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Cooper, Dyer & Greenhill (2007): The switch chain is rapidly

mixing for regular graphs

Earlier work:

Jerrum & Sinclair (1990): A different chain, rapidly mixing

for P-stable (irregular) degree sequences.

Kannan, Tetali & Vempala (1999): switch chain for bipartite

graphs, irregular degrees.
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Asymptotics are as n → ∞.

Assumptions:

• Algorithms for sampling graphs with given degrees are

useful.

• Performance guarantees are desirable.

• Any polynomial bound on the running time is good.

Rapidly mixing Markov chains give approximately uniform

sampling in deterministic polynomial time, with a

user-specifed tolerance on the distance from uniform.
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⇒

After many steps, the current graph is very close to a

random regular graph (4-regular, in this case).

Cooper, Dyer, Greenhill (2007):

d23n8(dn log(dn)+ log(ε−1)) steps suffice to get within ε of

uniform in total variation distance. (Any d = d(n).)

This bound is probably way too high.
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Number of d-regular graphs on [n]:

(1 + o(1))
√
2e1/4

(

λλ (1− λ)1−λ
)(n2)

(n− 1

d

)n

where λ = d/(n− 1).

McKay & Wormald (1990, 1991):

• sparse [d = o(n1/2)];

• quite dense [min{d, n−d−1} > cn/(logn) for some c > 2/3];

Liebenau & Wormald (2017): filled the gap.
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Sparse enumeration: switching method (McKay, 1981)
Basic idea: repeated double counting.

A B

In the “big bipartite graph”, if

|A|NA(1 +O(εA)) = # edges = |B|NB(1 +O(εB))

with εA + εB = o(1) then

|A|
|B| =

NB

NA
(1 +O(εA + εB)).
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· · ·

S2 S1 S0

Say we know |S| and we want to know |S0| where

S = Sbad ∪
N
⋃

j=0

Sj

and |Sbad|/|S| = o(1) (all unions disjoint). Then

|S|
|S0|

(1− o(1)) =
N
∑

j=1

|Sj|
|S0|

=
N
∑

j=1

j−1
∏

i=0

|Si+1|
|Si|

.
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Start with n cells, each containing d points. Take a uniformly

random perfect matching of dn points into dn/2 pairs.

Shrink each cell to a vertex to get a d-regular multigraph.

If the result is not simple, just try again.

Expected polynomial time sampling if d = O(
√
logn).
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McKay & Wormald (1991), sparse d-regular graphs

Work with the configuration model (Bollobás, 1980)

S = all configurations,
S0,0,0 = simple configurations,

Sℓ,b,t = set of configurations with ℓ loops, b double pairs,

t triple pairs and no pairs with multiplicity ≥ 4.

Here Sbad = set with “too many” loops, doubles or triples,

or any pair of multiplicity ≥ 4.
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From an element of Sℓ,b,t:

• First, apply a switching to remove loops (one at a time);

• Then, apply a switching to remove triple pairs;

• Finally, apply a switching to remove double pairs.

⇒ asymptotic enumeration formula

Also ⇒ exactly uniform sampling algorithm!
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McKay & Wormald (1991) improved on an earlier formula

of McKay (1985) by using more complicated switchings.

NEW:

This inspired my adaptation of Cooper, Dyer, Greenhill (2007)

to irregular degree sequences which are not too dense (SODA

2015).
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Markov chains, recent directions:

• Curveball algorithm: introduced by Verhelst (2008).

Carstens & Kleer (2017):

Spectral gap comparision with switch chain.

• Amanatidis & Kleer (2018), rapid mixing of switch chain

for strong stable degree sequences. Builds on chain of

Jerrum & Sinclair (1990).

• Erdős, Miklós & Torozckai (2016), new families of rapidly

mixing switch degree sequences from old, using

Tyshkevich deompositions.
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Other kinds of sampling algorithms?

Yes! Exactly uniform in expected polynomial time.

• Configuration model, Bollobás (1979).

Expected polynomial time if dmax = O(
√
logn).

• McKay & Wormald (1990).

Expected runtime O(d4maxn
2) if dmax = O(m1/4).

If d-regular then this condition is d = O(n1/3) and the

expected runtime can be improved to O(d3n).
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First idea: split rejection probability into two parts:

P P ′

REJECT

• f-rejection, depending only on P , and

• b-rejection, depending only on P ′.

Then they provide strategies to reduce each of these.
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Introduce Type I, Class B switchings which do not change
the number of double pairs.

P ∈ Si P ′ ∈ Si

This reduces the probability of f-rejection, BUT also causes
a new problem:

The number of varies a lot among P ′ ∈ Si,
leading to high probability of b-rejection.
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Introduce Type II, Class B switchings which increase the

number of of double pairs by one.

P ∈ Si P ′ ∈ Si+1

Why? Because the number of

+

doesn’t vary too much over a given Sj ⇒ less b-rejection.
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I,A II,B

I,B

Si+1 Si Si−1

If the proposed switching P 7→ P ′ has type τ and class α

then

• f-rejection probability depends only on (P , τ),

• b-rejection probability depends only on (P ′, α).
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Must also define ρτ(i) ≥ 0 such that
∑

τ ρτ(i) ≤ 1 for all

i ≤ i1, satisfying certain conditions.

Algorithm: Given P ∈ Si,

• If i = 0 then output the graph corresponding to P ;

• Choose type τ with probability ρτ(i) and u.a.r. choose a

type τ switching P 7→ P ′. This decides the class α.

• Perform f-rejection and b-rejection: if neither occurs then

move to P ′ and repeat.
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Gao & Wormald, SODA 2018:

Extension to power-law degree sequences with exponent

slightly below 3, with expected runtime O(n2.107) with high

probability.

Much more complicated: several phases; many types and

classes of switching.

Also a new kind of rejection, called pre-b-rejection.
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Ended up with switching types I, IIa±, IIb±, IIc±, III and

switching classes A, B1±, B2±, C±.

I,A

I,C±

IIa±,B1±

IIb±,B1±I,B2±

IIc±,B1±

I,B1±
III±,C±

Si+2 Si+1 Si Si−1 Si−2 Si−3


