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■ Strongly polynomial
– poly(",$) elementary arithmetic operations and 

comparisons
– PSPACE: The numbers do not get too large during the 

computations
■ Weakly polynomial
– Running time depends on total encoding length L
– Ellipsoid algorithm, interior point methods

Is there a strongly polynomial 
algorithm for Linear 

Programming?

Linear Programming 
& strongly polynomial algorithms
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Linear Programming 
& strongly polynomial algorithms

■ Network flow problems:
– Maximum flow: Edmonds-Karp-Dinitz ’70-72
– Min-cost flow: Tardos ’85

■ Combinatorial LP’s: integer matrix A.
– poly !,#, log Δ for ( ∈ ℤ+×- with max. 

subdeterminant .: Tardos ’86, Vavasis-Ye ’96



■ Dual feasibility
solving a system of inequalities with ≤ 2 variables per 
inequality: Megiddo ’83

■ Primal feasibility 
reduces to max. generalized flow: V ’14, this paper

■ Optimization problem
equivalent to min-cost generalized flow: open

■ Three nonzeros
equivalent to general LP 

LP’s with at most two nonzero entries 
per column in the constraint matrix
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Generalized flow maximization

■ Network flow model with gain factors

■ Gain factors can model:
– physical changes (e.g. leakage, theft)
– conversions between different types of entities 

(e.g. currencies, products)

■ Objective: maximize the flow amount reaching the 
sink t.
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Generalized flow maximization

■ Network flow model with gain factors

■ Flow balance at node !
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Generalized flow maximization
■ n: #nodes, m: #arcs, B: largest integer in input data
■ Kantorovich ’39, Dantzig ’62: model introduced
■ Goldberg, Plotkin & Tardos ’91: first polynomial combinatorial 

algorithm
■ Several weakly polynomial algorithms: Cohen & Megiddo ’94, 

Goldfarb, Jin ’96, Goldfarb, Jin & Orlin ’97, Tardos & Wayne 
’98, Wayne ’02, Daitch & Spielman ’08, 
Restrepo & Williamson ’09, V. ’12, …

■ Best previous running times:
– Vaidya ’89: ! "#.%&' log+
– Radzik ’04: ! " + & log & "& log+
■ V ’14: ! "-&'

■ Olver-V ’17: ! " + & log & "& log ./
0



Detour:
Net Present Value Problem

■ Critical Path Problem with time discounts

■ Introduced by Russell ’70

■ Application of generalized flows

■ Strongly polynomial computability becomes a crucial 
issue



Net Present Value Problem

■ Jobs !, precedence constraints ≺
■ Processing time #$ ∈ ℕ, profit/loss 
'$ ∈ ℤ for each ) ∈ !

■ Discount factor * > 1

max0
$∈1

'$*234

s.t. 5$ ≥ 57 + #$ ∀: ≺ )
5; = 0, 5 ≥ 0
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■ !" ≔ $%&, ()" ≔ $*&

max.
"∈0

1"
!"

s.t. !" ≥ ()"!) ∀4 ≺ 6
!7 = 1, ! > 0

max.
"∈0

1"$<%&

s.t. =" ≥ =) + ?" ∀4 ≺ 6
=7 = 0, = ≥ 0

Net Present Value Problem
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■ !" ≔ $%&, ()" ≔ $*&

max.
"∈0

1"
!"

s.t. !" ≥ ()"!) ∀4 ≺ 6
!7 = 1, ! > 0

■ Dual of generalized flow maximization
■ Weakly polynomial algorithms cannot work
■ A variant of our algorithm is strongly polynomial 

for this problem (at least for $ ∈ ℕ):
Correa, Olver, Schulz, V. 

Net Present Value Problem



Generalized flow maximization

■ Flow balance at node !
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Labellings and duality
■ Change measurement unit

■ !: # → ℝ&'
■ ()*
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■ 56 ∈ 8 is tight if 0)*
+ = 1

■ ((, !) is a fitting pair if
– 0)*

+ ≤ 1 ∀56 ∈ 8
dual feasibility

– 0)*
+ = 1, if ()* > 0

complementary slackness
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Main progress: abundant arcs

■ Main goal: find a dual optimal solution !∗.
■ Primal optimal solution: max normal flow computation 

on tight arcs w.r.t. !∗.
■ Main progress: 
– find an abundant arc $ that must be tight for every 

optimal dual solution
– contract $ and recurse.

■ Standard technique for minimum cost flows: Orlin ’93
– also used in V. ’14



Main progress: abundant arcs

■ Feasible flow: !"# ≥ %# ∀' ∈ ) − +
■ Total relabeled excess

," ", . : = 1
#∈234

(!"#6 − %#6)

■ Proof: standard flow decomposition technique.

LEMMA: If x is a feasible flow and  (", .) is a 
fitting pair, and 

"86 > ," ", . ,
Then : is an abundant arc.



Main progress: contractible arcs
Assume the following hold for flow !, and labelling ":
■ (!, ") is a fitting pair (complementary slackness)

■ '!() ≥ +() ∀- ∈ / − 1 (feasibility)

■ '!() ≤ +() + 2 (small excess)

Then 
■ every arc 5 with !6) > 28 ≥ 9:(:, ") is contractible;

■ if +() > 28;, then there exists a contractible arc incident to 
node -.



Main progress: contractible arcs
Assume the following hold for flow !, and labelling ":
■ (!, ") is a fitting pair (complementary slackness)
■ '!() ≥ +() ∀- ∈ / − 1 (feasibility)

■ '!() ≤ +() + 2 (small excess)

■ Problem: difficult to have both fitting pairs and 
feasibility in an augmenting path framework

■ Many previous algorithms relax the fitting pair notion
■ New idea: relax feasibility



Algorithmic setup

Maintain a flow !, and labelling ":
■ (!, ") is a fitting pair (complementary slackness)

■ '!() ≥ +() ∀- ∈ / − 1 (feasibility)

■ '!() ≤ +() + 2 (small excess)  

■ " is a safe labelling: there exists a primal feasible 
solution on tight arcs for ". 
Can be characterized by a simple cut condition

■ !) is integral and small (!5) ≤ 26 for all 7) !

LEMMA: If (!, ") is a fitting pair, and " is safe, then there 
exists a flow 8 such that 8, " is a fitting pair and 

+( ≤ '8( ≤ max +(, '!( ∀- ∈ / − 1



Work with two flows instead of one!

■ If !"# > 2&', then compute such an ( by a flow 
feasibility algorithm.

This satisfies:
■ ((, +) is a fitting pair (complementary slackness)

■ -("# ≥ !"# ∀0 ∈ 2 − 4 (feasibility)

■ Ex x, + ≤ 2& (small excess)

■ There is an arc 8 with (9# > 2& and this is contractible.

LEMMA: If (:, +) is a fitting pair, and + is safe, then there 
exists a flow ( such that (, + is a fitting pair and 

!" ≤ -(" ≤ max !", -:" ∀0 ∈ 2 − 4



Main step
multiplicative Dijkstra-type update

■ ! ≔ {$} ∪ {' ∈ ): +,-
. < 0-

.} – “sink set”

■ Try send 1 unit of relabelled flow from a node ' with 
+,-

. ≥ 0-
. + 1 to a node in ! on a tight path.

■ 4: set of nodes that can reach ! on a tight path
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■ The relabeled flow !" does not change.

■ Arcs entering # may become tight.

■ Safety of labelling $ is maintained. 
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Update for certain ' > 1

$*: = -
$*
' , /! / ∈ #
$*, /! / ∈ 1 ∖ #

!3:= 4
!3
' , /! 5 ∈ 6[#]
!3, 9%ℎ;<=/>;

Main step
multiplicative Dijkstra-type update



Analysis key idea

■ How does the excess of a node 
change?

!"#
$ − &#

$

■ Can increase only if ' ∈ ) and &# < 0.

Φ ≔ /
#:1234

!"#
$ − &#

$ and Ψ:= /
#:1234

|&#
$|

■ The two potentials increase together at label updates.

■ Path augmentations almost always decrease Φ.

Update for certain ; > 1
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Comparison with V ’14

V. ’14 Current paper

! "#$% ! " + $ log $ "$ log $%
"

Main progress by contracting arcs.
Flow sent on tight paths.

Δ-relaxation of (,, .) fitting
Feasible flow ,
Non-integral ,0

,, . -fitting pair
Infeasible flow ,, safe labelling .

Integral ,0

Multiplicative potential argument Additive potential argument

Additional cleanup step -

Complicated numerical rounding Simple numerical rounding



Conclusion

■ Amortizing here and there, we get 
! " + $ log $ "$ log $(

"
■ Also works for the Net Present Value problem for 

integer discount factor. 
■ Open questions:
– Net Present Value problem with rational discount 

factors.
– Strongly polynomial algorithm for minimum cost 

generalized flows.
– Strongly polynomial algorithm for LP.

Thank you!


