Sampling graphs in at least two ways

Catherine Greenhill

School of Mathematics and Statistics
UNSW Sydney

Martin Dyer Day, 16 July 2018

(approximate) (approximate)
sampling counting

(approximate)
counting

(approximate)
sampling

-

(approximate) — (approximate)
sampling o counting

Markov chains:

(approximate) — (approximate)
sampling o counting

Markov chains: path coupling,

(approximate) — (approximate)
sampling o counting

Markov chains: path coupling, canonical paths

(approximate) — (approximate)
sampling (— counting

Markov chains: path coupling, canonical paths

Cooper, Dyer & Greenhill (2007): The switch chain is rapidly
mixing for regular graphs

(approximate) — (approximate)
sampling o counting

Markov chains: path coupling, canonical paths

Cooper, Dyer & Greenhill (2007): The switch chain is rapidly
mixing for regular graphs

Earlier work:

Jerrum & Sinclair (1990): A different chain, rapidly mixing
for P-stable (irregular) degree sequences.

Kannan, Tetali & Vempala (1999): switch chain for bipartite
graphs, irregular degrees.

Asymptotics are as n — oo.

Assumptions:

Asymptotics are as n — oo.

Assumptions:

e Algorithms for sampling graphs with given degrees are
useful.

Asymptotics are as n — oo.

Assumptions:

e Algorithms for sampling graphs with given degrees are
useful.

e Performance guarantees are desirable.

Asymptotics are as n — oo.

Assumptions:

e Algorithms for sampling graphs with given degrees are
useful.

e Performance guarantees are desirable.

e Any polynomial bound on the running time is good.

Asymptotics are as n — oo.

Assumptions:

e Algorithms for sampling graphs with given degrees are
useful.

e Performance guarantees are desirable.
e Any polynomial bound on the running time is good.
Rapidly mixing Markov chains give approximately uniform

sampling in deterministic polynomial time, with a
user-specifed tolerance on the distance from uniform.

The switch chain for sampling graphs:

The switch chain for sampling graphs:

The switch chain for sampling graphs:

SRR

The switch chain for sampling graphs:

TR X

After many steps, the current graph is very close to a
random regular graph (4-regular, in this case).

The switch chain for sampling graphs:

TR X

After many steps, the current graph is very close to a
random regular graph (4-regular, in this case).

Cooper, Dyer, Greenhill (2007):

d?3n8(dnlog(dn) + log(s~1)) steps suffice to get within ¢ of
uniform in total variation distance. (Any d = d(n).)

The switch chain for sampling graphs:

TR X

After many steps, the current graph is very close to a
random regular graph (4-regular, in this case).

Cooper, Dyer, Greenhill (2007):

d?3n8(dnlog(dn) + log(s~1)) steps suffice to get within ¢ of
uniform in total variation distance. (Any d = d(n).)

This bound is probably way too high.

Small-World Wide-Area Network (Bourassa & Holt, 2003):
A decentralised communication network based on random
regular graphs.

Small-World Wide-Area Network (Bourassa & Holt, 2003):
A decentralised communication network based on random
regular graphs.

Small-World Wide-Area Network (Bourassa & Holt, 2003):
A decentralised communication network based on random
regular graphs.

Small-World Wide-Area Network (Bourassa & Holt, 2003):
A decentralised communication network based on random
regular graphs.

Asymptotic enumeration: want approximate formula for size
of a set, with o(1) relative error.

Asymptotic enumeration: want approximate formula for size
of a set, with o(1) relative error.

Number of permutations of [n] (Stirling’s formula):

n! = v/2mn (Z)n (1+ O(1/n)).

Asymptotic enumeration: want approximate formula for size
of a set, with o(1) relative error.

Number of permutations of [n] (Stirling’s formula):

n! = v/2mn (Z)n (1+ O(1/n)).

Number of d-regular graphs on [n]:

(1+0(1)) V2el/4 ()\A (1-—)\)1—)\)(3) (n; 1)”

where A =d/(n—1).

Number of d-regular graphs on [n]:

(14 0(1)) vV2e!/4 (X\ (1—)\)1—>\) (2) (n; 1)”

where A =d/(n—1).

McKay & Wormald (1990, 1991):

Number of d-regular graphs on [n]:

(14 0(1)) vV2e!/4 (X\ (1—)\)1—>\) (2) (n; 1)”

where A =d/(n—1).
McKay & Wormald (1990, 1991):

e sparse [d = o(nl/?)];

Number of d-regular graphs on [n]:

(14 o0(1)) V2et/* (X\ (1— >\)1—/\) (2) (n; 1)”

where A =d/(n—1).
McKay & Wormald (1990, 1991):
e sparse [d = o(nl/2)];

e quite dense [min{d,n—d—1} > cn/(logn) for some c > 2/3];

Number of d-regular graphs on [n]:

(14 o0(1)) V2et/* (X\ (1— >\)1—/\) (2) (n; 1)”

where A =d/(n—1).

McKay & Wormald (1990, 1991):

e sparse [d = o(nl/2)];

e quite dense [min{d,n—d—1} > cn/(logn) for some c > 2/3];

Liebenau & Wormald (2017): filled the gap.

Sparse enumeration: switching method (McKay, 1981)
Basic idea: repeated double counting.

A B

Sparse enumeration: switching method (McKay, 1981)
Basic idea: repeated double counting.

A B

In the “big bipartite graph™,

2
3|A| < # edges < 2|B|, so — < 3

Sparse enumeration: switching method (McKay, 1981)
Basic idea: repeated double counting.

A B

In the “big bipartite graph’, if

A NA(L 4 O(c.4)) = # edges = |B| Np(1 + O(=))
with ey +ep = 0(1)

Sparse enumeration: switching method (McKay, 1981)
Basic idea: repeated double counting.

A B

In the “big bipartite graph’, if
A Ns(1 4+ O(ey)) = # edges = |B| Ng(1 4+ O(ep))
with e 4 + e = 0o(1) then
14l _ Np

Bl Ny (L4+O(ea+ep)).

SN SN-1 So S1 So

Say we know |S| and we want to know |Sp| where

N
S = Sbad U U Sj
j=0

and |Spaql/|S| = o(1) (all unions disjoint).

SN SN-1 So S1 So

Say we know |S| and we want to know |Sp| where

N
S = Shadq U U Sj
=0

and [Spaql/[S] = o(1) (all unions disjoint). Then

N N 7—1
S S Siy

McKay & Wormald (1991), sparse d-regular graphs

Work with the configuration model (Bollobas, 1980).

Configuration model (Bollobas, 1980)

Start with n cells, each containing d points. Take a uniformly
random perfect matching of dn points into dn/2 pairs.

GeeD Geeo

GeeD Geed

Configuration model (Bollobas, 1980)

Start with n cells, each containing d points. Take a uniformly
random perfect matching of dn points into dn/2 pairs.

Configuration model (Bollobas, 1980)

Start with n cells, each containing d points. Take a uniformly
random perfect matching of dn points into dn/2 pairs.

Shrink each cell to a vertex to get a d-regular multigraph.
If the result is not simple, just try again.
Expected polynomial time sampling if d = O(+/logn).

McKay & Wormald (1991), sparse d-regular graphs

Work with the configuration model (Bollobas, 1980)

S = all configurations,
50,00 = simple configurations,
Sept = set of configurations with £ loops, b double pairs,

t triple pairs and no pairs with multiplicity > 4.

McKay & Wormald (1991), sparse d-regular graphs

Work with the configuration model (Bollobas, 1980)

S = all configurations,
50,00 = simple configurations,
Sept = set of configurations with ¢ loops, b double pairs,

t triple pairs and no pairs with multiplicity > 4.

Here Sp,q = set with “too many” loops, doubles or triples,
or any pair of multiplicity > 4.

From an element of Sy

From an element of Sy

e First, apply a switching to remove loops (one at a time);

From an element of Sy
e First, apply a switching to remove loops (one at a time);

e [hen, apply a switching to remove triple pairs;

From an element of Sy
e First, apply a switching to remove loops (one at a time);
e [hen, apply a switching to remove triple pairs;

e Finally, apply a switching to remove double pairs.

From an element of Sy

e First, apply a switching to remove loops (one at a time);
e [hen, apply a switching to remove triple pairs;

e Finally, apply a switching to remove double pairs.

= asymptotic enumeration formula

From an element of Sy

e First, apply a switching to remove loops (one at a time);
e [hen, apply a switching to remove triple pairs;

e Finally, apply a switching to remove double pairs.

= asymptotic enumeration formula

Also = exactly uniform sampling algorithm!

McKay & Wormald (1991) improved on an earlier formula
of McKay (1985) by using more complicated switchings.
oLD:

McKay & Wormald (1991) improved on an earlier formula
of McKay (1985) by using more complicated switchings.
NEW:

McKay & Wormald (1991) improved on an earlier formula
of McKay (1985) by using more complicated switchings.
NEW:

This inspired my adaptation of Cooper, Dyer, Greenhill (2007)
to irregular degree sequences which are not too dense (SODA
2015).

Markov chains, recent directions:

Markov chains, recent directions:

e Curveball algorithm: introduced by Verhelst (2008).
Carstens & Kleer (2017):
Spectral gap comparision with switch chain.

Markov chains, recent directions:

e Curveball algorithm: introduced by Verhelst (2008).
Carstens & Kleer (2017):
Spectral gap comparision with switch chain.

e Amanatidis & Kleer (2018), rapid mixing of switch chain
for strong stable degree sequences. Builds on chain of
Jerrum & Sinclair (1990).

Markov chains, recent directions:

e Curveball algorithm: introduced by Verhelst (2008).
Carstens & Kleer (2017):
Spectral gap comparision with switch chain.

e Amanatidis & Kleer (2018), rapid mixing of switch chain
for strong stable degree sequences. Builds on chain of
Jerrum & Sinclair (1990).

e Erdds, Miklos & Torozckai (2016), new families of rapidly
mixing switch degree sequences from old, using
Tyshkevich deompositions.

Other kinds of sampling algorithms?

Other kinds of sampling algorithms?

Yes! Exactly uniform in expected polynomial time.

Other kinds of sampling algorithms?
Yes! Exactly uniform in expected polynomial time.

e Configuration model, Bollobas (1979).
Expected polynomial time if dmax = O(+/logn).

Other kinds of sampling algorithms?
Yes! Exactly uniform in expected polynomial time.

e Configuration model, Bollobas (1979).
Expected polynomial time if dmax = O(+/logn).

e McKay & Wormald (1990).
Expected runtime O(d#,,yn?) if dmax = O(m1/*4).

Other kinds of sampling algorithms?
Yes! Exactly uniform in expected polynomial time.

e Configuration model, Bollobas (1979).
Expected polynomial time if dmax = O(+/logn).

e McKay & Wormald (1990).
Expected runtime O(d#,,yn?) if dmax = O(m1/*4).

If d-regular then this condition is d = O(n1/3) and the
expected runtime can be improved to O(d3n).

McKay-Wormald algorithm (1990).

START ~y f z z z Z
St St—1 So S1 So

Generate uniformly random configuration.

McKay-Wormald algorithm (1990).

START ~y ? z z z Z
St St—1 So S1 So

REJECT

Generate uniformly random configuration. Reject if “bad".

McKay-Wormald algorithm (1990).

Generate uniformly random configuration. Reject if “bad".

Repeatedly apply switchings with rejection.
Rejection probability chosen so that uniformity is preserved
with each switching.

McKay-Wormald algorithm (1990).

START

l St St—1 So S1 So
REJECT */J "’J

Generate uniformly random configuration. Reject if “bad".
Repeatedly apply switchings with rejection.

Rejection probability chosen so that uniformity is preserved
with each switching.

McKay-Wormald algorithm (1990).

START

l St St—1 So S1 So
REJECT "/J "’J *//*/J*/J

Generate uniformly random configuration. Reject if “bad".

Repeatedly apply switchings with rejection.
Rejection probability chosen so that uniformity is preserved
with each switching.

Gao & Wormald, 2015:
Extended this algorithm to give expected polynomial-time

exactly uniform sampling in the regular case.
When d = o(nl/2) the expected runtime is O(d3n).

Gao & Wormald, 2015:
Extended this algorithm to give expected polynomial-time

exactly uniform sampling in the regular case.
When d = o(nl/2) the expected runtime is O(d3n).

First idea: split rejection probability into two parts:

REJECT

Gao & Wormald, 2015:
Extended this algorithm to give expected polynomial-time

exactly uniform sampling in the regular case.
When d = o(nl/2) the expected runtime is O(d3n).

First idea: split rejection probability into two parts:

REJECT

First idea: split rejection probability into two parts:

REJECT

First idea: split rejection probability into two parts:

REJECT

e f-rejection, depending only on P, and

First idea: split rejection probability into two parts:

REJECT

e f-rejection, depending only on P, and

e b-rejection, depending only on P/,

First idea: split rejection probability into two parts:

REJECT

e f-rejection, depending only on P, and
e b-rejection, depending only on P’.

Then they provide strategies to reduce each of these.

As usual, double pairs cause all the problems. Get rid of
loops and triple pairs first.

As usual, double pairs cause all the problems. Get rid of
loops and triple pairs first.

Let S; be the set of all configurations with precisely + double
pairs, no loops and no pairs with multiplicity > 2.

As usual, double pairs cause all the problems. Get rid of
loops and triple pairs first.

Let S; be the set of all configurations with precisely + double
pairs, no loops and no pairs with multiplicity > 2.

Type I, Class A switching:

OO

G
—
G

Introduce Type I, Class B switchings which do not change

the number of double pairs.

e

P e S P cS;

1

G
—
G

This reduces the probability of f-rejection...

Introduce Type I, Class B switchings which do not change
the number of double pairs.

PeS; P e S,

This reduces the probability of f-rejection, BUT also causes
a new problem:

The number of () - */ varies a lot among P’ € S;,
leading to high probability of b-rejection.

Introduce Type II, Class B switchings which increase the
number of of double pairs by one.

Pes;

Introduce Type II, Class B switchings which increase the
number of of double pairs by one.

Why? Because the number of
@ t. .j :.) _I_ @ (. C) @

doesn’t vary too much over a given Sj

Introduce Type II, Class B switchings which increase the
number of of double pairs by one.

Pecs; Pl e S;yq

Why? Because the number of
@ t. .j :.) _I_ @ (. C) @

doesn’t vary too much over a given Sj = |ess b-rejection.

I,B

Si+1 S; Si—1

If the proposed switching P — P’ has type 7 and class «
then

I,B

Si+1 S; Si—1

If the proposed switching P — P’ has type 7 and class «
then

e f-rejection probability depends only on (P, 7),

e b-rejection probability depends only on (P, o).

Must also define pr(i) > 0 such that > _p-(i) < 1 for all
1 < 11, satisfying certain conditions.

Must also define pr(i) > 0 such that > _p-(i) < 1 for all
1 < 11, satisfying certain conditions.

Algorithm: Given P € §;,

Must also define pr(i) > 0 such that > _p-(i) < 1 for all
1 < 11, satisfying certain conditions.

Algorithm: Given P € §;,

e If : = O then output the graph corresponding to P;

Must also define pr(i) > 0 such that > _p-(i) < 1 for all
1 < 11, satisfying certain conditions.

Algorithm: Given P € §;,

e If : = O then output the graph corresponding to P;

e Choose type 7 with probability p-(i) and u.a.r. choose a
type 7 switching P — P’. This decides the class «.

Must also define pr(i) > 0 such that > _p-(i) < 1 for all
1 < 11, satisfying certain conditions.

Algorithm: Given P € §;,

e If : = O then output the graph corresponding to P;

e Choose type 7 with probability p-(i) and u.a.r. choose a
type 7 switching P — P’. This decides the class «.

e Perform f-rejection and b-rejection: if neither occurs then
move to P’ and repeat.

Gao & Wormald, SODA 2018:

Extension to power-law degree sequences with exponent
slightly below 3, with expected runtime O(n2-197) with high
probability.

Gao & Wormald, SODA 2018:
Extension to power-law degree sequences with exponent
slightly below 3, with expected runtime O(n2-197) with high

probability.

Much more complicated: several phases; many types and
classes of switching.

Gao & Wormald, SODA 2018:
Extension to power-law degree sequences with exponent
slightly below 3, with expected runtime O(n2-197) with high

probability.

Much more complicated: several phases; many types and
classes of switching.

Also a new kind of rejection, called pre-b-rejection.

Gao & Greenhill (arXiv, early July 2018):
Used same approach to exactly uniformly sample d-factors

of a given reqgular host graph H.
Or: sampling d-regular graphs which avoid all edges of H.

Gao & Greenhill (arXiv, early July 2018):

Used same approach to exactly uniformly sample d-factors
of a given reqgular host graph H.

Or: sampling d-regular graphs which avoid all edges of H.

If H is (n — A — 1)-regular and d2 + A2 = o(n) then the
expected runtime is O((d + A)*n 4+ d3nlogn).

Gao & Greenhill (arXiv, early July 2018):

Used same approach to exactly uniformly sample d-factors
of a given reqgular host graph H.

Or: sampling d-regular graphs which avoid all edges of H.

If H is (n — A — 1)-regular and d2 + A2 = o(n) then the
expected runtime is O((d + A)*n 4+ d3nlogn).

Our §; is the set of d-regular graphs with exactly ¢
“forbidden’” edges (edges of H).

Gao & Greenhill (arXiv, early July 2018):

Used same approach to exactly uniformly sample d-factors
of a given reqgular host graph H.

Or: sampling d-regular graphs which avoid all edges of H.

If H is (n — A — 1)-regular and d2 + A2 = o(n) then the
expected runtime is O((d + A)*n 4+ d3nlogn).

Our §; is the set of d-regular graphs with exactly ¢
“forbidden’” edges (edges of H).

Ended up with switching types I, IIa+, IIb+, IIc4, III and
switching classes A, Bl1l+, B2+, C+.

Ended up with switching types I, IIa4, IIb+, IIct+, III and
switching classes A, Bl1l+, B2+, C+.

Ended up with switching types I, IIa4, IIb+, IIct+, III and
switching classes A, B1+, B2+, C+.

I,LBl1+
I+, C+

Ilct+,B1+

LB2+ IIb+,B1+

LA Ta+,B1+
> <
1C+ v
S S; Si—1 Si—2

Si4o i1

Si—3

