
A polynomial-time approximation algorithm
for all-terminal network reliability

Heng Guo (University of Edinburgh)

Joint with Mark Jerrum (Queen Mary, University of London)

Queen Mary Algorithm Day, Jul 17, 2018

Random sampling strikes back

The complexity of computing quantities

Complexity class #P by Valiant (1979):

a counting analogue of NP.

Evaluation of probabilities;
Partition functions in statistical physics;
Counting discrete structures …

The complexity of approximate counting

What about (multiplicatively) approximating #P-complete problems?

• at most NP-hard (Valiant and Vazirani, 1986);

• any polynomial approximation can be amplified into an ε-approximation
with polynomial overhead.

Efficient approximation algorithms do exist! Famous examples include

• the volume of a convex body
(Dyer, Frieze, and Kannan, 1991);

• the partition function of ferromagnetic Ising models
(Jerrum and Sinclair, 1993);

• the permanent of a non-negative matrix
(Jerrum, Sinclair, and Vigoda, 2004).

There are still many open problems in approximate counting!

Network reliability

Network reliability

Given a undirected graph (a.k.a. network) G = (V, E), define a random
subgraph G(p) by removing each edge independently with probability p.

(All-terminal) reliability is the probability such that G(p) is connected.

One may ask the probability of other properties of G(p), such as whether
two distinct vertices s and t are connected (s-t reliability), or whetherG(p)

is acyclic (counting weighted forests), etc.

Network reliability

(All-terminal) reliability: The probability that G(p) is connected.

In other words, we want to compute

Zrel(G,p) :=
∑

R⊆E:(V,R) is connected

p|E\R|(1− p)|R|.

For example:

Zrel(, p) = = (1− p)n−1;

Zrel(, p) = + + + +

= (1− p)4 + 4p(1− p)3;

Zrel(G, 1/2) =
|{R ⊆ E : (V, R) is connected}|

2|E|
.

Computational complexity of reliability

Directed and undirected s-t reliability (and a few other variants) are fea-
tured in the original list of 13 #P-complete problems by Valiant (1979).

Exact evaluation of all-terminal reliability is shown to be #P-complete by
Jerrum (1981), and independently Provan and Ball (1983).

What about approximation? Open since 80s.

Karger (1999) has given a famous FPRAS for Unreliability (namely 1−Zrel).
However, approximating 1 − Zrel does not yield a good approximation for
Zrel when Zrel is exponentially small.

The Tutte polynomial

For a connected undirected graph G = (V, E),

ZTutte(G; x, y) :=
∑
R⊆E

(x− 1)κ(R)−1(y− 1)κ(R)+|R|−|V |,

where κ(R) is the number of connected components of (V, R).

(1, 1): counting spanning trees;

(1, 1/p): network reliability;

(x, 1): counting weighted forests;

(x− 1)(y− 1) = 2:
ferromagnetic Ising model;

and many more …

Reliability
(1,1/p)

Counting weighted forests (x,1)

Ferromagnetic
Ising model

(x− 1)(y− 1) = 2

x

y

(1,1)

0

The Tutte polynomial

For a connected undirected graph G = (V, E),

ZTutte(G; x, y) :=
∑
R⊆E

(x− 1)κ(R)−1(y− 1)κ(R)+|R|−|V |,

where κ(R) is the number of connected components of (V, R).

(1, 1): counting spanning trees;

(1, 1/p): network reliability;

(x, 1): counting weighted forests;

(x− 1)(y− 1) = 2:
ferromagnetic Ising model;

and many more …

Reliability
(1,1/p)

Counting weighted forests (x,1)

Ferromagnetic
Ising model

(x− 1)(y− 1) = 2

x

y

(1,1)

0

The Tutte polynomial

For a connected undirected graph G = (V, E),

ZTutte(G; x, y) :=
∑
R⊆E

(x− 1)κ(R)−1(y− 1)κ(R)+|R|−|V |,

where κ(R) is the number of connected components of (V, R).

(1, 1): counting spanning trees;

(1, 1/p): network reliability;

(x, 1): counting weighted forests;

(x− 1)(y− 1) = 2:
ferromagnetic Ising model;

and many more …

Reliability
(1,1/p)

Counting weighted forests (x,1)

Ferromagnetic
Ising model

(x− 1)(y− 1) = 2

x

y

(1,1)

0

The Tutte polynomial

For a connected undirected graph G = (V, E),

ZTutte(G; x, y) :=
∑
R⊆E

(x− 1)κ(R)−1(y− 1)κ(R)+|R|−|V |,

where κ(R) is the number of connected components of (V, R).

(1, 1): counting spanning trees;

(1, 1/p): network reliability;

(x, 1): counting weighted forests;

(x− 1)(y− 1) = 2:
ferromagnetic Ising model;

and many more …

Reliability
(1,1/p)

Counting weighted forests (x,1)

Ferromagnetic
Ising model

(x− 1)(y− 1) = 2

x

y

(1,1)

0

The Tutte polynomial

For a connected undirected graph G = (V, E),

ZTutte(G; x, y) :=
∑
R⊆E

(x− 1)κ(R)−1(y− 1)κ(R)+|R|−|V |,

where κ(R) is the number of connected components of (V, R).

(1, 1): counting spanning trees;

(1, 1/p): network reliability;

(x, 1): counting weighted forests;

(x− 1)(y− 1) = 2:
ferromagnetic Ising model;

and many more …

Reliability
(1,1/p)

Counting weighted forests (x,1)

Ferromagnetic
Ising model

(x− 1)(y− 1) = 2

x

y

(1,1)

0

The Tutte polynomial

For a connected undirected graph G = (V, E),

ZTutte(G; x, y) :=
∑
R⊆E

(x− 1)κ(R)−1(y− 1)κ(R)+|R|−|V |,

where κ(R) is the number of connected components of (V, R).

(1, 1): counting spanning trees;

(1, 1/p): network reliability;

(x, 1): counting weighted forests;

(x− 1)(y− 1) = 2:
ferromagnetic Ising model;

and many more …

Reliability
(1,1/p)

Counting weighted forests (x,1)

Ferromagnetic
Ising model

(x− 1)(y− 1) = 2

x

y

(1,1)

0

Main result

Let m := |E| and n := |V |.

Theorem (G. and Jerrum, 2018)
There is a randomised algorithm approximatingZrel within multiplicative fac-
tor (1± ε), with expected running time O

(
ε−2(1− p)−3m2n3

)
.

Theorem (G. and Jerrum, 2018)
There is an exact sampler to draw (edge-weighted) connected subgraphs with
expected running time O((1− p)−1m2n).

Spoiler: sampling can be done inO(mn) time and approximate counting in
O(mn2 logn) time (G. and He, 2018+).

Main result

Let m := |E| and n := |V |.

Theorem (G. and Jerrum, 2018)
There is a randomised algorithm approximatingZrel within multiplicative fac-
tor (1± ε), with expected running time O

(
ε−2(1− p)−3m2n3

)
.

Theorem (G. and Jerrum, 2018)
There is an exact sampler to draw (edge-weighted) connected subgraphs with
expected running time O((1− p)−1m2n).

Spoiler: sampling can be done inO(mn) time and approximate counting in
O(mn2 logn) time (G. and He, 2018+).

Natural attempts
(and why they do not succeed)

Naive Monte Carlo

A natural unbiased estimator Z̃ of Zrel:

1. Draw k independent subgraphs (Ri)i∈[k] of G(p).

2. Let

Z̃ :=
1

k

∑
i∈[k]

1conn(Ri),

where 1conn(R) is the indicator variable of (V, R) being connected.

It is easy to see that E Z̃ = Zrel.

However, if Zrel is exponentially small (e.g. Zrel(Pn, p) = (1 − p)n−1),
then we will almost never see a connected Ri.

In that case, the variance of 1conn(R) is exponentially large, and k has to
be exponentially large to yield a good approximation.

Naive Monte Carlo

A natural unbiased estimator Z̃ of Zrel:

1. Draw k independent subgraphs (Ri)i∈[k] of G(p).

2. Let

Z̃ :=
1

k

∑
i∈[k]

1conn(Ri),

where 1conn(R) is the indicator variable of (V, R) being connected.

It is easy to see that E Z̃ = Zrel.

However, if Zrel is exponentially small (e.g. Zrel(Pn, p) = (1 − p)n−1),
then we will almost never see a connected Ri.

In that case, the variance of 1conn(R) is exponentially large, and k has to
be exponentially large to yield a good approximation.

Naive Monte Carlo

A natural unbiased estimator Z̃ of Zrel:

1. Draw k independent subgraphs (Ri)i∈[k] of G(p).

2. Let

Z̃ :=
1

k

∑
i∈[k]

1conn(Ri),

where 1conn(R) is the indicator variable of (V, R) being connected.

It is easy to see that E Z̃ = Zrel.

However, if Zrel is exponentially small (e.g. Zrel(Pn, p) = (1 − p)n−1),
then we will almost never see a connected Ri.

In that case, the variance of 1conn(R) is exponentially large, and k has to
be exponentially large to yield a good approximation.

Unreliability

Nonetheless, naive Monte Carlo (NMC) is the basic building block of the
FPRAS by Karger (1999) for Unreliability (namely 1− Zrel).

Karger’s algorithm has been subsequently refined by Harris and Srinivasan
(2014), Karger (2016, 2017).

Karger (2017) is a recursive algorithm using NMC running in O(n2.87).
Nonetheless, these ideas does not seem to help with approximating Zrel.

Unreliability

Nonetheless, naive Monte Carlo (NMC) is the basic building block of the
FPRAS by Karger (1999) for Unreliability (namely 1− Zrel).

Karger’s algorithm has been subsequently refined by Harris and Srinivasan
(2014), Karger (2016, 2017).

Karger (2017) is a recursive algorithm using NMC running in O(n2.87).
Nonetheless, these ideas does not seem to help with approximating Zrel.

Unreliability

Nonetheless, naive Monte Carlo (NMC) is the basic building block of the
FPRAS by Karger (1999) for Unreliability (namely 1− Zrel).

Karger’s algorithm has been subsequently refined by Harris and Srinivasan
(2014), Karger (2016, 2017).

Karger (2017) is a recursive algorithm using NMC running in O(n2.87).
Nonetheless, these ideas does not seem to help with approximating Zrel.

Reducing counting to sampling

Let πG(·) be the distribution of G(p), conditioned on being connected.

We can approximate Zrel using an oracle drawing from πG.

G0 = G

⇒

G1

⇒

G2

⇒

G3

Reducing counting to sampling

Let πG(·) be the distribution of G(p), conditioned on being connected.

We can approximate Zrel using an oracle drawing from πG.

G0 = G

⇒

G1

⇒

G2

⇒

G3

Reducing counting to sampling

Let πG(·) be the distribution of G(p), conditioned on being connected.

We can approximate Zrel using an oracle drawing from πG.

G0 = G

⇒

G1

⇒

G2

⇒

G3

Reducing counting to sampling

Let πG(·) be the distribution of G(p), conditioned on being connected.

We can approximate Zrel using an oracle drawing from πG.

G0 = G

⇒

G1

⇒

G2

⇒

G3

Reducing counting to sampling

Let πG(·) be the distribution of G(p), conditioned on being connected.

We can approximate Zrel using an oracle drawing from πG.

G0 = G

⇒

G1

⇒

G2

⇒

G3

Reducing counting to sampling

Let πG(·) be the distribution of G(p), conditioned on being connected.

We can approximate Zrel using an oracle drawing from πG.

G0 = G

⇒

G1

⇒

G2

⇒

G3

Rewrite

Zrel(G) =
Zrel(G0)

Zrel(G1)
· Zrel(G1)

Zrel(G2)
· Zrel(G2)

Zrel(G3)
· Zrel(G3).

Reducing counting to sampling

Let πG(·) be the distribution of G(p), conditioned on being connected.

We can approximate Zrel using an oracle drawing from πG.

G0 = G

⇒

G1

⇒

G2

⇒

G3

To estimate Zrel(Gi)
Zrel(Gi+1)

, draw C ∼ πGi+1
(·) and let

C ′ :=

{
C with prob. p;
C ∪ {e} otherwise,

and X := 1conn, Gi
(C ′).

Then EX = Zrel(Gi)
Zrel(Gi+1)

and its variance is bounded by a constant.

Markov chain Monte Carlo

Markov chains is the “off the shelf” approach to sampling from complicated
distributions.

There is a natural Markov chain converging to πG(·):

1. Let C0 = E.

2. Given Ct, randomly pick an edge e ∈ E.

If Ct \ {e} is disconnected then Ct+1 = Ct. Otherwise,

Ct+1 =

{
Ct ∪ {e} with prob. 1− p;
Ct \ {e} with prob. p.

Unfortunately, no polynomial upper bound (nor exponential lower bound)
is known about its mixing time (rate of convergence).

A surprising equivalence
(and an alternative way to sampling)

Reachability

We say a directed graph D with root r is root-connected if all vertices can
reach r.

r

Root-connected

r

Root-connected

r

Not root-connected!

Reachability: in a directed graph D = (V,A) with root r, what’s the prob-
ability that D(p) is root-connected?

Zreach(D,p) :=
∑

R⊆A:(V,R) is root-connected

p|A\R|(1− p)|R|.

A surprising equivalence

Ball (1980) showed that for any undirected graph G = (V, E),

Zrel(G,p) = Zreach(
−→
G, p),

where
−→
G is the directed graph obtained by replacing every e ∈ E with a

pair of anti-parallel arcs. (Called bi-directed).

G
−→
Gr

Thus we just need to approximate reachability in bi-directed graphs.

A coupling proof

We have an alternative coupling proof of Ball’s equivalence:

There is a coupling C under which

G(p) is connected ⇔
−→
G (p) is root-connected.

Explore G and
−→
G like a BFS, starting from r. Reveal

−→
G (p) and G(p) as the

process proceeds. Couple the arc going towards the current vertex in
−→
G (p)

with the corresponding edge in G(p).

G

r

u

−→
G

r

u

When both exploration processes end, the sets of vertices that can reach r

are exactly the same.

A coupling proof

We have an alternative coupling proof of Ball’s equivalence:

There is a coupling C under which

G(p) is connected ⇔
−→
G (p) is root-connected.

Explore G and
−→
G like a BFS, starting from r. Reveal

−→
G (p) and G(p) as the

process proceeds. Couple the arc going towards the current vertex in
−→
G (p)

with the corresponding edge in G(p).

G

r

u

−→
G

r

u

When both exploration processes end, the sets of vertices that can reach r

are exactly the same.

A coupling proof

We have an alternative coupling proof of Ball’s equivalence:

There is a coupling C under which

G(p) is connected ⇔
−→
G (p) is root-connected.

Explore G and
−→
G like a BFS, starting from r. Reveal

−→
G (p) and G(p) as the

process proceeds. Couple the arc going towards the current vertex in
−→
G (p)

with the corresponding edge in G(p).

G

r

u

−→
G

r

u

When both exploration processes end, the sets of vertices that can reach r

are exactly the same.

Sample in at least two ways

Goal: sample uniform (or edge-weighted) root-connected subgraphs.

It is straightforward to applyMarkov chains, but again analysing themixing
time does not seem easy.

Sample in at least two ways

Goal: sample uniform (or edge-weighted) root-connected subgraphs.

It is straightforward to applyMarkov chains, but again analysing themixing
time does not seem easy.

Sample in at least two ways

Goal: sample uniform (or edge-weighted) root-connected subgraphs.

It is straightforward to applyMarkov chains, but again analysing themixing
time does not seem easy.

However, another hope is to do (exact) sampling in expected polynomial-
time, based on rejections.

Cluster-popping

Goal: sample uniform (or edge-weighted) root-connected subgraphs.

Gorodezky and Pak (2014) proposed the “cluster-popping” algorithm:
(Cluster: a subset of vertices not including r and with no arc going out.)

1. Let R be a subset of arcs by choosing each arc e with probability 1− p

independently.

2. While there is at least one cluster in (V, R):

• Let C1, . . . , Ck be all minimal clusters in (V, R), and C =
∪k

i=1 Ci.
• Re-randomize all arcs whose heads are in C to get a new R.

Gorodezky and Pak (2014) showed that this algorithm draws from the correct distri-
bution, and they also conjectured that cluster-popping runs in expected polynomial
time in bi-directed graphs.

Cluster-popping

Goal: sample uniform (or edge-weighted) root-connected subgraphs.

Gorodezky and Pak (2014) proposed the “cluster-popping” algorithm:
(Cluster: a subset of vertices not including r and with no arc going out.)

1. Let R be a subset of arcs by choosing each arc e with probability 1− p

independently.

2. While there is at least one cluster in (V, R):

• Let C1, . . . , Ck be all minimal clusters in (V, R), and C =
∪k

i=1 Ci.
• Re-randomize all arcs whose heads are in C to get a new R.

Gorodezky and Pak (2014) showed that this algorithm draws from the correct distri-
bution, and they also conjectured that cluster-popping runs in expected polynomial
time in bi-directed graphs.

Cluster-popping

Goal: sample uniform (or edge-weighted) root-connected subgraphs.

Gorodezky and Pak (2014) proposed the “cluster-popping” algorithm:
(Cluster: a subset of vertices not including r and with no arc going out.)

1. Let R be a subset of arcs by choosing each arc e with probability 1− p

independently.

2. While there is at least one cluster in (V, R):

• Let C1, . . . , Ck be all minimal clusters in (V, R), and C =
∪k

i=1 Ci.
• Re-randomize all arcs whose heads are in C to get a new R.

Gorodezky and Pak (2014) showed that this algorithm draws from the correct distri-
bution, and they also conjectured that cluster-popping runs in expected polynomial
time in bi-directed graphs.

Cluster-popping

Goal: sample uniform (or edge-weighted) root-connected subgraphs.

Gorodezky and Pak (2014) proposed the “cluster-popping” algorithm:
(Cluster: a subset of vertices not including r and with no arc going out.)

1. Let R be a subset of arcs by choosing each arc e with probability 1− p

independently.

2. While there is at least one cluster in (V, R):

• Let C1, . . . , Ck be all minimal clusters in (V, R), and C =
∪k

i=1 Ci.
• Re-randomize all arcs whose heads are in C to get a new R.

Gorodezky and Pak (2014) showed that this algorithm draws from the correct distri-
bution, and they also conjectured that cluster-popping runs in expected polynomial
time in bi-directed graphs.

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

An example run

Cluster-popping: repeatedly resample minimal clusters until none.
(Cluster: a subset of vertices not including r and with no arc going out.)

r

Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)

Partial rejection sampling
(A more general perspective for cluster-popping)

Partial rejection sampling

Cluster-popping is a special case of partial rejection sampling framework
(G., Jerrum, and Liu, 2017).

The goal is to sample from a product distribution, conditioned on a number
of “bad” events not happening.

Rejection sampling throws away all variables.

Instead, we want to recycle some randomness while resampling the “bad”
events (and hopefully not too much more).

Partial rejection sampling

Cluster-popping under partial rejection sampling:

Arcs are variables. Minimal clusters are “bad” events.

r

There can be exponentially many bad events.

Extremal instances

An instance is called extremal (in the sense of Shearer (1985) regarding non-

uniform Lovász Local Lemma):
if any two “bad” events Ai and Aj are either independent or disjoint.

r

If the instance is extremal, then eliminating precisely the “bad” events in
each iteration yields the correct distribution once the process halts (GJL’17)!

Extremal instances

An instance is called extremal (in the sense of Shearer (1985) regarding non-

uniform Lovász Local Lemma):
if any two “bad” events Ai and Aj are either independent or disjoint.

r

If the instance is extremal, then eliminating precisely the “bad” events in
each iteration yields the correct distribution once the process halts (GJL’17)!

Extremal instances

An instance is called extremal (in the sense of Shearer (1985) regarding non-

uniform Lovász Local Lemma):
if any two “bad” events Ai and Aj are either independent or disjoint.

r

If the instance is extremal, then eliminating precisely the “bad” events in
each iteration yields the correct distribution once the process halts (GJL’17)!

Extremal instances

An instance is called extremal (in the sense of Shearer (1985) regarding non-

uniform Lovász Local Lemma):
if any two “bad” events Ai and Aj are either independent or disjoint.

r

If the instance is extremal, then eliminating precisely the “bad” events in
each iteration yields the correct distribution once the process halts (GJL’17)!

Extremal instances

An instance is called extremal (in the sense of Shearer (1985) regarding non-

uniform Lovász Local Lemma):
if any two “bad” events Ai and Aj are either independent or disjoint.

r

If the instance is extremal, then eliminating precisely the “bad” events in
each iteration yields the correct distribution once the process halts (GJL’17)!

Resampling table

Associate an infinite stackXi,0, Xi,1, . . . to each random variableXi. When
we need to resample, draw the next value in the stack.

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

Resampling table

Associate an infinite stackXi,0, Xi,1, . . . to each random variableXi. When
we need to resample, draw the next value in the stack.

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

Resampling table

Associate an infinite stackXi,0, Xi,1, . . . to each random variableXi. When
we need to resample, draw the next value in the stack.

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

Resampling table

Associate an infinite stackXi,0, Xi,1, . . . to each random variableXi. When
we need to resample, draw the next value in the stack.

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

Resampling table

Associate an infinite stackXi,0, Xi,1, . . . to each random variableXi. When
we need to resample, draw the next value in the stack.

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

Resampling table

Associate an infinite stackXi,0, Xi,1, . . . to each random variableXi. When
we need to resample, draw the next value in the stack.

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

Change the future, not the history

For extremal instances, replacing a perfect assignment with another one will
not change the resampling history!

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

A1

A2

X ′
4,1

X ′
3,2

X ′
2,1

X ′
1,0

For any two outputsσ and τ, there is a bijection between trajectories leading
to σ and τ.

Change the future, not the history

For extremal instances, replacing a perfect assignment with another one will
not change the resampling history!

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

A1

A2

X ′
4,1

X ′
3,2

X ′
2,1

X ′
1,0

For any two outputsσ and τ, there is a bijection between trajectories leading
to σ and τ.

Change the future, not the history

For extremal instances, replacing a perfect assignment with another one will
not change the resampling history!

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

A1

A2

X ′
4,1

X ′
3,2

X ′
2,1

X ′
1,0

For any two outputsσ and τ, there is a bijection between trajectories leading
to σ and τ.

Change the future, not the history

For extremal instances, replacing a perfect assignment with another one will
not change the resampling history!

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

A1

A2

X ′
4,1

X ′
3,2

X ′
2,1

X ′
1,0

For any two outputsσ and τ, there is a bijection between trajectories leading
to σ and τ.

Partial Rejection Sampling vs Markov chains

Markov chain is a random walk in the solution space.
(The solution space has to be connected,

and the mixing time is not easy to analyze.)

Partial Rejection Sampling vs Markov chains

PRS is a local search on the whole space.

σ

Partial Rejection Sampling vs Markov chains

PRS is a local search on the whole space.
(Ergodicity is not an issue.)

σ

Partial Rejection Sampling vs Markov chains

PRS is a local search on the whole space.
(Correctness guaranteed by the bijection.

Exact formula for its running time on extremal instances.)

σ

τ

Run-time analysis

Theorem (G., Jerrum, and Liu, 2017)
Under Shearer’s condition, for extremal instances,

E T =
total weight of one-flaw assignments
total weight of perfect assignments

.

(Shearer (1985) has shown a sufficient condition to guarantee the existence of one

perfect assignment, which is optimal for Lovász Local Lemma.)

The upper bound is shown by Kolipaka and Szegedy (2011).

Back to cluster-popping

Cluster-popping: repeatedly resample minimal clusters.

Let Ωk be the set of subgraphs with k minimal clusters, and

Zk :=
∑

S∈Ωk

p|E\S|(1− p)|S|. Then, E T =
Z1

Z0

.

Lemma (G. and Jerrum, 2018)

For bi-directed graphs, Z1 ⩽ p
1−p

·mnZ0.

We show this by designing an injective mapping Ω1 → Ω0 × V × E.

Injective mapping

Given R ∈ Ω1, we map it to R0 ∈ Ω0 by “repairing” the unique minimal
cluster.

r

u ′u

v

Conversely, given R0 ∈ Ω0, (u, u ′) and v, we can recover R ∈ Ω1.

Injective mapping

Given R ∈ Ω1, we map it to R0 ∈ Ω0 by “repairing” the unique minimal
cluster.

r

u ′u

v

Conversely, given R0 ∈ Ω0, (u, u ′) and v, we can recover R ∈ Ω1.

Injective mapping

Given R ∈ Ω1, we map it to R0 ∈ Ω0 by “repairing” the unique minimal
cluster.

r

u ′u

v

Conversely, given R0 ∈ Ω0, (u, u ′) and v, we can recover R ∈ Ω1.

Injective mapping

Given R ∈ Ω1, we map it to R0 ∈ Ω0 by “repairing” the unique minimal
cluster.

r

u ′u

v

Conversely, given R0 ∈ Ω0, (u, u ′) and v, we can recover R ∈ Ω1.

Injective mapping

Given R ∈ Ω1, we map it to R0 ∈ Ω0 by “repairing” the unique minimal
cluster.

r

u ′u

v

Conversely, given R0 ∈ Ω0, (u, u ′) and v, we can recover R ∈ Ω1.

Injective mapping

Given R ∈ Ω1, we map it to R0 ∈ Ω0 by “repairing” the unique minimal
cluster.

r

u ′u

v

Conversely, given R0 ∈ Ω0, (u, u ′) and v, we can recover R ∈ Ω1.

Injective mapping

Given R ∈ Ω1, we map it to R0 ∈ Ω0 by “repairing” the unique minimal
cluster.

r

u ′u

v

Conversely, given R0 ∈ Ω0, (u, u ′) and v, we can recover R ∈ Ω1.

Recap for reliability

Approximate Zrel(G) via a sequence of contractions G0, . . . , Gn−1, and
estimate each Zrel(Gi)

Zrel(Gi+1)
using the following sampling oracle:

1. run cluster-popping to sample a root-connected subgraph in
−→
G ;

2. use the coupling to get a random connected subgraph.

To bound the running time of cluster-popping, we use a result of (GJL’17)
and design an injective mapping.

Counting connected subgraphs of fixed size

Let St be the set of connected subgraph of size t where n− 1 ⩽ t ⩽ m and
Nt = |St|. Then a result of Huh and Katz (2012) implies that the sequence
(Nt)t is log-concave, namely,

Nt−1Nt+1 ⩽ N2
t .

(The complements of connected subgraphs are independent sets of the co-graphic

matroid associated with G, and co-graphic matroids are representable. So HK’12

applies. Similar log-concavity in general matroids is resolved by Adiprasito, Huh,

and Katz (2015).)

Given the sampler for connected subgraphs and log-concavity, we can set
p = Nt

Nt−1+Nt
so that subgraphs in St show up frequently enough. There

is a standard approach (Jerrum and Sinclair, 1989) to estimate each individ-
ual Nt.

Other examples of PRS

Extremal instances:

• Uniform spanning trees — cycle-popping (Wilson, 1996)

• Uniform sink-free orientations — sink-popping
(Bubley and Dyer, 1997) (Cohn, Pemantle, and Propp, 2002)

• Uniform bases of bicircular matroids (G. and Jerrum, 2018+)

General instances (G., Jerrum, and Liu, 2017):

• Weighted independent set (Hardcore gas model)

• Hard disks / hard spheres model (G. and Jerrum, 2018)

• Solutions to k-CNF formulas with bounded variable degrees

Results for general instances are far from optimal.

Can we do this for colourings?

Concluding remarks

Approximating the Tutte polynomial

q = (x− 1)(y− 1)

Poly-time

FPRAS

NP-hard to approximate
(#P-hard mostly)

#PM-equivalent

#BIS-hard

Open: white area

Ref:
Jaeger, Vertigan, and Welsh (1990);
Jerrum and Sinclair (1993);
Goldberg and Jerrum (2008, 2012, 2014)

This work
↓

(for planar graphs)

q = 2

q = 1

q = 2

q = 1

x

y

(1,1)

−1

0

−1

Approximating the Tutte polynomial

q = (x− 1)(y− 1)

Poly-time

FPRAS

NP-hard to approximate
(#P-hard mostly)

#PM-equivalent

#BIS-hard

Open: white area

Ref:
Jaeger, Vertigan, and Welsh (1990);
Jerrum and Sinclair (1993);
Goldberg and Jerrum (2008, 2012, 2014)

This work
↓

(for planar graphs)

q = 2

q = 1

q = 2

q = 1

x

y

(1,1)

−1

0

−1

Approximating the Tutte polynomial

q = (x− 1)(y− 1)

Poly-time

FPRAS

NP-hard to approximate
(#P-hard mostly)

#PM-equivalent

#BIS-hard

Open: white area

Ref:
Jaeger, Vertigan, and Welsh (1990);
Jerrum and Sinclair (1993);
Goldberg and Jerrum (2008, 2012, 2014)

This work
↓

(for planar graphs)

q = 2

q = 1

q = 2

q = 1

x

y

(1,1)

−1

0

−1

Approximating the Tutte polynomial

q = (x− 1)(y− 1)

Poly-time

FPRAS

NP-hard to approximate
(#P-hard mostly)

#PM-equivalent

#BIS-hard

Open: white area

Ref:
Jaeger, Vertigan, and Welsh (1990);
Jerrum and Sinclair (1993);
Goldberg and Jerrum (2008, 2012, 2014)

This work
↓

(for planar graphs)

q = 2

q = 1

q = 2

q = 1

x

y

(1,1)

−1

0

−1

Approximating the Tutte polynomial

q = (x− 1)(y− 1)

Poly-time

FPRAS

NP-hard to approximate
(#P-hard mostly)

#PM-equivalent

#BIS-hard

Open: white area

Ref:
Jaeger, Vertigan, and Welsh (1990);
Jerrum and Sinclair (1993);
Goldberg and Jerrum (2008, 2012, 2014)

This work
↓

(for planar graphs)

q = 2

q = 1

q = 2

q = 1

x

y

(1,1)

−1

0

−1

A common paradigm

Both our result and the previous positive result on the Tutte plane (Jerrum
and Sinclair, 1993) follow the same pattern:

1. Transform the problem into an equivalent one:

• Ferromagnetic Ising model → even subgraphs (JS’93);
• Reliability → bi-directed reachability.

2. Exploit some nice properties of the new solution space.

Are there other equivalences we have not discovered yet?

Open problems

• Is the Markov chain for connected subgraphs rapidly mixing?

• Approximating s-t reliability, and other variants?

(The natural Markov chain is exponentially slow for s-t version.)

• Approximating ZTutte(G; x, 1) for x > 1 (edge-weighted forests)?

Thank you!

arXiv:1611.01647
(Partial rejection sampling)

arXiv:1709.08561
(Network reliability)

arXiv:1807.01680
(Tight bounds)

arXiv:1611.01647
arXiv:1709.08561
arXiv:1807.01680

	Network reliability
	Natural attempts [-0.3cm] (and why they do not succeed)
	A surprising equivalence [-0.3cm] (and an alternative way to sampling)
	Partial rejection sampling [-0.3cm] (A more general perspective for cluster-popping)
	Concluding remarks

