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Modularity and communities

Modularity was introduced by Newman and Girvan in 2004 to give a
measure of how well a graph can be divided into communities.

It now forms the backbone of the most popular algorithms used to cluster
real data, with many applications, from protein discovery to identifying
connections between websites.

See for example surveys by Fortunato (2010), and Porter Onnela and
Mucha (2009), on the use of modularity for community detection in
networks.
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Definition of modularity

Let G = (V ,E ) be a graph with m ≥ 1 edges. For a set A of vertices, let
e(A) be the number of edges within A, and let vol(A) be the sum over the
vertices v ∈ A of the degree dv .

Given a partition A of V , the modularity of A on G is

qA(G ) =
1

2m

∑
A∈A

∑
u,v∈A

(
1uv∈E −

dudv
2m

)
=

1

m

∑
A∈A

e(A)− 1

4m2

∑
A∈A

vol(A)2;

and the modularity of G is q∗(G ) = maxA(G ).

Isolated vertices are irrelevant; and we shall not consider empty graphs
(that is, with no edges).
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modularity: understanding the definition

qA(G ) =
1

2m

∑
A∈A

∑
u,v∈A

(
1uv∈E −

dudv
2m

)
.

If we pick uniformly at random a multigraph with the same degrees as G ,
then the expected number of edges between vertices u and v is essentially

dudv
2m

.

This is the rationale for the definition: whilst rewarding the partition for
capturing edges within the parts, we should penalise by the expected
number of edges.
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edge-contribution and degree tax

The second equation

qA(G ) =
1

m

∑
A∈A

e(A)− 1

4m2

∑
A∈A

vol(A)2

expresses qA(G ) as the difference of two terms:

the edge contribution qEA(G ) = 1
m

∑
A e(A),

and the degree tax qDA(G ) = 1
4m2

∑
A vol(A)2.

Since qEA(G ) ≤ 1 and qDA(G ) > 0, we have qA(G ) < 1. Also, the trivial
partition A0 with one part has qEA0

(G ) = qDA0
(G ) = 1, so qA0(G ) = 0.

Thus
0 ≤ q∗(G ) < 1.
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Modularity: some examples

(a) Let G be a tree with m edges and max degree ∆ = o(m). Then
q∗(G ) = 1− o(1). (True also if treewidth ·∆ = o(m).)

(b) Let G be an m-edge subgraph of the square lattice. Then
q∗(G ) = 1− o(1).

(c) q∗(Kn) = 0 (and indeed q∗(G ) = 0 if G is Kn less at most n/2 edges).

(d) If G consists of k ≥ 1 cliques all of the same size, then

q∗(G ) = 1− 1/k .
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Two theorems on the modularity of random graphs G (n, p)

Here are two theorems of ours (McD and Skerman) on q∗(G (n, p)). First,
the overview.

Theorem (3 phases theorem)

(a) If n2p →∞ and np ≤ 1 + o(1) then q∗(G (n, p))
p→ 1.

(b) Given 1 < c0 ≤ c1, there exists δ > 0 such that, if c0 ≤ np ≤ c1, then
whp δ < q∗(G (n, p)) < 1− δ.

(c) If np →∞ then q∗(G (n, p))
p→ 0.

To prove part (a) it suffices to consider the partition into components.
Part (c) and much of part (b) follow from the next theorem.
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Two theorems on q∗(G (n, p)

Theorem (the (np)−1/2 theorem)

There exist 0 < a < b such that, if np ≥ 1 and p ≤ 0.99, then

a
√
np

< q∗(G (n, p)) <
b
√
np

whp.

This confirms a conjecture in 2006 by Reichardt and Bornholdt (and
refutes another conjecture from the physics literature).

The upper bound may be proved using the expander mixing lemma (not
here).

The lower bound follows by considering a simple algorithm Swap (or, for a
more limited range of p, from recent work on stochastic block models.)
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Two theorems on q∗(G (n, p)

As we noted, much of the np > 1 part of the 3 phases theorem follows
from the (np)−1/2 theorem.

To complete the proof for np > 1, we need to show that
q∗(G (n, p)) < 1− δ whp when np is just above 1.

To do this, we may use the result that whp, splitting the giant component
roughly into halves must break Ω(n) edges (Luczak and McD 2001).
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Swap gives the (np)−1/2 lower bound

Given a graph G , the algorithm Swap runs in linear time and yields a
balanced bipartition A of the vertices.

Theorem

There are constants c0 and a > 0 such that if p = p(n) satisfies
1 ≤ np ≤ n − c0, then whp

qA(Gn,p) ≥ a

(
1−p
np

)1/2

;

and if also np ≥ c0 we may take a = 1
5 .
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Idea of Swap

The algorithm Swap starts with a balanced bipartition of the vertex set
into A ∪ B, which has modularity very near 0 whp.

By swapping some pairs between A and B, whp we can increase the edge
contribution significantly, without changing the distribution of the degree
tax (and without introducing dependencies which would be hard to
analyse).
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The algorithm Swap

Assume for simplicity that 6|n and write n = 6k. Start with the bipartition
A of V = [n] into A = {j ∈ V : j is odd} and B = {j ∈ V : j is even}.
Whp qA(Gn,p) is very close to 0.

Let V0 = [4k], let V1 = {4k + 1, . . . , 6k}. Let A0 = A ∩ V0, A1 = A ∩ V1

and B0 = B ∩ V0, B1 = B ∩ V1. The four sets Ai ,Bi are pairwise disjoint
with union V .

Initially V0 is partitioned into A0 ∪ B0: the algorithm Swap ‘improves’ this
partition, keeping A1, B1 fixed. For i = 1, . . . , 2k let ai = 2i − 1 and
bi = 2i , so A0 = {a1, . . . , a2k} and B0 = {b1, . . . , b2k}. We improve the
partition V0 = A0 ∪ B0 is by independently swapping ai and bi for certain
values i .
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Ti and swapping ai , bi

For each i ∈ [2k] let

Ti = e(ai ,B1)− e(ai ,A1) + e(bi ,A1)− e(bi ,B1).

The random variables T1, . . . ,T2k are iid.

Also E[Ti ] = 0, var(Ti) = 4kp(1− p); and E[|Ti |] = Θ((np(1−p))1/2).

If Ti > 0 and we swap ai and bi between A0 and B0 (that is, replace A0

by (A0 \ {ai}) ∪ {bi} and similarly for B0) then e(A,B) decreases by Ti ,
so the edge contribution of the partition increases.
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Illustration of swapping

A1 B1

ai biA0 B0 swap if Ti > 0

A1 B1

bi aiA′0 B ′0
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T ∗ and swaps

Swap makes all such swaps (looking only at possible edges between V0

and V1), yielding the balanced bipartition A′ = (A′,B ′), where
A′ = A′0 ∪ A1 and B ′ = B ′0 ∪ B1.

Let T ∗ =
∑

i∈[2k] |Ti |. Then

e(A′0,A1) + e(B ′0,B1)− (e(A′0,B1) + e(A1,B
′
0)) = T ∗.

But e(A′0,A1) + e(B ′0,B1) + (e(A′0,B1) + e(A1,B
′
0)) = e(V0,V1), so

e(A′0,A1) + e(B ′0,B1) = 1
2e(V0,V1) + 1

2T
∗.
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T ∗ and edge contribution

T ∗ is the sum of the 2k ≈ n/3 iid random variables |Ti |, so whp

T ∗ ≈ 2k E[|T1|] = Θ(n3/2(p(1−p))1/2).

Thus whp the edge contribution for A′ beats that for the initial bipartition
A by

Θ

(
n3/2(p(1−p))1/2

n2p

)
= Θ

((1−p
np

)1/2
)
.

In other words

qEA′(Gn,p)− qEA(Gn,p) = Θ

((1−p
np

)1/2
)

whp.
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What about degree tax?

Our decisions about when to swap are symmetric. In the two cases

e(ai ,B1) = w , e(ai ,A1) = x and e(bi ,A1) = y , e(bi ,B1) = z

e(ai ,B1) = y , e(ai ,A1) = z and e(bi ,A1) = w , e(bi ,B1) = x .

we make the same decision (swap iff w−x + y−z > 0). It follows that
the degree tax for A′ has exactly the same distribution as for A. We find

qDA′(Gn,p)− qDA(Gn,p) = o

((1−p
np

)1/2
)

whp.
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completing the Swap story

Putting together the results on edge contribution and on degree tax we
find

qA′(Gn,p)− qA(Gn,p) = Θ

((1−p
np

)1/2
)

whp.

But whp qA(Gn,p) is very near 0, and so

qA′(Gn,p) = Θ

((1−p
np

)1/2
)

whp

as required.
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around np = 1

We saw that q∗(Gn,p) = 1 + o(1) whp if np ≤ 1 + o(1) (assuming that
n2p →∞);

and q∗(Gn,(1+ε)/n) is bounded below 1 for fixed ε > 0.

Recently we have found: q∗(Gn,(1+ε)/n) = 1−Θ(ε2) whp.
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thanks for your attention

and

Happy Birthday Martin!
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