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Dyer and Volumes of Convex sets, ..

# P-Hardness of computing the volume of a polyhedron Dyer and
Frieze

Random polynomial time algorithm Dyer, Frieze, K.
Improvement of the running time to O∗(n8) Dyer and Frieze
(Exact) Number of Lattice Points in a fixed dimensional
polyhedron - simplifying an algorithm of Barvinok - Dyer, K.
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Main Result

x = (x1,x2, . . . ,xn) unknowns. c(1),c(2), . . . ,c(k) are k given
n−vectors. F :Rk →R convex function.

In poly time, we can find an (essentially) optimal solution to:

Min F
(
c(1)x ,c(2)x , . . . ,c(k)x

)
subject to 0≤ xi ≤ 1 and at most k of the xi are fractional.

Further, time = time for gradient descent to solve the real
relaxation Plus One Linear Program
Proof Solve the real relaxation (no integrality) to get opt soln y .
Then, solve the LP: c(1)x = c(1)y ; . . . ;c(k)x = c(k)y ; 0≤ xi ≤ 1 to
find a basic feasible solution which has at most k fractional xi .
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Quadratic Integer Programs

Min xT Ax + f (v1 ·x ,v2 ·x , . . . ,vk ·x) s.t. xi ∈ {0,1},
where, k ∈O(1) and f is convex.

If no f , semi-definite programme + Rounding can work. Eg. - Max
Cut (where Aij =−(edge weight)), ....
Why f ? Can formulate: Max-Cut, Max-balanced cut, 2-means
with given cluster sizes, 2-means with side information (i , j belong
to same/different clusters).
Seek: “Practical” algorithms with provable error guarantees.
[Note: SDP squares number of variables.]
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Example

Given: n points u1,u2, . . . ,un with Aij = |ui −uj |2. Partition into two
sets of equal size minimizing the sum of squared distances of
pairs of points in same part. Use convex penalty M

(∑
i xi − n

2
)2 to

balance the parts:

Min xT Ax + (1−x)T A(1−x) + M

(∑
i

xi −
n
2

)2

s.t. xi ∈ {0,1}.

Balanced 2-means clustering is a special case.
Can similarly do 2-clustering or learning mixtures of 2 Gaussians
with any given cluster weights.
2-clustering with side constraints: Recent question in ML:
2-cluster with side info: (a limited number k of) i , j belong to same
or different clusters. Constraints: xi = xj or xi = 1−xj . Eliminate xi .
Solve QIP. If solution has l fractional variables, whole program has
at most k + l fractional variables. If k , l are small, error in rounding
the fractional variables (arbitrarily) is small....
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Solution

MinxT Ax + f (v1 ·x ,v2 ·x , . . . ,vk ·x) s.t. xi ∈ {0,1}.

Wlg assume A is symmetric.
Simple Case: A has only non-negative eigenvalues and has O(1)
rank.
Solve the relaxation to real-valued xi . Convex Program.
How do we round to an integer solution (with provable
guarantees)?
If u1,u2, . . . ,ur are the eigenvectors of A (r =rank(A)) and
u1 ·x = γ1 . u2 ·x = γ2 . ur ·x = γr ,v1 ·x = δ1 , . . .vk ·x = δk is real opt.,
then solve an auxiliary Linear Program:
u1 ·x = γ1 . u2 ·x = γ2 . ur ·x = γr ,v1 ·x = δ1 , . . .vk ·x = δk xi ∈ [0,1] to
find a basic feasible solution.
It has at most r +k ∈O(1) fractional variables. Round them
arbitrarily....
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The Result

QIP MinxT Ax+ f
(
c(1) ·x,c(2) ·x, . . . ,c(s) ·x

)
subject to xi ∈ {0,1}.

Suppose λ1(A),λ2(A), . . . are the eigenvalues of A in
non-increasing order of absolute value
Assume λt(A)≥−M for some M > 0 for all t .
Let r be an arbitrary positive integer. We can solve QIP to additive
error at most
|λ1(A)|(

√
n(r +s)+ r2 + rs)+|c|pr +s+n(M +|λr+1(A)|) .

in time O(n5/2 +n2r).
The complexity bottleneck is solving a Linear Program in n
variables with O(r) constraints which takes time O(n5/2) using a
recent algorithm of Yin-tat Lee and Adam Sidford
Often worst term nM. Max Cut case: n (Largest Pos eigenvalus of
edge weight matrix).
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