
Introduction Flux-Modules in Metabolic Networks k -Modules

Polynomial time vertex enumeration of
convex polytopes of bounded branch-width

Leen Stougie

In collaboration with Arne Reimers
Google, Munich

MED2332, London
July 16, 2018



Introduction Flux-Modules in Metabolic Networks k -Modules

Outline

Introduction

Flux-Modules in Metabolic Networks

k -Modules



Introduction Flux-Modules in Metabolic Networks k -Modules

Vertex enumeration

Given polytope by its outer description
P = {x ∈ RN | Sx = b, x ≥ 0}
enumerate all its vertices

Given polytope by its outer description
P = {x ∈ RN | Sx = b, x ≥ 0}
compute its inner description
P = conv.hull{x1, . . . , x|V|}

Can this be done in total polynomial time?
Time polynomial in size of input and output
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Vertex enumeration

Open Problem: Can vertex enumeration of a polytope be done
in total polynomial time?

It cannot be done for unbounded polyhedra unless P = NP
[Boros et al. 97]

It can be done for non-degenerate polytopes [Dyer 83]

Most popular method: Double Description method [Fukuda] or
more sophisticated [Terzer & Stelling 08]
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Decomposition of polyhedra

Many graph optimization problems are polytime solvable for
graphs with bounded treewidth.

Tree decomposition and treewidth not applicable to polyhedra.

But the related concepts of branch-decomposition and
branch-width are!

Branch-decomposition and branch width defined for matroids

Our result: For P = {x ∈ RN | Sx = b, x ≥ 0}, if the
branch-width of the linear matroid on the columns of S is
bounded by k , then we can enumerate all vertices V in running
time O(N|V|O(k)t), where t is time for solving some LP’s for
feasibility checks
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Metabolic Network

I Network of chemical reactions
together performing some constructive and destructive
tasks in a living cell
e.g. photosynthesis, glycolysis

I A reaction transforms some chemical molecules into others
- NH3 and O2

I Each reaction gives a column of the stoichiometric matrix



Introduction Flux-Modules in Metabolic Networks k -Modules

Metabolic Network

I Network of chemical reactions
together performing some constructive and destructive
tasks in a living cell
e.g. photosynthesis, glycolysis

I A reaction transforms some chemical molecules into others
- NH3 and O2

I Each reaction gives a column of the stoichiometric matrix



Introduction Flux-Modules in Metabolic Networks k -Modules

Metabolic Network

I Network of chemical reactions
together performing some constructive and destructive
tasks in a living cell
e.g. photosynthesis, glycolysis

I A reaction transforms some chemical molecules into others
- NH3 and O2

I Each reaction gives a column of the stoichiometric matrix



Introduction Flux-Modules in Metabolic Networks k -Modules

Metabolic Network

I Network of chemical reactions
together performing some constructive and destructive
tasks in a living cell
e.g. photosynthesis, glycolysis

I A reaction transforms some chemical molecules into others
- NH3 and O2

I Each reaction gives a column of the stoichiometric matrix



Introduction Flux-Modules in Metabolic Networks k -Modules

Stougiometric Matrix

Example: 1NH3+2O2 →1HNO3+1H2O
R

· 0
· 0

NH3 −1
O2 −2

HNO3 +1
H2O +1
· 0
· 0
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Flux

I The flux vr of a reaction r is the rate at which the reaction
takes place.

I The vector v with for every reaction r a coordinate vr is
called the flux vector.

I Steady state assumption

Sv = 0, v ≥ 0
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Running Example

r1 r2

r3

m1 m2

r4

e.g. Glucose

e.g. Biomass

Here all coefficients of the stoichiometric matrix are −1,0,+1.
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Running Example

r1 r2

r3

m1 m2

b1 = −1

r4

e.g. Biomass

Glucose uptake = 1

I Flux Space: {v : Sv = b, v ≥ 0}

I Optimize Biomass production (linear programming)

max vbiomass subject to Sv = 0, vglucose = 1
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Running Example

r1 r2

r3

m1 m2

b1 = −1 b2 = 2

Glucose uptake = 1

Biomass production = 2

I Flux Space: {v : Sv = b, v ≥ 0}
I Optimize Biomass production (linear programming)

max vbiomass subject to Sv = 0, vglucose = 1
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Flux-Modules

fixed flow value

module 1

module 2

module 3

r1 r2

r3

m1 m2

b1 = −1 b2 = 2

Glucose uptake = 1

Biomass production = 2

Observation (Kelk, Olivier, S., Bruggeman ’12)

Reaction rates in the green module are independent from
reaction rates in the orange module are independent from
reaction rates in the blue module.
Kelk et al., Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks
Nature Scientific Reports, 2:580, 2012.
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Flux-Modules: A Definition

Notation:
I N reactions

(variables, columns)
I M metabolites

(constraints, rows)
I S stoichiometric matrix
I P ⊆ RN flux space: In Ex.

{v : Sv = 0, vglucose = 1, vbiomass = 2, v ≥ 0}

fixed flow value

module 1

module 2

module 3

r1 r2

r3

m1 m2

b1 = −1 b2 = 2

Glucose uptake = 1

Biomass production = 2

r5

r6

r7
r8r9

r10

m3 m4

m5m6

m7

d3 = −1, d4 = 1,
di = 0 ∀i 6= 3,4

Definition (Reimers ’13)

A ⊆ N is a P-module if ∃d ∈ RM s.t. SAvA = d for all v ∈ P.

I A module is a set of reactions A.
I The interface flux d = SAvA of a module is constant for all

feasible flux vectors (v ∈ P).
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Decomposition of Elementary Flux Modes (EFM)
A graphical visualization of all 12 EFMs in the example network
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k -modules

Definition (module)

A ⊆ N is a module of P if there exists a d ∈ RM, s.t. for all
x ∈ P

SAxA = d

+ Dα

.

For P ⊂ {x ∈ RN | Sx = b} we have

1) Flux module is a 0-module
2) Every set with k elements is a k -module
3) A is a k − 1-module⇒ A is a k -module
5) A is a k -module if and only if N \ A is a k -module
6) ∅ is a k -module for all k



Introduction Flux-Modules in Metabolic Networks k -Modules

k -modules

Definition (k -module)

A ⊆ N is a k -module of P if there exists a d ∈ RM, D ∈ RM×k

s.t. for all x ∈ P exists a α ∈ Rk with

SAxA = d + Dα.

For P ⊂ {x ∈ RN | Sx = b} we have

1) Flux module is a 0-module
2) Every set with k elements is a k -module
3) A is a k − 1-module⇒ A is a k -module
5) A is a k -module if and only if N \ A is a k -module
6) ∅ is a k -module for all k



Introduction Flux-Modules in Metabolic Networks k -Modules

k -modules

Definition (k -module)

A ⊆ N is a k -module of P if there exists a d ∈ RM, D ∈ RM×k

s.t. for all x ∈ P exists a α ∈ Rk with

SAxA = d + Dα.

For P ⊂ {x ∈ RN | Sx = b} we have

1) Flux module is a 0-module
2) Every set with k elements is a k -module
3) A is a k − 1-module⇒ A is a k -module
5) A is a k -module if and only if N \ A is a k -module
6) ∅ is a k -module for all k



Introduction Flux-Modules in Metabolic Networks k -Modules

k -modules

Definition (k -module)

A ⊆ N is a k -module of P if there exists a d ∈ RM, D ∈ RM×k

s.t. for all x ∈ P exists a α ∈ Rk with

SAxA = d + Dα.

For P ⊂ {x ∈ RN | Sx = b} we have
1) Flux module is a 0-module

2) Every set with k elements is a k -module
3) A is a k − 1-module⇒ A is a k -module
5) A is a k -module if and only if N \ A is a k -module
6) ∅ is a k -module for all k



Introduction Flux-Modules in Metabolic Networks k -Modules

k -modules

Definition (k -module)

A ⊆ N is a k -module of P if there exists a d ∈ RM, D ∈ RM×k

s.t. for all x ∈ P exists a α ∈ Rk with

SAxA = d + Dα.

For P ⊂ {x ∈ RN | Sx = b} we have
1) Flux module is a 0-module
2) Every set with k elements is a k -module

3) A is a k − 1-module⇒ A is a k -module
5) A is a k -module if and only if N \ A is a k -module
6) ∅ is a k -module for all k



Introduction Flux-Modules in Metabolic Networks k -Modules

k -modules

Definition (k -module)

A ⊆ N is a k -module of P if there exists a d ∈ RM, D ∈ RM×k

s.t. for all x ∈ P exists a α ∈ Rk with

SAxA = d + Dα.

For P ⊂ {x ∈ RN | Sx = b} we have
1) Flux module is a 0-module
2) Every set with k elements is a k -module
3) A is a k − 1-module⇒ A is a k -module

5) A is a k -module if and only if N \ A is a k -module
6) ∅ is a k -module for all k



Introduction Flux-Modules in Metabolic Networks k -Modules

k -modules

Definition (k -module)

A ⊆ N is a k -module of P if there exists a d ∈ RM, D ∈ RM×k

s.t. for all x ∈ P exists a α ∈ Rk with

SAxA = d + Dα.

For P ⊂ {x ∈ RN | Sx = b} we have
1) Flux module is a 0-module
2) Every set with k elements is a k -module
3) A is a k − 1-module⇒ A is a k -module
5) A is a k -module if and only if N \ A is a k -module

6) ∅ is a k -module for all k



Introduction Flux-Modules in Metabolic Networks k -Modules

k -modules

Definition (k -module)

A ⊆ N is a k -module of P if there exists a d ∈ RM, D ∈ RM×k

s.t. for all x ∈ P exists a α ∈ Rk with

SAxA = d + Dα.

For P ⊂ {x ∈ RN | Sx = b} we have
1) Flux module is a 0-module
2) Every set with k elements is a k -module
3) A is a k − 1-module⇒ A is a k -module
5) A is a k -module if and only if N \ A is a k -module
6) ∅ is a k -module for all k



Introduction Flux-Modules in Metabolic Networks k -Modules

k -modules

Definition (k -module)

A ⊆ N is a k -module of P if there exists a d ∈ RM, D ∈ RM×k

s.t. for all v ∈ P exists a α ∈ Rk with

SAvA = d + Dα.

If d = 0 we call A a linear k -module

Notice that D is not unique but 〈D〉, the span of D is unique.
Allow decomposition of general polyhedra

I k -modules relate to k -separations of the matroid with
ground set the columns of the constraint matrix
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k -modules on linear vector spaces

P ⊂ {x ∈ RN | Sx = b}

Let ker(S)= {x ∈ RN | Sx = 0}, the kernel of S

Theorem
A is a k-module for P ⇔ A is a k-module for ker(S)

Under the condition that no xi has fixed value on P
which can be ensured by preprocessing if necessary.
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k -modules and Matroids

Definition (k -separator, Oxley 2011)

Let M be a matroid on the element set N . A set A ⊆ N is a
k -separator if and only if

rank(A) + rank(N \ A)− rank(N ) < k .

Separation is a measure of connectivity of the matroid
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Branch Decomposition of columns of S
Definition (branch-width)

I A branch decomposition (T , τ) consists of a tree T with nodes of
degree 3 and 1 and a bijective map τ : T → N . Define
τ(A) := {τ(a) : a ∈ A}.

I The width of edge e of T is ρ(τ(Ae)), where (Ae,Be) the partition
of the leaves of T given by T \ e. (Note that ρ(A) = ρ(N \ A).)

I The width of a branch decomposition is the maximal width of an
edge e ∈ T .

I The branch-width of M is the minimal width of all possible
branch-decompositions.

With connectivity function

ρ(A) := rank(A) + rank(N \ A)− rank(N ) + 1
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Rooted Decomposition

Suppose a branch decomposition of N of width k + 1;
Create a hierarchical family Mod of k -modules

I Take an arbitrary edge of the branch decomposition,
I subdivide it and make the created vertex the root

corresponding to N ,
I Direct all other edges away from the root.

Every internal node of this rooted binary tree corresponds to
the set of elements in Mod formed by the leaves in the subtree
below it.

The hierarchic family Mod of subsets of N thus created has
property: If C ∈ Mod then ∃A,B ∈ Mod, A ∩ B = ∅, C = A ∪ B.
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Vertex enumeration
For module A ∈ Mod let

PA := {x ∈ RA : SAx = DAα+ d , x ≥ 0,∃α ∈ Rk}.

Idea: For C = A ∪ B combine vertices of PA with vertices of PB

into vertices of PC .
Cartesian product only works if A and B are 0-modules
(1-separators)! (restricted to C)

Every face of P is determined uniquely by Sx = b and a subset
of the non-negativity restrictions being tight: for some F ∈ N
xF = 0 a face of P

Definition (A-cface (combinatorial represent. of A-face))

For A ⊆ N a set F ⊆ A is called a A-cface if there exists a
x ∈ P with xF = 0 and xA\F > 0.
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Vertex enumeration
Definition (A-cface)

For A ⊆ N a set F ⊆ A is called a A-cface if there exists a
x ∈ P with xF = 0 and xA\F > 0.

In fact we are interested in enumerating

Definition (vertex inducing A-cface)

For A ⊆ N a set F ⊆ A is called vertex inducing A-cface if there
exists a vertex v of P with vF = 0 and vA\F > 0.

Testing if F ⊂ A is vertex-inducing is NP-hard [Fukuda EA 97]

Definition (injective A-cface)

For A ⊆ N set F ⊆ A is injective A-cface if @y , z ∈ PA : yF = zF
= 0 with SAy = SAz; i.e. SA injective on {x ∈ PA : xF = 0}.

Testing if F ⊂ A is injective can be done in polytime
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Injective cFase Enumeration

Recursively for every C = A∪̇B.
Let FA := Injective A-cFaces
Let FB := Injective B-cFaces

Construct

F := {F A ∪ F B : F A ∈ FA,F B ∈ FB}

For every F ∈ F test if it is a cface and injective for C.
If not delete F from F

Set the resulting set F to FC
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Vertex enumeration

We have enumerated all injective N -cfaces, whereas we should
have enumerated all vertex-induced N -cfaces :-(

Theorem
Let A ∈ Mod be a 0-module. Then, a A-cface is injective if and
only if it is vertex inducing.

Corollary

The injective N -cfaces are the vertices of P and Injective cFace
Enumeration Algorithm applied to C = N computes all vertices
of P.

Did we not enumerate too many minimal faces on the way?
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Vertex enumeration in total polytime
Proposition

Every injective and vertex inducing A-cface F for A ∈ Mod has
dim{x ∈ PA : xF = 0} ≤ k.

Assume P is bounded.
Essentially Caratheodory:

Lemma
For A-cface F, A ∈ Mod, there exist ` ≤ k + 1 vertex inducing
A-cfaces F 1, . . . ,F ` such that F = F 1 ∩ F 2 ∩ . . . ∩ F `.

Proposition

If P is bounded then holds for all A ∈ Mod that

|{F ⊆ A : F injective A-cface}| ≤
|{F ⊆ A : F vertex inducing A-cface}|k+1.
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Vertex enumeration in total polytime
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Vertex enumeration in total polytime

|{F ⊆ A : F injective A-cface}| ≤
|{F ⊆ A : F vertex induced A-cface}|k+1.

|{F ⊆ A : F vertex induced A-cface}| ≤
|V =: {v ∈ RN : v is a vertex of P}|.

Let t time to test for injectiveness and the cface property.

Theorem
For P bounded and A,B,C ∈ Mod with C = A∪̇B. Given the set
of injective A-cfaces FA and the set of injective B-cfaces FB,
the set of injective C-cfaces FC can be computed in time
O
(
|V|2k+2t

)
,
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the set of injective C-cfaces FC can be computed in time
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Since there are O(N ) internal nodes in the binary tree defining
Mod, we have

Theorem
For P bounded its set of vertices can be computed in time
O
(
N|V|2k+2t

)
,
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The power of k -modularity?
I Positive

I Vertex enumeration in total polynomial time
I ILP with positive constraint matrix is FPT if maxi bi is fixed.
I LP can be solved in strongly polynomial time if the feasible

polyhedron is 1-modular

I Negative

I General ILP remains NP-hard even for 3-modular polyhedra
I Deciding if a vertex exists that contains two variables in its

support remains NP-hard even for 3-modular polyhedra

I Open

I Vertex enumeration in unbounded k -modular polyhedra?
I Can LP be solved in strongly polynomial time with

k -modular polyhedra? Or would this imply that general LP
can be solved in strongly polynomial time?

I Can the vertex with minimum size support of a k -modular
polyhedron be found in polynomial time?
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