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Computational Counting

Is there a polynomial-time algorithm to count
1) spanning trees in a graph?
2) independent sets of a graph?
3) proper q-colourings of a graph?

1 Yes - matrix tree theorem
2,3 Problems are #P-hard (on bounded degree graphs)

Is there a polynomial-time algorithm to approximately count
independent sets of a graph?
proper q-colourings of a graph?
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Graph polynomials

Let G = (V ,E) be an n-vertex graph.

Independence Polynomial

ZG(λ) =

α(G)∑
k=0

(# indep sets of size k) · λk .

ZG(1) =number of independent sets

Chromatic Polynomial

χG(q) = # proper q-colourings of G .

Turns out to be a polynomial in q of degree n.
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Outline

Discuss general algorithmic technique for approximate
counting.

Applicable to approximately evaluating
independence polynomial
chromatic polynomial
Tutte polynomial

for bounded degree graphs

Draw links between
existence of fast approximate counting algorithms
locations of (complex) roots of certain polynomials
existence of certain types of FPT counting algorithms
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Fully Polynomial Time Approximation Scheme
(FPTAS)

Suppose f is a graph parameter,
(e.g. f (G) = # independent sets in G = (V ,E)).

An FPTAS is an algorithm that, for all 0 < ε < 1,
estimates f (G) within a multiplicative factor 1± ε
in time polynomial in n = |V | and ε−1.

An FPRAS is a randomised algorithm that, for all 0 < ε < 1,
estimates f (G) within a multiplicative factor 1± ε
in time polynomial in n = |V | and ε−1

with probability ≥ 3
4 .
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Independence Polynomial

Let G = (V ,E) with |V | = n and

ZG(λ) =

α(G)∑
k=0

# indep sets of size k · λk .

∆(G) ≤ ∆

0 ≤ λ < λc =⇒ ∃ FPTAS for ZG(λ) (Weitz)
λ > λc =⇒ 6 ∃ FPTAS for ZG(λ) unless RP = NP

(Sly-Sun)
where

λc = λc(∆) :=
(∆− 1)∆−1

(∆− 2)∆
.
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Three methods for approximate counting

Markov chain Monte Carlo (Jerrum)
Correlation decay (Weitz)
Taylor polynomial interpolation (Barvinok)



Taylor Polynomial Interpolation Method (Barvinok)
Let p = pG be a (graph) polynomial of degree n.
Assume p(z) 6= 0 for all |z| ≤ C for some C > 0. (z ∈ C)
Let f (z) = ln p(z) for |z| < C and let

Tm(z) =
m∑

k=0

f (k)(0)
zk

k !
.

Then for m = O(ln(n/ε)) we have that

|f (z)− Tm(z)| ≤ ε.

=⇒ exp Tm(z) = (1± 2εeiθ)p(z) for some θ ∈ [0,2π].

Recipe for FPTAS
Identify zero-free region of p containing z (inc. non-disks).
Efficiently compute f (k)(0) for k = 0, . . . ,O(ln n/ε).



Taylor Polynomial Interpolation Method (Barvinok)
Let p = pG be a (graph) polynomial of degree n.
Assume p(z) 6= 0 for all |z| ≤ C for some C > 0. (z ∈ C)
Let f (z) = ln p(z) for |z| < C and let

Tm(z) =
m∑

k=0

f (k)(0)
zk

k !
.

Then for m = O(ln(n/ε)) we have that

|f (z)− Tm(z)| ≤ ε.

=⇒ exp Tm(z) = (1± 2εeiθ)p(z) for some θ ∈ [0,2π].

Recipe for FPTAS
Identify zero-free region of p containing z (inc. non-disks).
Efficiently compute f (k)(0) for k = 0, . . . ,O(ln n/ε).



Taylor Polynomial Interpolation Method (Barvinok)
Let p = pG be a (graph) polynomial of degree n.
Assume p(z) 6= 0 for all |z| ≤ C for some C > 0. (z ∈ C)
Let f (z) = ln p(z) for |z| < C and let

Tm(z) =
m∑

k=0

f (k)(0)
zk

k !
.

Then for m = O(ln(n/ε)) we have that

|f (z)− Tm(z)| ≤ ε.

=⇒ exp Tm(z) = (1± 2εeiθ)p(z) for some θ ∈ [0,2π].

Recipe for FPTAS
Identify zero-free region of p containing z (inc. non-disks).
Efficiently compute f (k)(0) for k = 0, . . . ,O(ln n/ε).



How to compute derivatives

Let p be a graph polynomial and G an n-vertex graph. Suppose

pG(z) = a0 + a1z + · · ·+ anzn.

Wish to compute f (k)(0) for k = 1, . . . ,m = ln(n/ε) where

f (z) = ln pG(z).

Observation
If we can compute a0, . . . ,am, then we can compute
f (0)(0), f (1)(0), . . . , f (m)(0)

p′(z) = p(z)f ′(z)

k !ak =
k−1∑
j=0

(
k − 1

j

)
aj f (m−j)(0) k = 1, . . . ,m
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Example - independence polynomial

ZG(z) =

α(G)∑
i=0

aiz i

where ai = ai(G) = # indep sets of size i in G.

How do we compute a1, . . . ,am for m = O(ln n/ε)?

Check all sets of size ≤ m: takes nO(m) = nO(ln n−ln ε) time.
There is a faster way to do this for bounded degree graphs!

Lemma (P., Regts)

If ∆(G) ≤ ∆, we can compute

ak = ak (G) = #indep sets of size k in G

in time poly(n)ck , where c = c(∆) is a constant.
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Lemma (P., Regts)

If ∆(G) ≤ ∆, we can compute ak = ak (G) = ind(◦k ,G) in time
cknO(1), where c = c(∆).

Write ind(H,G) := # induced copies of H in G

Can compute ind(H,G) in time cknO(1) where

|H| = k , H connected and |G| = n, ∆(G) ≤ ∆.

Let η1, . . . , ηd be the roots of ZG(λ) =
∑

arλ
r Let

pk = pk (G) = η−k
1 + · · ·+ η−k

d (the k th inverse power sum).

a0pt + a1pt−1 + · · ·+ at−1p1 = −tat ∀t = 1,2, . . .

pk (G) =
∑
|H|≤k

H connected

cH · ind(H,G)

Can compute p1, . . . ,pk and a1, . . . ,ak in time cknO(1).
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Theorem (P., Regts)

Suppose ZG(z) 6= 0 for all |z| ≤ C and ∆(G) ≤ ∆.

Then ∃ FPTAS to compute ZG(z) for |z| < C and ∆(G) ≤ ∆.

λ∗(∆) := (∆−1)∆−1

∆∆ λc(∆) = (∆−1)∆−1

(∆−2)∆ (Note λ∗ < λc)

Theorem
We have ZG(z) 6= 0 for all z ∈ D and ∆(G) ≤ ∆ where
(1) D = {z : |z| ≤ λ∗} (Dobushin, Shearer)
(2) D = open region containing [0, λc) (Peters, Regts)

Implies the following:

There is an FPTAS for computing ZG(z) if z ∈ D and ∆(G) ≤ ∆.

Recover result of Weitz and more
Will see a complete complexity picture in next talk!
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Independence polynomial - special graph classes

Theorem (Chudnovsky, Seymour)

ZG(z) 6= 0 whenever G is claw-free and z ∈ C \ (−∞,0)

So our method implies (after conformal transformation)

There is an FPTAS to evaluate ZG(z) whenever G is claw-free
with ∆(G) ≤ ∆ and z ∈ C \ (−∞,0).
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Independence polynomial - special graph classes

Why are claw-free graphs interesting?

The line graph L(G) of a graph G is claw-free.
Matchings in G↔ independent sets in L(G)

Hence ZL(G)(λ) = MG(λ) :=
∑

matchings M of G
λ|M|

Theorem (Bayati, Gamarnik, Katz, Nair, and Tetali)

∃ FPTAS to compute MG(λ) for ∆(G) ≤ ∆ and λ ∈ [0,∞).

We extended this to
independent sets in claw-free graphs (of bounded degree).
almost all complex λ.

Theorem (Jerrum and Sinclair)

∃ FPRAS to compute MG(λ) for λ ∈ [0,∞) and ∀G.
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General result

Definition
Let p = pG be a graph polynomial, i.e.

pG(z) =
∑

k

ak (G)zk .

Call p a bounded induced graph counting polynomial (BIGCP) if

pG1∪G2 = pG1 · pG2

ak (G) =
∑
|H|=O(k) sH,k · ind(H,G)

sH,k can be computed in exp(O(k))-time

c.f. independence polynomial

Theorem (P., Regts)

Let p be a BIGCP with pG(z) 6= 0 for |z| ≤ K = K (∆) and
∆(G) ≤ ∆.

∃ FPTAS to compute pG(z) for |z| ≤ K and ∆(G) ≤ ∆.
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Chromatic polynomial

For a graph G = (V ,E)

χG(q) = # proper q-colourings of G;

hence χG1∪G2(q) = χG1(q) · χG2(q)

Random cluster model formulation

χG(q) =
∑
A⊆E

(−1)|A|qk(A) =:
∑

i

ai(G)qi ,

where
an = 1
an−1 = (−1)ind(e,G)

an−2 = ind(P3,G)− ind(K3,G) + ind(2K2,G) etc

Hence znχG(z−1) is a BIGCP
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Chromatic polynomial

The polynomial znχG(z−1) is a BIGCP

Theorem (Jackson, Procacci and Sokal)

χG(z) 6= 0 whenever ∆(G) ≤ ∆ and |z| ≥ K (∆) = 6.91∆.

Using our method, this implies

∃ FPTAS to compute χG(z) for |z| ≥ 6.91∆ and ∆(G) ≤ ∆.

FPTAS for q ≥ 2.58∆ (Lu and Yin)
FPRAS for q ≥ 11

6 ∆ (Vigoda)

FPRAS for q > (11
6 − ε)∆ (Delcourt-Perarnau-Postle

and Chen-Moitra)
No FPTAS for k < ∆ unless P = NP
FP(RT)AS conjectured for q > ∆



Chromatic polynomial

The polynomial znχG(z−1) is a BIGCP

Theorem (Jackson, Procacci and Sokal)

χG(z) 6= 0 whenever ∆(G) ≤ ∆ and |z| ≥ K (∆) = 6.91∆.

Using our method, this implies

∃ FPTAS to compute χG(z) for |z| ≥ 6.91∆ and ∆(G) ≤ ∆.

FPTAS for q ≥ 2.58∆ (Lu and Yin)
FPRAS for q ≥ 11

6 ∆ (Vigoda)

FPRAS for q > (11
6 − ε)∆ (Delcourt-Perarnau-Postle

and Chen-Moitra)
No FPTAS for k < ∆ unless P = NP
FP(RT)AS conjectured for q > ∆



Chromatic polynomial

The polynomial znχG(z−1) is a BIGCP

Theorem (Jackson, Procacci and Sokal)

χG(z) 6= 0 whenever ∆(G) ≤ ∆ and |z| ≥ K (∆) = 6.91∆.

Using our method, this implies

∃ FPTAS to compute χG(z) for |z| ≥ 6.91∆ and ∆(G) ≤ ∆.

FPTAS for q ≥ 2.58∆ (Lu and Yin)
FPRAS for q ≥ 11

6 ∆ (Vigoda)

FPRAS for q > (11
6 − ε)∆ (Delcourt-Perarnau-Postle

and Chen-Moitra)
No FPTAS for k < ∆ unless P = NP
FP(RT)AS conjectured for q > ∆



Chromatic polynomial

The polynomial znχG(z−1) is a BIGCP

Conjecture (Sokal)

χG(z) 6= 0 if <(z) > ∆(G).

Our method shows Sokal’s conjecture implies

Conjecture (Folklore)

There is an FPTAS for χG(q) whenever q > ∆(G).
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Tutte polynomial

For a graph G = (V ,E)

TG(q,w) =
∑
A⊆E

w |A|qk(A)

So TG(q,−1) = χG(q)

Tutte polynomial captures number of
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For each fixed w ∈ C, znTG(z−1,w) is a BIGCP

Theorem (Jackson, Procacci and Sokal)

∃K := K (∆, z2) s.t. TG(z1, z2) 6= 0 whenever ∆(G) ≤ ∆ and
|z1| ≥ K (∆, z2).

So our method implies

There is an FPTAS to evaluate TG(z,w) for graphs of maximum
degree ∆ whenever |z| ≥ K (∆,w).



Tutte polynomial

For each fixed w ∈ C, znTG(z−1,w) is a BIGCP

Theorem (Jackson, Procacci and Sokal)

∃K := K (∆, z2) s.t. TG(z1, z2) 6= 0 whenever ∆(G) ≤ ∆ and
|z1| ≥ K (∆, z2).

So our method implies

There is an FPTAS to evaluate TG(z,w) for graphs of maximum
degree ∆ whenever |z| ≥ K (∆,w).



Summary
Shown how Taylor Polynomial Interpolation Method can give
FPTAS for approximating graph polynomials on bounded
degree graphs.

Generally applicable to several graph polynomials e.g.
Independence polynomial
Chromatic / Tutte polynomial
Partition functions of spin models
Partition functions of edge-colouring models

Deterministic algorithm
Works for complex evaluations
Links FPTAS for PG(t) and locations of its roots

χG(z) 6= 0 for <(z) > ∆(G) =⇒ FPTAS for χG(q)
if q ≥ ∆(G)
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