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@ # P-Hardness of computing the volume of a polyhedron Dyer and
Frieze

@ Random polynomial time algorithm Dyer, Frieze, K.
@ Improvement of the running time to O*(n®) Dyer and Frieze

@ (Exact) Number of Lattice Points in a fixed dimensional
polyhedron - simplifying an algorithm of Barvinok - Dyer, K.
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Main Result

@ X =(x1,Xp,...,Xn) unknowns. c(),c(), .. ¢k are k given
n-vectors. F:RK — R convex function.
@ In poly time, we can find an (essentially) optimal solution to:
e Min F(c“)x,c(z)x,...,c(k)x)
@ subjectto 0 < x; <1 and at most k of the x; are fractional.
@ Further, time = time for gradient descent to solve the real
relaxation Plus One Linear Program
@ Proof Solve the real relaxation (no integrality) to get opt soln y.
@ Then, solve the LP: c(x=cMy . ..c®x=cKy. 0<x;<1t0
find a basic feasible solution which has at most k fractional x;.
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@ MinxTAx+f(v4-X,vo-X,...,Vg-X) s.t. x;€ {0, 1},
where, k€ O(1) and f is convex.

@ If no f, semi-definite programme + Rounding can work. Eg. - Max
Cut (where Aj = —(edge weight)), ....

@ Why f ? Can formulate: Max-Cut, Max-balanced cut, 2-means
with given cluster sizes, 2-means with side information (/,j belong
to same/different clusters).

@ Seek: “Practical” algorithms with provable error guarantees.
[Note: SDP squares number of variables.]
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Example

e Given: npoints uy, Uy, ..., Up With Aj = |u; — uj|2. Partition into two
sets of equal size minimizing the sum of squared distances of
pairs of points in same part. Use convex penalty M (¥, x; - ) to
balance the parts:

2
Min xTAx+(1-x)TA(1-x) + M (Zx,-— g) s.t. x;€{0,1}.
i

@ Balanced 2-means clustering is a special case.

@ Can similarly do 2-clustering or learning mixtures of 2 Gaussians
with any given cluster weights.

@ 2-clustering with side constraints: Recent question in ML:
2-cluster with side info: (a limited number k of) i,j belong to same
or different clusters. Constraints: x; = x; or x; = 1 - x;. Eliminate x;.
Solve QIP. If solution has / fractional variables, whole program has
at most k +/ fractional variables. If k,/ are small, error in rounding
the fractional variables (arbitrarily) is small....
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Solution

@ MinxTAx+f(vi-X,Va-X,...,vk-X) s.t. x;€1{0,1}.

@ WIg assume A is symmetric.

@ Simple Case: A has only non-negative eigenvalues and has O(1)
rank.

@ Solve the relaxation to real-valued x;. Convex Program.

@ How do we round to an integer solution (with provable
guarantees)?

@ If uy,up,...,ur are the eigenvectors of A (r =rank(A)) and
U X=y1.Us-X=Yo.Ur-X=7Yr,Vi-X=01,...V- X =0 is real opt.,
then solve an auxiliary Linear Program:
Up-X=71.Up-X=Yo. U X=Yr,V1-X=01,...Vk-X=0kX € [0,1] to
find a basic feasible solution.

@ It has at most r + k € O(1) fractional variables. Round them
arbitrarily....
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QIP Minx" Ax + f(c(” -x,¢®.x,...,c® -x) subject to x; € {0, 1}.
Suppose 11(A),12(A),... are the eigenvalues of Ain
non-increasing order of absolute value

Assume A¢(A) = —M for some M >0 for all ¢.

Let r be an arbitrary positive integer. We can solve QIP to additive

error at most

A (AN(/N(r+8)+r?+rs)+lclvVr+s+n(M+|A.1(A)).

in time O(n®/2 + nPr).

The complexity bottleneck is solving a Linear Program in n
variables with O(r) constraints which takes time O(n°/?) using a
recent algorithm of Yin-tat Lee and Adam Sidford

Often worst term nM. Max Cut case: n (Largest Pos eigenvalus of
edge weight matrix).



