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Cooper, Dyer & Greenhill (2007): The switch chain is rapidly
mixing for regular graphs

Earlier work:

Jerrum & Sinclair (1990): A different chain, rapidly mixing
for P-stable (irregular) degree sequences.

Kannan, Tetali & Vempala (1999): switch chain for bipartite
graphs, irregular degrees.
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Asymptotics are as n — oo.

Assumptions:

e Algorithms for sampling graphs with given degrees are
useful.

e Performance guarantees are desirable.
e Any polynomial bound on the running time is good.
Rapidly mixing Markov chains give approximately uniform

sampling in deterministic polynomial time, with a
user-specifed tolerance on the distance from uniform.
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The switch chain for sampling graphs:

TR X

After many steps, the current graph is very close to a
random regular graph (4-regular, in this case).

Cooper, Dyer, Greenhill (2007):

d?3n8(dnlog(dn) + log(s~1)) steps suffice to get within ¢ of
uniform in total variation distance. (Any d = d(n).)

This bound is probably way too high.
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(14 o0(1)) V2et/* (X\ (1— >\)1—/\) (2) (n; 1)”

where A =d/(n—1).

McKay & Wormald (1990, 1991):

e sparse [d = o(nl/2)];

e quite dense [min{d,n—d—1} > cn/(logn) for some c > 2/3];

Liebenau & Wormald (2017): filled the gap.
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Sparse enumeration: switching method (McKay, 1981)
Basic idea: repeated double counting.

A B

In the “big bipartite graph’, if
A Ns(1 4+ O(ey)) = # edges = |B| Ng(1 4+ O(ep))
with e 4 + e = 0o(1) then
14l _ Np

Bl Ny (L4+O(ea+ep)).
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Say we know |S| and we want to know |Sp| where

N
S = Shadq U U Sj
=0

and [Spaql/[S] = o(1) (all unions disjoint). Then

N N 7—1
S S Siy
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Configuration model (Bollobas, 1980)

Start with n cells, each containing d points. Take a uniformly
random perfect matching of dn points into dn/2 pairs.

Shrink each cell to a vertex to get a d-regular multigraph.
If the result is not simple, just try again.
Expected polynomial time sampling if d = O(+/logn).
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McKay & Wormald (1991), sparse d-regular graphs

Work with the configuration model (Bollobas, 1980)

S = all configurations,
50,00 = simple configurations,
Sept = set of configurations with ¢ loops, b double pairs,

t triple pairs and no pairs with multiplicity > 4.

Here Sp,q = set with “too many” loops, doubles or triples,
or any pair of multiplicity > 4.
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From an element of Sy

e First, apply a switching to remove loops (one at a time);
e [ hen, apply a switching to remove triple pairs;

e Finally, apply a switching to remove double pairs.

= asymptotic enumeration formula

Also = exactly uniform sampling algorithm!
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McKay & Wormald (1991) improved on an earlier formula
of McKay (1985) by using more complicated switchings.
NEW:

This inspired my adaptation of Cooper, Dyer, Greenhill (2007)
to irregular degree sequences which are not too dense (SODA
2015).
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Markov chains, recent directions:

e Curveball algorithm: introduced by Verhelst (2008).
Carstens & Kleer (2017):
Spectral gap comparision with switch chain.

e Amanatidis & Kleer (2018), rapid mixing of switch chain
for strong stable degree sequences. Builds on chain of
Jerrum & Sinclair (1990).

e Erdds, Miklos & Torozckai (2016), new families of rapidly
mixing switch degree sequences from old, using
Tyshkevich deompositions.
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Other kinds of sampling algorithms?
Yes! Exactly uniform in expected polynomial time.

e Configuration model, Bollobas (1979).
Expected polynomial time if dmax = O(+/logn).

e McKay & Wormald (1990).
Expected runtime O(d#,,yn?) if dmax = O(m1/*4).

If d-regular then this condition is d = O(n1/3) and the
expected runtime can be improved to O(d3n).
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START

l St St—1 So S1 So
REJECT "/J "’J *//*/J*/J

Generate uniformly random configuration. Reject if “bad".

Repeatedly apply switchings with rejection.
Rejection probability chosen so that uniformity is preserved
with each switching.
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First idea: split rejection probability into two parts:

REJECT

e f-rejection, depending only on P, and
e b-rejection, depending only on P’.

Then they provide strategies to reduce each of these.
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Let S; be the set of all configurations with precisely + double
pairs, no loops and no pairs with multiplicity > 2.

Type I, Class A switching:
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Introduce Type I, Class B switchings which do not change
the number of double pairs.

PeS; P e S,

This reduces the probability of f-rejection, BUT also causes
a new problem:

The number of () - */ varies a lot among P’ € S;,
leading to high probability of b-rejection.
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Introduce Type II, Class B switchings which increase the
number of of double pairs by one.

Pecs; Pl e S;yq

Why? Because the number of
@ t. .j :.) _I_ @ (. C) @

doesn’t vary too much over a given Sj = |ess b-rejection.
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If the proposed switching P — P’ has type 7 and class «
then

e f-rejection probability depends only on (P, 7),

e b-rejection probability depends only on (P, o).
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Must also define pr(i) > 0 such that > _p-(i) < 1 for all
1 < 11, satisfying certain conditions.

Algorithm: Given P € §;,

e If : = O then output the graph corresponding to P;

e Choose type 7 with probability p-(i) and u.a.r. choose a
type 7 switching P — P’. This decides the class «.

e Perform f-rejection and b-rejection: if neither occurs then
move to P’ and repeat.
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Gao & Wormald, SODA 2018:
Extension to power-law degree sequences with exponent
slightly below 3, with expected runtime O(n2-197) with high

probability.

Much more complicated: several phases; many types and
classes of switching.

Also a new kind of rejection, called pre-b-rejection.
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Ended up with switching types I, IIa4, IIb+, IIct+, III and
switching classes A, B1+, B2+, C+.

I,LBl1+
I+, C+

Ilct+,B1+

LB2+ IIb+,B1+

LA Ta+,B1+
> <
1C+ v
S S; Si—1 Si—2

Si4o i1
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