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Linear Programming
& strongly polynomial algorithms

minc'x
Is there a strongly polynomial Ax = b
algorithm for.Llnear & x>0
Programming?

Strongly polynomial

- poly(n,m) elementary arithmetic operations and
comparisons

- PSPACE: The numbers do not get too large during the
computations

m Weakly polynomial
- Running time depends on total encoding length L
— Ellipsoid algorithm, interior point methods



Linear Programming
& strongly polynomial algorithms

m Network flow problems:
- Maximum flow: Edmonds-Karp-Dinitz "70-72
- Min-cost flow: Tardos "85

m Combinatorial LP’s: integer matrix A.

- poly(n, m,logA) for A € Z™ "™ with max.
subdeterminant 4: Tardos ‘86, Vavasis-Ye 96



LP’s with at most two nonzero entries
per column in the constraint matrix

min ¢ " x * Z‘) 0 8—
S X

Ax =D A—O . 0

x =0 0 0 * 0

Dual feasibility
solving a system of inequalities with < 2 variables per
inequality: Megiddo '83

Primal feasibility
reduces to max. generalized flow: V '14, this paper

Optimization problem
equivalent to min-cost generalized flow: open

Three nonzeros
equivalent to general LP



Generalized flow maximization

Network flow model with gain factors

et @

40 30

Gain factors can model:
physical changes (e.g. leakage, theft)

conversions between different types of entities
(e.8. currencies, products)

Objective: maximize the flow amount reaching the
sink t.



Generalized flow maximization

m Network flow model with gain factors -y
xyij l —01

>L _1% J Yij

fij Yijfij - 0

m Flow balance at node i
Vfii= z Viifji — Z fij

jesin ) JESOUL(T)

max V f,

Vf,>bh; ViEV—t
=0




Generalized flow maximization

n: #nodes, m: #arcs, B: largest integer in input data
Kantorovich ‘39, Dantzig '62: model introduced

Goldberg, Plotkin & Tardos '91.: first polynomial combinatorial
algorithm

Several weakly polynomial algorithms: Cohen & Megiddo '94,
Goldfarb, Jin 96, Goldfarb, Jin & Orlin '97, Tardos & Wayne
'98, Wayne 02, Daitch & Spielman ’08,

Restrepo & Williamson '09, V. '12, ...

Best previous running times:

Vaidya '89: 0(m'-°n?log B)

Radzik '04: O((m + nlogn)mnlogB)
V’'14: 0(m3n?)

n2
Olver-V'17: 0 | (m + nlogn)mnlog (E)



Detour:
Net Present Value Problem

m Critical Path Problem with time discounts
m Introduced by Russell 70
m Application of generalized flows

m Strongly polynomial computability becomes a crucial
Issue




Net Present Value Problem

m Jobs J, precedence constraints <

m Processingtime p; € N, profit/loss
b; € Zforeach j € |

m Discount factorp > 1




Net Present Value Problem

S.L. U > Vijli Vi<j
ue=1Lpu>0




Net Present Value Problem

Dual of generalized flow maximization

m Weakly polynomial algorithms cannot work

m A variant of our algorithm is strongly polynomial
for this problem (at least for p € N):

Correa, Olver, Schulz, V.




Generalized flow maximization

m Flow balance at node i

Vfi= Z Yiifji — Z fij

jesin) JESOUL(D)




Labellings and duality

m Change measurement unit

| ‘U:V_)R>O
uw . JTij uo._ YijHi
" i Ty oy
bﬂ ._ﬁ Vfﬂ .=V_fi
i T i T
Hi Hi

m ijEEistightify; =1

m (f,uw) is afitting pair if

- ¥{<1 Vij€EE
dual feasibility

-y =1iff;; >0
complementary slackness




Main progress: abundant arcs

m Main goal: find a dual optimal solution u".

m Primal optimal solution: max normal flow computation
on tight arcs w.r.t. u™.

m Main progress:

— find an abundant arc a that must be tight for every
optimal dual solution

- contract a and recurse.

m Standard technique for minimum cost flows: Orlin '93
- alsousedin V. 14



Main progress: abundant arcs

m Feasibleflow: Vx; = b; Viel —t

m [otal relabeled excess

Ex(rw:i= ) (7l = bl

IEV—t

LEMMA: If x is a feasible flow and (x, u) is a
fitting pair, and

xq > Ex(x, ),
Then a is an abundant arc.

m Proof: standard flow decomposition technique.




Main progress: contractible arcs

Assume the following hold for flow f, and labelling p:
m (f,uw) is a fitting pair (complementary slackness)
m Vf'=b' VieV -t (feasibility)

m Vf" < b+ 2 (small excess)

Then
m everyarc awith fi > 2n = Ex(x, 1) is contractible;

m if |bl'| > 2n?, then there exists a contractible arc incident to
nhode 1.




Main progress: contractible arcs

Assume the following hold for flow [, and labelling pu:
m (f,u) is afitting pair (complementary slackness)
m Vf" =b VieV—t (feasibility)

m Vf" < b + 2 (small excess)

l

m Problem: difficult to have both fitting pairs and
feasibility in an augmenting path framework

m Many previous algorithms relax the fitting pair notion
m New idea: relax feasibility



Algorithmic setup

Maintain a flow [, and labelling u:

(f, ) is a fitting pair (complementary slackness)

H H . -
Ej% — b% AR t—(teastotity)

Vf¥ < b + 2 (small excess)

1 is a safe labelling: there exists a primal feasible

solution on tight arcs for .
Can be characterized by a simple cut condition

LEMMA: If (f, n) is a fitting pair, and u is safe, then there

exists a flow x such that (x, u) is a fitting pair and
b; <Vx; <max(b;,Vf;) VieV —t

f* is integral and small (f; < 2n for all a)




Work with two flows instead of one!

LEMMA: If (f, n) is a fitting pair, and u is safe, then there
exists a flow x such that (x, u) is a fitting pair and

b; <Vx; <max(b;,Vf;) VieV —t

m If [b!'| > 2n?, then compute such an x by a flow
feasibility algorithm.

This satisfies:

m (x,u) is a fitting pair (complementary slackness)
m Vx; >b VieV—t (feasibility)

m Ex(x,u) < 2n (small excess)

m There is an arc a with x, > 2n and this is contractible.



Main step
multiplicative Dijkstra-type update

m Q:={t}u{j eV:Vf{ <b}- “sink set”

m Try send 1 unit of relabelled flow from a node j with
Vf# = b} + 1to anode in Q on a tight path.

m 5:set of nodes that can reach Q on a tight path

Update for certain a > 1

{&, ifi€S

(04
ifi€eV\S

if a € E[S] 0

otherwise




Main step
multiplicative Dijkstra-type update

Update for certain a > 1

{52 ifi€S

Hi: a

ifi€eV\S

if a € E[S]

otherwise

m The relabeled flow f# does not change.
m Arcs entering S may become tight.

m Safety of labelling 1 is maintained.




Update for certain a > 1
ifi €S
ifieV\Ss

Analysis key idea Hi
Hi:

How does the excess of a node

change?
Vfiﬂ _ bl# otherwise

Can increase only if i € S and b; < 0.

O = z Vi —b; and ¥: = Z b |

i:b;<0 i:b;<0
The two potentials increase together at label updates.

Path augmentations almost always decrease .



Comparison with V '14

V.14 Current paper

2
0(m3n?) 0 ((m + nlogn)mnlog <n_)>

m

Main progress by contracting arcs.
Flow sent on tight paths.

A-relaxation of (f, w) fitting (f, w)-fitting pair
Feasible flow f Infeasible flow f, safe labelling u
Non-integral f# Integral f*

Multiplicative potential argument Additive potential argument

Additional cleanup step -

Complicated numerical rounding Simple numerical rounding




Conclusion

Amortizing here and there, we get
n
0 ((m + nlogn)mnlog (—))

m

Also works for the Net Present Value problem for
integer discount factor.
Open questions:

Net Present Value problem with rational discount
factors.

Strongly polynomial algorithm for minimum cost
generalized flows.

Strongly polynomial algorithm for LP.

Thank you!




