > ," ", . ,
Then : is an abundant arc.

Main progress: contractible arcs
Assume the following hold for flow !, and labelling ":
■ (!, ") is a fitting pair (complementary slackness)

■ '!() ≥ +() ∀- ∈ / − 1 (feasibility)

■ '!() ≤ +() + 2 (small excess)

Then
■ every arc 5 with !6) > 28 ≥ 9:(:, ") is contractible;

■ if +() > 28;, then there exists a contractible arc incident to
node -.

Main progress: contractible arcs
Assume the following hold for flow !, and labelling ":
■ (!, ") is a fitting pair (complementary slackness)
■ '!() ≥ +() ∀- ∈ / − 1 (feasibility)

■ '!() ≤ +() + 2 (small excess)

■ Problem: difficult to have both fitting pairs and
feasibility in an augmenting path framework

■ Many previous algorithms relax the fitting pair notion
■ New idea: relax feasibility

Algorithmic setup

Maintain a flow !, and labelling ":
■ (!, ") is a fitting pair (complementary slackness)

■ '!() ≥ +() ∀- ∈ / − 1 (feasibility)

■ '!() ≤ +() + 2 (small excess)

■ " is a safe labelling: there exists a primal feasible
solution on tight arcs for ".
Can be characterized by a simple cut condition

■ !) is integral and small (!5) ≤ 26 for all 7) !

LEMMA: If (!, ") is a fitting pair, and " is safe, then there
exists a flow 8 such that 8, " is a fitting pair and

+(≤ '8(≤ max +(, '!(∀- ∈ / − 1

Work with two flows instead of one!

■ If !"# > 2&', then compute such an (by a flow
feasibility algorithm.

This satisfies:
■ ((, +) is a fitting pair (complementary slackness)

■ -("# ≥ !"# ∀0 ∈ 2 − 4 (feasibility)

■ Ex x, + ≤ 2& (small excess)

■ There is an arc 8 with (9# > 2& and this is contractible.

LEMMA: If (:, +) is a fitting pair, and + is safe, then there
exists a flow (such that (, + is a fitting pair and

!" ≤ -(" ≤ max !", -:" ∀0 ∈ 2 − 4

Main step
multiplicative Dijkstra-type update

■ ! ≔ {$} ∪ {' ∈): +,-
. < 0-

.} – “sink set”

■ Try send 1 unit of relabelled flow from a node ' with
+,-

. ≥ 0-
. + 1 to a node in ! on a tight path.

■ 4: set of nodes that can reach ! on a tight path

$

!

4

Update for certain 5 > 1

78: = :
78
5
, <, < ∈ 4

78, <, < ∈) ∖ 4

,>:= ?
,>
5
, <, @ ∈ A[4]

,>, D$ℎFGH<IF

■ The relabeled flow !" does not change.

■ Arcs entering # may become tight.

■ Safety of labelling $ is maintained.

%
&

#

+1 +1
+1

+1

+1

Update for certain ' > 1

$*: = -
$*
' , /! / ∈ #
$*, /! / ∈ 1 ∖ #

!3:= 4
!3
' , /! 5 ∈ 6[#]
!3, 9%ℎ;<=/>;

Main step
multiplicative Dijkstra-type update

Analysis key idea

■ How does the excess of a node
change?

!"#
$ − &#

$

■ Can increase only if ' ∈) and &# < 0.

Φ ≔ /
#:1234

!"#
$ − &#

$ and Ψ:= /
#:1234

|&#
$|

■ The two potentials increase together at label updates.

■ Path augmentations almost always decrease Φ.

Update for certain ; > 1

>#: = ?
>#
;
, '" ' ∈)

>#, '" ' ∈ A ∖)

"C:= D
"C
;
, '" E ∈ F[)]

"C, IJℎLMN'OL

Comparison with V ’14

V. ’14 Current paper

! "#$% ! " + $ log $ "$ log $%
"

Main progress by contracting arcs.
Flow sent on tight paths.

Δ-relaxation of (,, .) fitting
Feasible flow ,
Non-integral ,0

,, . -fitting pair
Infeasible flow ,, safe labelling .

Integral ,0

Multiplicative potential argument Additive potential argument

Additional cleanup step -

Complicated numerical rounding Simple numerical rounding

Conclusion

■ Amortizing here and there, we get
! " + $ log $ "$ log $(

"
■ Also works for the Net Present Value problem for

integer discount factor.
■ Open questions:
– Net Present Value problem with rational discount

factors.
– Strongly polynomial algorithm for minimum cost

generalized flows.
– Strongly polynomial algorithm for LP.

Thank you!

